Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
400,83 KB
Nội dung
AtruncatedformofDNAtopoisomeraseIIb associates
with themtDNAgenomeinmammalian mitochondria
Robert L. Low
1
, Shayla Orton
1
and David B. Friedman
2
1
Department of Pathology and
2
Department of Cellular and Structural Biology, University of Colorado Health Sciences Center,
Denver, CO, USA
Despite the likely requirement for aDNAtopoisomerase II
activity during synthesis of mitochondrial DNAin mam-
mals, this activity has been very difficult to identify convin-
cingly. The only DNAtopoisomerase II activity conclusively
demonstrated to be mitochondrial in origin is that ofa type
II activity found associated withthe mitochondrial, kineto-
plast DNA network in trypanosomatid protozoa [Melendy,
T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083–1088;
Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol.
Chem. 264, 4173–4178]. Inthe present study, we report the
discovery ofa type DNAtopoisomerase II activity in bovine
mitochondria. Identified among mtDNA replicative pro-
teins recovered from complexes ofmtDNA and protein, the
DNA topoisomerase relaxes a negatively, supercoiled DNA
template in vitro, ina reaction that requires Mg
2+
and ATP.
The relaxation activity is inhibited by etoposide and other
inhibitors of eucaryotic type II enzymes. TheDNA topo-
isomerase II copurifies withmitochondria and directly
associates with mtDNA, as indicated by sensitivity of some
mtDNA circles inthe isolated complex ofmtDNA and
protein to cleavage by etoposide. The purified activity can be
assigned to a 150-kDa protein, which is recognized by a
polyclonal antibody made against the trypanosomal mito-
chondrial topo II enzyme. Mass spectrometry performed on
peptides prepared from the 150-kDa protein demonstrate
that this bovine mitochondrial activity is atruncated version
of DNAtopoisomerase IIb, one of two DNA topoisomerase
II activities known to exist inmammalian nuclei.
Keywords: mitochondrial DNA topoisomerase; mito-
chondrial DNA; mtDNA replication; type II DNA topo-
isomerase.
Mitochondria inmammalian cells contain multiple copies
of a small ( 16 kb) circular duplex DNA genome
(mtDNA) that is produced within mitochondria through
repeated cycles ofDNA synthesis [1]. ThemtDNA genome
encodes 13 polypeptides, each of which is an essential
component of one ofthe enzyme complexes of the
respiratory chain [2]. Consequently, all ofthe enzymes and
DNA binding proteins required for the replication of
mtDNA are encoded on nuclear chromosomes, and
imported into the organelle. Despite progress made in
characterizing themtDNA replicative polymerase (DNA
pol c) [3–6], efforts to isolate and study some other
components oftheDNA replicative complex responsible
for mtDNA synthesis has proved to be exceedingly difficult.
This continues to limit our ability to understand the
biochemistry of how mtDNA replication is carried out.
This problem is due both to the low abundance of mtDNA
replicative enzymes in tissues, and to the presence of potent
nuclease activity, and other, ill-defined inhibitors in protein
extracts ofmitochondria that block mtDNA replication
assays in vitro. Furthermore, the presence of small frag-
ments of nuclear DNAin standard preparations of
mitochondria has also raised concerns that DNA replica-
tion activities attributed to mitochondria could in fact
represent nuclear contaminants.
One class of enzyme activity likely essential for the
successful synthesis ofmtDNA is DNA topoisomerase.
Widely distributed throughout nature, DNA topoiso-
merases promote the passage ofDNA strands through
one another, and relieve the torsional stress in DNA
produced for example, during progression ofthe DNA
replication fork, during transcription, and when newly
replicated DNA genomes need to disentangled from one
another [7]. Different types ofDNA topoisomerase
activity have been identified in prokaryotes and in nuclei
of eucaryotes. The type I and III activities are each ATP-
independent and break single DNA strands during
catalysis [7]. They alter the number of times the two
strands ofDNA revolve around one another (the linking
number), in steps of one. In contrast, the type II activities
require ATP, produce double-strand breaks during cata-
lysis, and change theDNA linking number in steps of two
[8,9]. Mammalian nuclei contain two different type II
activities, named DNAtopoisomerase IIa and IIb,which
are encoded by separate genes ([10,11]). The type II
enzymes are inhibited by novobiocin, and by a variety of
useful anticancer drugs including adriamycin, 4¢-(9-acrid-
inylamine)methanesulfon-m-anisidide (m-AMSA), etopo-
side (VP-16), and ellipticine [12].
Correspondence to R. L. Low, Department of Pathology B-216,
University of Colorado Health Sciences Center, 4200 East Ninth
Avenue, Denver, CO 80262, USA.
Fax: +1 303 315–6721, Tel.: +1 303 3158024,
E-mail: Robert.Low@UCHSC.edu
Abbreviations: BSA, bovine serum albumin; m-AMSA, 4¢-(9-acridi-
nylamine)methanesulfon-m-anisidide.
(Received 15 April 2003, revised 29 August 2003,
accepted 2 September 2003)
Eur. J. Biochem. 270, 4173–4186 (2003) Ó FEBS 2003 doi:10.1046/j.1432-1033.2003.03814.x
In contrast to the nuclear DNA topoisomerases, the
DNA topoisomerase activities present in mitochondria
have been very difficult to purify and identify, especially in
vertebrates. Recently, human mitochondria have been
shown to possess a specific DNAtopoisomerase I. This
mitochondrially targeted DNA topo I activity (TOP1mt)
is encoded by a unique gene on chromosome 8q24.3 [13].
The mitochondrial enzyme is highly homologous to
nuclear topo I, and based on its size and properties, no
doubt corresponds to the well-known nuclear-like topo I
activity that had previously been reported in mitochondria
of a variety of cell types [14–19]. Recently, human
mitochondria have also been shown to import nuclear
DNA topoisomerase IIIa activity [20]. This results from
the use of an alternate transcription start site in the
topo IIIa gene that incorporates a mitochondrial targeting
sequence onto the N-terminus ofthe protein. Much less is
known about mitochondrial type II enzymes. Thus far,
the only type II DNAtopoisomerase conclusively dem-
onstrated to be mitochondrial in origin is an enzyme
denoted DNA topoIImt found within the mitochondrion
of protozoa Crithidia fasciculate and Trypanosoma brucei
[21,22]. This enzyme likely plays a role inmtDNA (or
ÔkinetoplastÕ DNA) replication and catenating/decatenat-
ing DNA circles from the kinetoplast network [22]. The
topoIImt has been localized at the periphery of the
kinetoplast network by immunohistochemistry [23], and
epipodophyllotoxins and related drugs that promote
cleavage ofDNA by topoIImt and other type II enzymes,
have been shown to promote cleavage of kinetoplast
DNA [24,25]. Recently, suppression ofthe trypanosome
topoIImt by RNAi has been shown to cause loss of
kinetoplast DNA [26]. In addition to trypanosomes, there
is also evidence for a topoIImt in Dictyostelium discoideum
[27] and Plasmodium falciparum [28]. In mammalian
mitochondria, potent endonuclease and topoImt activities
have made it exceedingly hard to detect any type II
activity. Several years ago, a putative type II activity,
identified from catenation/decatenation and unknotting
assays, was reported inmitochondria from human
leukemic cells [29] and calf thymus [30], and partially
purified. Unfortunately, neither activity could be purified
to near homogeneity, nor shown to relax a supercoiled
DNA substrate in an ATP-dependent manner. Despite the
difficulties even finding DNAtopoisomerase II in mam-
malian mitochondria, such an activity has been suspected
to be responsible for the cleavage ofmtDNA seen in
ciprofloxacin-treated cells [31], and for producing a
common deletion seen in human mtDNA, which accu-
mulates with aging. Inthe case of this deletion, nucleotide
sequences where themtDNA is deleted seem to resemble
a nucleotide consensus sequence often targeted by verte-
brate type II DNAtopoisomerase activities [32,33].
In the present study, we report that a eucaryotic-like type
II DNAtopoisomerase activity is associated with bovine
mtDNA. This activity was recovered from insoluble com-
plexes ofmtDNA and mtDNA replicative factors that were
gently isolated from disrupted heart mitochondria. An
analysis of tryptic peptides prepared from the purified
enzyme using mass spectrometry indicates that this
topoIImt activity is atruncatedformofDNA topoiso-
merase IIb.
Materials and methods
Antibodies
Polyclonal antibodies prepared against the trypanosome
topoIImt, human DNAtopoisomerase IIa, and human
DNA topoisomeraseIIb were generous gifts of D. Ray, Mol.
Biol.Inst.,UCLA,LosAngeles,CA,USA;J.Holden,Dept.
of Pathology, Utah Health Sciences Center, Salt Lake City,
UT, USA; C. Austin, School of Cell and Mol. Biosci.,
University of Newcastle upon Tyne, UK, respectively.
Isolation ofthe complex of mitochondrial DNA
and its associated proteins
All procedures were carried out at 0–4 °C, unless otherwise
stated. Mitochondria were isolated from fresh ventricular
muscle of adult bovine-heart obtained from a local meat
processing plant (Hyclone, Greeley, CO, USA). The mito-
chondria were recovered from the disrupted heart tissue
essentially as described [34], except that minced tissue was
ruptured by shearing for 30 s at the lowest (not the highest)
speed setting inthe Waring blender. To isolate the mtDNA–
protein complex, each 40 mL aliquot of mitochondrial
suspension was diluted with 140 mL of 30 m
M
Tris/HCl
(pH 8), 4 m
M
EDTA, 100 m
M
NaCl, 20 m
M
potassium
glutamate, 10% (w/v) glycerol (buffer A), and gently
disrupted withthe addition of 0.5% (w/v) Triton X-100.
After 30 min, the lysate was centrifuged at 145 000 g for
60 min ina Ti50.2 rotor (Beckman). The supernatant
fraction was discarded, and the pellets were pooled and
re-suspended in 35 mL of buffer A, without Triton X-100, by
repeated Dounce homogenization. After 60 min, this sus-
pension was centrifuged at 3000 g for 10 min ina JA20 rotor.
The loose, tan pellet was discarded and the supernatant was
carefully decanted. The supernatant was similarly clarified
once more. The final supernatant was then centrifuged
145 000 g for 60 min ina Ti50.2 rotor. For experiments
requiring intact mtDNA–protein complexes, the dark brown
pellet (containing complexes ofmtDNA and protein) was
re-suspended in 10 mL of Buffer A using a Dounce
homogenizer, and stored at 3 °C. When replication proteins
were recovered, the dark brown ÔmtDNA–proteinÕ pellet was
re-suspended in 20 mL of 300 m
M
Tris/HCl (pH 8.8),
900 m
M
NaCl, 20 m
M
EDTA, 10 m
M
dithiothreitol by
Dounce homogenization. After > 2 h, the suspension was
centrifuged 175 000 g for 60 min ina Ti80 rotor, and the
supernatant fraction containing soluble mtDNA replication
factors (fraction II) was recovered and stored at 3 °C.
Relaxation and catenation assays for DNA
topisomerase II activity
Each relaxation reaction contains in 40 lL: 50 m
M
Tris/
HCl (pH 7.9), 125 m
M
NaCl, 7.5 m
M
Mg(OAc)
2
,
0.25 mgÆmL
)1
bovine serum albumin (BSA), 5 m
M
dithio-
threitol, 1.5 m
M
ATP, 500 ng of pUC19 DNA, and
0.5–4 lL ofthe fraction being assayed. Relaxation reactions
are incubated 60 min at 37 °C, unless otherwise indicated,
and stopped by the addition of 1% (w/v) sodium dodecyl
sulfate (SDS). The terminated reactions are then applied to
a 150-mL 0.8% (w/v) agarose-gel cast and run in 40 m
M
4174 R. L. Low et al. (Eur. J. Biochem. 270) Ó FEBS 2003
Tris/acetate, 1 m
M
EDTA (pH 8). After electrophoresis at
1.5 VÆcm
)1
overnight, the gel is stained in 0.5 lgÆmL
)1
of ethidium bromide and photographed under UV
illumination. One unit ofDNAtopoisomerase II relaxation
activity is defined as the amount of enzyme that relaxes 50%
(500 ng) ofthe input supercoiled DNA template in 60 min.
Activity is estimated from visual inspection ofthe gel or by
scanning densitometry.
Each catenation reaction contains in 40 lL: 40 m
M
Tris/
HCl(pH7.9),125m
M
NaCl, 7.5 m
M
Mg(OAc)
2
,
0.25 mgÆmL
)1
of BSA, 5 m
M
dithiothreitol, none or
1.5 m
M
ATP as indicated, 500 ng of topologically relaxed
pUC19 DNA, and added enzyme. Reactions are run 30 min
at 37 °C, and stopped by the addition of 1% SDS, 20 m
M
EDTA, and 400 m
M
NaCl. After heating terminated reac-
tions to 85 °C for 10 min, reactions are applied to a 150-mL
0.8% agarose gel. Electrophoresis and photography of the
ethidium stained gel is carried out as described above.
Purification ofthe mitochondrial DNAtopoisomerase II
All steps were carried out at 4 °C. All buffers contained
0.5 m
M
phenylmethylsulfonyl fluoride, 1 m
M
sodium
metabisulfite, 0.5 lgÆmL
)1
leupeptin, and 0.01 m
M
pepsta-
tin, unless otherwise stated. mtDNA–protein complexes
were isolated from an 80-mL suspension of purified bovine
heart mitochondria, and the soluble proteins subsequently
released from the mtDNA–protein complexes at 900 m
M
NaCl were collected, as described above (fraction II, 40 mL;
44 mg total protein). Three milliliters of DEAE-Sepharose
resin was added to the fraction II protein concentrate. After
diluting the suspension fourfold in 5 m
M
dithiothreitol and
gently mixing for 10 min, the DEAE-Sepharose was
collected at 12 100 g for 10 min ina JA20 rotor (Beckman),
and the supernatant, containing DNAtopoisomerase II
activity, was carefully decanted and saved (fraction III,
155 mL; 36 mg protein). Fraction III was applied to a
20-mL (12 · 1.7 cm
2
) hydroxylapatite column equilibrated
in 30 m
M
Tris/HCl (pH 7.9), 20 m
M
potassium glutamate,
5m
M
dithiothreitol, and 20% (w/v) glycerol (buffer B).
Activity was eluted witha linear 200 mL gradient of
0–1.2
M
potassium phosphate (pH 8.0) in buffer B. Active
fractions ofDNAtopoisomerase II activity eluted near
300 m
M
potassium phosphate, just prior to those of the
mitochondrial DNAtopoisomerase I activity, and were
pooled (fraction IV, 8 mL; 4 mg of protein). Fraction IV
was dialyzed against 1 L of buffer B for 2.5 h, and applied
to a 1.5-mL (2 cm · 0.75 cm
2
) heparin agarose column.
Activity was eluted using a linear 15 mL gradient of 0–1
M
NaCl in buffer B. Active fractions ofDNAtopoisomerase II
activity eluted near 500 m
M
NaCl and were pooled (fraction
V, 1.3 mL; 0.2 mg of protein). Fraction V was diluted with
6.5 mL of 10 m
M
dithiothreitol and applied to a 1-mL
column of native DNA-cellulose equilibrated with buffer B.
Once loaded, the column was washed with 10 of buffer B,
and eluted witha 10-mL linear gradient of 0–1.1
M
NaCl.
DNA topoisomerase II activity eluted near 350 m
M
NaCl.
Active fractions were pooled (fraction VI, 0.6 mL; 0.024 mg
of protein) and concentrated ina Centricon 30 filter. The
fraction VI concentrate ( 60 lL) was diluted threefold
with 10 m
M
dithiothreitol, and layered onto a linear 4.2 mL
gradient of 15–42% (w/v) glycerol containing 30 m
M
Tris/
HCl(pH7.9),0.1m
M
EDTA, 10 m
M
Mg(OAc)
2
,5m
M
dithiothreitol, 0.1% N-octylglucopyranoside, 1
M
NaCl.
Sedimentation was carried out at 299 000 g in an SW60
rotor (Beckman) for 20 h. Twenty-four fractions were
collected dropwise from the bottom ofthe tube. Peak
fractions of activity were saved (fraction VII, 0.3 mL;
2 lg of protein, as estimated from intensity of bands
observed on silver-stained SDS/PAGE gels relative to that
of marker proteins). The specific activity ofthe fraction VII
enzyme is 1.7 · 10
5
UÆmg
)1
.
Western blot analysis
A purified enzyme fraction containing about 400 ng of total
protein was resolved by electrophoresis on a 7.5% reducing
SDS/PAGE gel at 100 V ina Bio-Rad mini-PROTEAN II
apparatus witha Tris/glycine buffer system [35]. Proteins
were transferred by electrophoresis to Immobilon-P mem-
brane (Millipore) inthe Mini Trans-Blot Cell (Bio-Rad) for
180 vH in 30 m
M
Tris/HCl (pH 8.3), 0.02% (w/v) SDS,
0.014% (w/v) glycine, 20% (v/v) methanol. Blots were
briefly stained with 0.2% (w/v) Ponceau S to confirm
efficient protein transfer. The blots were blocked with
3%(w/v) BSA in phosphate-buffered saline (NaCl/P
i
), 0.5%
(w/v) Tween 20 for 1 h at ambient temperature. Incubation
with the primary antibody (diluted 1 : 500–1 : 25 000 in
blocking buffer) was carried out overnight at 4 °C. Sub-
sequently, blots were washed extensively with frequent
changes of NaCl/P
i
containing 0.5% (w/v) Tween 20, at
ambient temperature for 2 h. The secondary antibody,
which was an anti-rabbit, peroxidase-labeled antibody, was
then applied, at a dilution of 1 : 1000. After final washes in
NaCl/P
i
for 2 h at ambient temperature, protein-immune
complexes were visualized by chemiluminescence, according
to the procedure recommended by the manufacturer (ECL,
Amersham Life Science).
Protein identification by mass spectrometry
Proteins were separated by 1D SDS/PAGE and stained
with a low-fixation silver stain [36]. Protein bands were
individually excised and the silver was removed. Gel slices
were equilibrated in 100 m
M
NH
4
HCO
3
and dehydrated
with acetonitrile and vacuum centrifugation. Dehydrated
gel slices were then rehydrated with 15 lL25m
M
NH
4
HCO
3
containing 0.01 lgÆlL
)1
modified trypsin
(Promega), and trypsin digestion was carried out for > 3 h
at 30 °C. Peptides were extracted with 60% acetonitrile,
0.1% trifluoroacetic acid, dried by vacuum centrifugation,
and reconstituted in 8 lL 0.1% trifluoroacetic acid. Pep-
tides were then desalted and concentrated into 2 lL60%
acetonitrile, 0.1% trifluoroacetic acid using ZipTipC18
pipette tips (Millipore). 0.2 lLwasappliedtoaMALDI
target and overlayed with 0.2 lL a-cyano-4-hydroxycin-
namic acid matrix. MALDI-TOF mass spectrometry was
carried out using a Voyager DE-PRO mass spectrometer
(Applied Biosystems) operated in reflectron mode. Ions
[M + H] corresponding to peptide masses were entered
into the MS-FIT database search algorithm (http://
prospector.ucsf.edu/) and the SWISS-PROT, NCBInr and
pdbEST databases were searched, allowing for complete
carbamidomethylation of cysteine and partial oxidation of
Ó FEBS 2003 DNA Topo IIbmammalianmtDNA (Eur. J. Biochem. 270) 4175
methionine. Peptide mass errors of up to 50 p.p.m. were
considered during the search.
Isolation ofthe mtDNA–protein complex from mitoplasts
Mitoplasts were prepared from bovine heart mitochon-
dria, essentially as described [37] unless otherwise stated.
Briefly, a 20 mL suspension of bovine-heart mitochondria
(25 mgÆmL
)1
protein) was supplemented with 0.5 mgÆmL
)1
bovine serum albumin and 0.1% (w/v) digitonin. After gently
stirring the suspension for 15 min at 0 °C, the mitochondria
were diluted with 75-mL of 5 m
M
Hepes (pH 8),
0.5 mgÆmL
)1
bovine serum albumin, 70 m
M
sucrose,
220 m
M
mannitol (buffer C) and disrupted using a 40-mL
Dounce homogenizer (four to-and-fro passes withthe ÔtightÕ
pestle). The homogenate was then centrifuged at 15 000 g for
10 min ina JA-14 rotor (Beckman). The soft, brown inner-
membrane (mitoplast) pellet was collected, and resuspended
in 100-mL buffer C using Dounce homogenization, and
centrifuged 15 000 g for 10 min as before. The washed
mitoplast pellet was resuspended with 10 mL of buffer B, and
Triton X-100 was added to 0.5%. After 20 min at 0 °C, the
mtDNA–protein complex was collected at 30 000 g for
30 min, and resuspended in 1 mL of buffer B minus glycerol.
Isolation ofthe mtDNA–protein complex from
mitochondria sequentially treated with DNase I and
proteinase K
A 20-mL sample ofa freshly prepared suspension of
bovine-heart mitochondria was diluted to 220 mL with
30 m
M
TrisÆHCl(pH7.7),50m
M
sodium glutamate, 10%
(w/v) sucrose (buffer D), and themitochondria collected at
15 300 g for 15 min ina JA14 rotor (Beckman). The
brown mitochondrial pellet was resuspended in 25 mL of
buffer D by Dounce homogenization and 4 m
M
Mg(OAc)
2
and 0.2 mgÆmL
)1
pancreatic DNase I were added. DNase
digestion was carried out for 30 min at ambient tempera-
ture, and terminated by the addition of 10 m
M
EDTA. The
DNase I-treated mitochondria were diluted to 220 mL
with buffer D plus 5 m
M
EDTA, and then collected at
15 300 g for 15 min ina JA14 rotor. This step is intended
to facilitate removal ofDNA fragment debris and residual
DNase.Thewashstepwasrepeatedtwicemore.Thefinal
pellet ofmitochondria was resuspended in 200 mL of
5m
M
Mops (pH 7.4), 5 m
M
KH
2
PO
4
,1m
M
EDTA, 0.3
M
sucrose, 0.1% BSA (buffer E), then collected at 15 300 g for
15 min ina JA14 rotor. Themitochondria were resuspended
in 20 mL of buffer E, and 40 mL of 10 m
M
Hepes (pH 7.4),
0.6
M
mannitol containing 45 lgÆmL
)1
of proteinase K was
added, as otherwise modified [20]. Protein digestion was
carried out 30 min at 0 °C, and stopped by the addition of
4m
M
phenylmethylsulfonyl fluoride. After 10 min at 0 °C,
the mitochondria were collected at 12 100 g for 15 min in a
JA20 rotor. The mitochondrial pellet was resuspended in
220 mL of buffer E plus 0.1 m
M
phenylmethylsulfonyl
fluoride, recentrifuged at 15 300 g for 15 min ina JA14
rotor, and the washed pellet resuspended in 220 mL of buffer
E plus 0.1 m
M
phenylmethylsulfonyl fluoride. This wash step
was repeated four times. The final pellet of DNase I/
proteinase K treated mitochondria was resuspended in
90 mL of buffer A and themitochondria were disrupted with
the addition of 0.5% Triton X-100. Complexes of mtDNA
and protein were isolated as described above.
Results
Recovery ofaDNA topoisomerases II activity
from isolated complexes ofmtDNA and protein
When preparations of purified bovine-heart mitochondria
are disrupted withthe addition of 0.5% (w/v) Triton X-100,
the mtDNA and its associated proteins are found to reside
in an insoluble complex, which can be recovered from the
mt lysate through a series of differential centrifugation steps.
These low and high-speed centrifugation steps eliminate
fragments of nuclear DNA–protein complexes that invari-
ably contaminate the mtDNA–protein complex. As well,
they separate the insoluble complex of mtDNA–protein
from > 95% ofthe mitochondrial protein, which is soluble.
Subsequent treatment ofthe isolated complex of mtDNA
and protein with 900 m
M
NaCl releases a fraction of
mtDNA replicative proteins and DNA binding proteins
from the mtDNA. These proteins (now soluble) are
recovered inthe supernatant following centrifugation of
the high salt extract at 30 000 g for 30 min. In contrast, the
mtDNA, which nearly all remains insoluble, is still pelleted.
During purification ofDNA polymerase c released from
the mtDNA using successive steps of hydroxylapatite and
native DNA cellulose chromatography, and glycerol gradi-
ent velocity sedimentation, we identified a eucaryotic type
ATP-dependent DNAtopoisomerase activity. This activity
partially copurifies withtheDNA pol c activity. The
topoisomerase activity is evident from its relaxation of a
negatively supercoiled plasmid DNAina fairly nonproces-
sive fashion (Fig. 1A). The rate ofDNA relaxation appears
constant for 30 min at 37 °C and the extent of DNA
relaxation proportional to added enzyme is inthe range of
5–20 ng of protein. The maximal rate of template relaxation
requires 1.5 m
M
ATP with one-half maximal relaxation
occurring at 0.25 ± 0.05 m
M
ATP. As observed with other
type II activities, a trace level ofDNA relaxation occurs in
the absence of ATP, presumably due to ATP copurified
with the enzyme. While addition of 1.5 m
M
dATP can
substitute for ATP, neither 1.5 m
M
CTP, UTP, nor GTP
supports activity (Fig. 1B). The relaxation activity is
inhibited by novobiocin. In assays containing 0.5 m
M
ATP, levels of novobiocin above 200 l
M
are completely
inhibitory. Additional titration experiments indicate that
50% inhibition occurs at a concentration of about 70 l
M
.
The mt topoisomerase II lacks DNA gyrase activity as
indicated by the failure ofthe enzyme to supercoil 500 ng of
a relaxed DNA template in standard assays that contained
ATP inthe range of 0.1–5 m
M
(data not shown). The
fraction V enzyme also lacks detectable DNA ligase activity
(< 0.05 UÆlL
)1
) as assessed using a DNase I nicked
plasmid DNA template (data not shown).
The DNA topoisomerases II activity copurifies
with mitochondria
To rule out the possibility that the observed DNA
topoisomerase II activity was a contaminant, we assessed
whether this activity copurified withmitochondria collected
4176 R. L. Low et al. (Eur. J. Biochem. 270) Ó FEBS 2003
through two successive linear 0.5–2
M
sucrose gradients for
2 h each at 22 000 r.p.m. in an SW28 rotor (Materials and
methods). As expected, themitochondria recovered from
peak fractions ofthe second gradient appear relatively free
of nuclear DNA contamination that could provide a source
of topoisomerase activity. This can be seen from the
prominent 7.3-, 4.8-, and 4.3-kb EcoRI restriction fragments
of bovine mtDNA that are seen when DNA extracted from
Fig. 1. Identification of an ATP(dATP)-dependent mitochondrial DNAtopoisomerase and demonstration that the activity cosediments with mito-
chondria. Photographs of agarose-gel assays are shown. Relaxed and supercoiled (sc) forms ofthe plasmid DNA are as labeled. (A) Time course.
Standard agarose-gel, relaxation assays contained 20 ng of fraction VI enzyme, without or with 1.5 m
M
ATP, and were run 5, 10, 15, or 30 min, as
indicated. (B) Activity requires ATP(dATP). Standard relaxation assays were carried out either with none, or 1.5 m
M
ATP, GTP, CTP, UTP, or
dATP, as indicated. Reactions were run for 30 min at 37 °C. (C) ATP-dependent DNAtopoisomerase II cosediments with mitochondria. Two
12-mL samples of fresh bovine heart mitochondria (40 mgÆmL
)1
protein) were sedimented through 30 mL, linear 0.5–2
M
sucrose gradients
(preparedin30m
M
Tris/HCl (pH 8), 75 m
M
NaCl). Sedimentation was for 2 h at 70 000 g in an SW28 rotor (Beckman), run at 3 °C. The visible
band ofmitochondria from each gradient was removed laterally from the tube using a 16-gauge needle. Themitochondria were pooled and diluted
to250mLin30m
M
Tris/HCl (pH 8), 75 m
M
NaCl (buffer C). Themitochondria were collected at 11 000 r.p.m. for 20 min ina JA14 rotor,
resuspended in 10 mL of buffer C and layered onto a second, 30 mL linear 0.5–2
M
sucrose gradient which was centrifuged for 2 h at 70 000 g,as
described above. Following centrifugation, 15–2.3 mL fractions were collected dropwise from the bottom ofthe tube. The visible band of
mitochondria eluted in fractions 8 and 9. DNA was phenol extracted from a 0.5-mL aliquot of fractions 5 through 14 that were supplemented with
1% SDS. After a treatment with 0.1 mgÆmL
)1
of RNase A for 40 min at 37 °C, each DNA sample was digested with 20 U of EcoR1 for 5 h at
37 °C, analyzed by agarose-gel electrophoresis on a 0.8% agarose gel. A photograph ofthe ethidium-stained gel is shown in (C). The mitochondria
in the remainder of fractions 8 and 9 were pooled, diluted to 32 mL with buffer A and disrupted inthe presence of 0.5% Triton X-100. After 30 min
at 3 °C, the mtDNA–protein complex was collected by centrifugation at 175 000 g ina Ti80 rotor (Beckman) for 30 min. Proteins released from the
isolated mtDNA–protein complex at 900 m
M
NaCl were then prepared, concentrated to 0.2 mL using a Centricon-10 filter. The concentrate was
then layered onto a 4-mL, linear 15–42% (v/v) glycerol gradient. Sedimentation was carried out for 20 h at 299 000 g ina SW60 rotor (Beckman).
Fractions were collected dropwise from the bottom ofthe tube and assayed for type II DNAtopoisomerase activity. Standard, agarose-gel
relaxation assays performed on even numbered fractions between 2 and 12, without and with 1.5 m
M
ATP are shown in (D). These reactions
contained 2 lL aliquots of each fraction assayed and were carried out 30 min at 37 °C.
Ó FEBS 2003 DNA Topo IIbmammalianmtDNA (Eur. J. Biochem. 270) 4177
samples ofthemitochondria are digested by EcoRI and
analyzed by agarose-gel electrophoresis (Fig. 1C). To assess
whether the purified mitochondria still contain topoiso-
merase II activity, the remainder ofthemitochondria were
disrupted with 0.5% (w/v) Triton X-100, complexes of the
mtDNA–protein were collected, and a concentrate of
proteins released from themtDNA at 900 m
M
NaCl was
prepared and sedimented through a linear glycerol gradient.
This velocity sedimentation step has proved to be quite
effective in separating thetopoisomerase II activity from the
mitochondrial topoisomerase I and endonuclease G acti-
vities, which both strongly inhibit type II topo assays. As
seen in Fig. 1D, ATP-dependent topoisomerase activity is
evident inthe gradient, in those fractions collected near the
bottom (fractions 5 and 6), where the peak of DNA
polymerase c activity is also found (data not shown). Thus it
is unlikely that thetopoisomerase II activity is a nuclear or
cytoplasmic contaminant.
The purified mitochondrial DNAtopoisomerase II
activity is sensitive to known inhibitors of eucaryotic type
II enzymes and can catalyze catenation of plasmid DNA
circles. As determined using the fraction V enzyme, DNA
relaxation activity occurs over a fairly narrow range of
Mg
2+
, NaCl, and pH with maximal rates occurring at
7.5 m
M
Mg
2+
,100 m
M
NaCl, and pH 8.0–8.5, respectively.
Relaxation activity shows a strict requirement for Mg
2+
,
but not Ca
2+
or Mn
2+
, inthe range of 0.1–15 m
M
supports
activity. In addition to novobiocin, etoposide and m-AMSA
(inhibitors of eucaryotic type II enzymes), inhibit the
mitochondrial DNAtopoisomerase II activity (Table 1).
Concentrations of each substance that cause 50% inhibition
of the relaxation activity ofthe fraction V enzyme are listed.
In addition to being able to relax negatively supercoiled
DNA templates inthe presence of ATP, the mitochondrial
DNA topoisomerase II activity can also promote catenation
of topologically relaxed plasmid DNA circles inthe presence
of aDNA crowding agent. As shown in Fig. 2, this
catenation activity requires ATP, as expected, and produces
huge networks of interlocked DNA circles that fail to enter
the agarose gel during electrophoresis.
The mitochondrial DNA topoisomerases II activity
appears to be associated with mtDNA
An association ofDNAtopoisomerase II withmtDNA has
been demonstrated by showing that treatment of the
isolated mtDNA–protein complex with etoposide in the
presence of SDS promoted cleavage ofmtDNA circles into
full-length linear mtDNA [38]. In this experiment, small
samples ofa suspension ofthe isolated mtDNA–protein
complex were incubated with or without etoposide in the
presence of 1% SDS for 15 min at 37 °C. After the addition
of proteinase K, the mtDNAs were phenol purified,
resolved by agarose-gel electrophoresis and transferred to
nitrocellulose paper. The extent of drug mediated cleavage
of themtDNA was then assessed by Southern blot analysis
usinga[
32
P]BamH1-Hpa1 restriction fragment of bovine
mtDNA as probe. As seen in Fig. 3, treatment with
etoposide, inthe range of 50–500 l
M
, converted some
mtDNA circles to full-length linear DNA. However, so far,
we have not seen more than about 15% ofthe input circles
linearized (as indicated from scanning densitometry, data
not shown), even if the incubation periods at 37 and 64 °C
were extended. Maximal conversion occurs at about 100 l
M
of drug. This cleavage reaction required 10 m
M
Mg
2+
but
not the addition of ATP. No DNA cleavage was observed
using drug vehicle (dimethylsulfoxide) alone.
The purified mitochondrial type II activity can be
assigned to a polypeptide of 150 kDa
In order to further identify the mitochondrial DNA
topoisomerase II, the enzyme recovered from the isolated
mtDNA–protein complex was purified using successive
steps of hydroxylapatite, native DNA-cellulose, and heparin
agarose chromatography, followed by glycerol gradient
Table 1. Known inhibitors of eucaryotic type II DNA topoisomerases
inhibit the bovine mitochondrial DNA topoisomerases II activity.
Standard ATP-dependent relaxation assays were carried out with the
fraction VI enzyme as detailed in Materials and methods. Novobiocin
assays contained 0.25 m
M
ATP. N-ethylmaleimide assays performed
without added dithiothreitol.
Inhibitors
Concentration that gives 50%
inhibition of relaxation activity
1. Etoposide 70 l
M
2. m-AMSA 3 l
M
3. Novobiocin 70 l
M
4. N-Ethylmaleimide 60 l
M
5. Ethidium bromide 0.6 lgÆmL
)1
Fig. 2. The purified mitochondrial DNAtopoisomerase promotes ATP-
dependent catenation of relaxed plasmid DNA circles. Catenation assays
were performed for 30 min at 37 °C as detailed in Materials and
methods. Assays contained 0.5, 1.0, or 2.0 lL ofthe glycerol gradient
pool of mitochondrial DNAtopoisomerase II (fraction VII), 5 U of
purified mitochondrial DNAtopoisomerase I activity, and none or
1.5 m
M
ATP, as indicated. A photograph ofthe ethidium stained
agarose gel is shown; C, control DNA minus enzyme; rc, relaxed cir-
cular form DNA; sc, supercoiled form DNA.
4178 R. L. Low et al. (Eur. J. Biochem. 270) Ó FEBS 2003
velocity sedimentation. When the fractions ofthe glycerol
gradient spanning the peak ofDNAtopoisomerase II
activity were analyzed using a silver-stained SDS/PAGE, a
band ÔdoubletÕ of 150 kDa, within the peak of highest
activity (fraction 6), correlated withtheDNA topoiso-
merase II activity (Fig. 4A,B). Western blot analysis using
antibodies against trypanosome topoIImt, and human
nuclear topoIIa and topoIIb enzymes provided further
evidence that this 150 kDa polypeptide corresponds to a
DNA topoisomerase II activity (Fig. 4C). As shown, the
bovine mitochondrial 150 kDa polypeptide was recog-
nized by antibody prepared against the purified trypano-
somal DNA topoIImt (left most gel, Fig. 4C), however, not
by a rabbit nonimmune serum (not shown). As seen in gel
panel 2, this bovine 150 kDa band was also recognized by
antibody made against human nuclear DNA topoIIa,albeit
less well than that seen withthe antigen control (panel 3). In
contrast, as evident in panel four, it failed to be recognized
at all by the antinuclear topoIIb antibody. Positive control
blots for antinuclear topoIIa and topoIIb antibodies with
human topoIIa and topoIIb antigens are shown in gel
panels three and five, respectively.
Identification ofthe mitochondrial type II activity
as atruncatedformofDNA topoisomerases IIb
Mass spectrometry was used to confirm that the mito-
chondrial proteins representing the 150 kDa bands were
topoisomerases. Proteins inthe activity peak from a glycerol
gradient were separated by SDS/PAGE, silver stained and
digested in-gel with trypsin protease as described in
Materials and methods. Peptide masses acquired by mat-
rix-assisted laser desorption/ionization, time of flight mass
spectrometry (MALDI-TOF MS) were used in database
search algorithms and led to an unambiguous match to
human topoisomeraseIIb (Fig. 5). The bovine homologue
was not present inthe databases searched. However, a
bovine cDNA was found that contained 100% identity with
the human sequence (Fig. 5).
Human topoisomerase IIb,aswellasseveralother
mammalian homologues, has a predicted molecular weight
182 kDa, well above the 150 kDa mobility observed
for the mitochondrial proteins. Furthermore, peptide cov-
erage was not found past residue 1250 inthe human
sequence (out ofa total of 1621 or 1626, depending on the
splice variant), despite nearly all ions being accounted for in
the mass spectrum (Fig. 5). These findings are consistent
with the hypothesis that the mitochondrial enzyme identi-
fied from the gel slice is truncated. Although the spectra
contain peptides unique to topo IIb, no peptides unique to
topo IIa have been encountered. This finding suggests that
the mitochondria topo II activity is likely aform of
topo IIb, although the spectra do not exclude the possibility
that a fragment of topo IIa could also be present.
Further evidence that thetruncated topo IIb is
mitochondrial in origin and not a nuclear contaminant
As the mitochondrial DNAtopoisomerase II activity
corresponds to atruncatedformoftheDNA topoisomerase
IIb found in nuclei, we decided it was imperative to
re-evaluate whether the mitochondrial activity could simply
be a nuclear contaminant. Had thetopoisomerase II
recovered from the purified mitochondria originated from
fragments of nuclear DNA that adhere to mitochondria?
Two additional experiments carried out indicate that this is
not likely. Inthe first experiment, samples of mitochondria
were treated with 0.1% digitonin to strip away outer
membranes and remove nuclear DNA debris that could be
adherent to mitochondria. The resultant mitoplasts were
then collected, disrupted with 0.5% Triton X-100, and the
complex of mtDNA–protein recovered by differential
centrifugation. Proteins released from this mtDNA complex
at 600 m
M
NaCl were then fractionated by glycerol gradient
velocity sedimentation and assayed for DNA topoisomerase
II activity. As shown in Fig. 6A, agarose-gel electrophoresis
of themtDNA purified from the mitoplast mtDNA–protein
complex and digested with EcoR1 reveals the prominent
7.3-, 4.8-, and 4.3-kb bands characteristic of bovine
mtDNA. As seen, the mitoplast preparation appears
essentially free of nuclear DNA contaminants. In spite of
Fig. 3. Etoposide promotes cleavage of some mtDNA circles of the
mtDNA–protein complex [38]. Ten-microliter samples ofthe suspen-
sion of mtDNA–protein complex were each diluted into 150 lLof
30 m
M
Tris/HCl (pH 7.9), 125 m
M
NaCl, 2 m
M
dithiothreitol, 7.5 m
M
Mg(OAc)
2
,1.5m
M
ATP, without or with 50, 100, 250, or 500 l
M
etoposide, at 3 °C.SDSwasimmediatelyaddedto1%(w/v),andthe
reactions were incubated 30 min at 37 °C. Proteinase K was then
supplemented to 0.1 mgÆmL
)1
, and the reactions were further incu-
bated 20 min at 64 °C. DNAs were phenol and chloroform extracted
once, ethanol precipitated, and the precipitates collected at 31 000 g
for 30 min ina JA20 rotor. Each precipitated DNA sample was
re-suspended in 40 lLof40m
M
Tris/acetate, 1 m
M
EDTA (pH 8)
(TAE), plus 1% SDS, and applied to a 150-mL 0.8% agarose gel that
was then run at 1.5 VÆcm
)1
overnight ina TAE buffer system. DNAs
in the gel were blotted onto nitrocellulose membrane by capillary
transfer in 1.5
M
NaCl, 0.15
M
sodium citrate (pH 7) (10 · NaCl/Cit),
as described [69]. Hybridization was carried out overnight at 68 °Cin
6 · NaCl/Cit, 0.25% (w/v) nonfat dried milk, witha heat-denatured
[5¢-
32
P]BamH1-Hpa1 restriction fragment ofthe D-loop region
sequence of bovine mtDNA ( 10
8
dpmÆlg
)1
), as probe. After
extensive washing ofthe filter, as detailed [69], autoradiography was
carried out for 1 h at )80 °C using Kodak XR5 film. A photograph of
the autoradiogram is shown. The full-length linear formof bovine
mtDNA was identified using a Hpa1-digested sample of purified
bovine mtDNA, as shown.
Ó FEBS 2003 DNA Topo IIbmammalianmtDNA (Eur. J. Biochem. 270) 4179
this, thetopoisomerase assays performed on the glycerol
gradient reveal a vigorous topoisomerase II activity, peak-
ing in fractions 8 and 9. This indicates strongly that there is
DNA topoisomerse II activity associated withmtDNA as
previous experiments suggested. Furthermore, as shown in
Fig. 6B, Western blot analysis ofthetopoisomerase II peak
Fig. 4. The mitochondrial DNAtopoisomerase II activity is associated witha » 150-kDa polypeptide that is recognized by an anti-trypanosome
topoIImt Ig. (A) Silver-stained SDS/PAGE gel ofthe active, mitochondrial DNAtopoisomerase II fraction ofthe glycerol gradient velocity
sedimentation purification step. A 200-lL sample ofthe fraction V enzyme (200 l) was layered onto a 4-mL linear 15–42% (v/v) glycerol gradient
containing 30 m
M
Tris/HCl (pH 7.9), 300 m
M
NaCl, 10 m
M
Mg(OAc)
2
,5m
M
dithiothreitol, 0.05% (w/v) n-octylglucoside. Sedimentation was
carriedoutat299000g ina SW60 rotor (Beckman) for 20 h at 3 °C. Twenty, five-drop fractions were collected from the bottom ofthe tube.
Proteins ina 100-lL aliquot of fractions 4, 6, and 8 were each precipitated in 10% (w/v) trichloroacetic acid, the protein precipitants collected at
31 000 g for 30 min ina JA20 rotor, were resuspended in 20 lLof50m
M
Tris/HCl (pH 6.8), 10% (v/v) glycerol, 2% (w/v) SDS, 0.7
M
2-mercaptoethanol, 0.05% (w/v) bromophenol blue. Samples were heat-denatured 3 min at 94 °C, and run through a 7.5% reducing, SDS/PAGE
gel, at 100 V ina Tris/glycine buffer system [34]. A photograph ofthe gel stained with silver [34], is shown in (A). Marker, molecular size standards:
myosin (200 kDa), b-galactosidase (116 kDa), phosphorylase b (97 kDa), BSA (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa). (B)
Standard agarose-gel relaxation assays of glycerol gradient contained in 40 lL: a 2-lL aliquot of fraction 4, 6, or 8, without or with 1.5 m
M
ATP, as
indicated. Assays were carried out for 60 min at 37 °C. A photograph ofthe agarose gel is shown. (C) Western analysis using antibodies against
trypanosomal topoIImt, and human nuclear DNA topoisomerases II a and b reveals cross reactivity withthe bovine mitochondrial enzyme. Blots
were probed with diluted antibodies and were developed by chemiluminescence, and exposed to X-ray film. Primary antibodies were used at the
following dilutions: anti-trypanosome (1 : 500); anti-topoIIa (1 : 500) and anti-topoIIb (1 : 25 000). The blot prepared withthe fraction V of the
bovine mitochondrial DNAtopoisomerase II (400 ng) was probed with either the anti-trypanosome Ig (SDS-gel panel 1), the anti-topoIIa Ig (SDS-
gel panel 2), or the anti-topoIIb Ig (SDS-gel panel 4), respectively, as shown. The anti-topoIIa and topoIIb Igs were tested witha positive control of
either recombinant human topoIIa ( 150 ng) or topoIIb antigen ( 200 ng) provided by the supplier ofthe antibody (SDS-gel panels 3 and 5,
respectively). Relative sizes of prestained standards run in an adjacent lane are shown at the left ofthe gel.
4180 R. L. Low et al. (Eur. J. Biochem. 270) Ó FEBS 2003
of the glycerol gradient reveals a faint, immunoreactive
band of 150 kDa, in agreement with size ofthe purified
activity. This result further suggests that the apparent
truncation ofthetopoisomeraseIIb does not simply result
from in vitro proteolysis during the several-step enzyme
purification. In contrast to the mtDNA–protein complexes
recovered from the mitoplasts, the complexes of nuc-
lear protein and DNA fragments removed from the
mitochondria by digitonin fail to yield any detectable
DNA topoisomerase II activity, when proteins bound to
this DNA are released by high salt, fractionated by glycerol
gradient velocity sedimentation, and assayed (Fig. 6C).
In a second experiment, a 20-mL sample of bovine-heart
mitochondria was treated successively with DNase I and
Fig. 5. Tryptic peptides from bovine topoisomerases IIb identifiedbymassspectrometry.Protein bands were excised after 1D SDS/PAGE and
digested in-gel with trypsin protease as described in Materials and methods. (A) Silver-stained SDS/PAGE gel separating proteins present in
fraction 6 from the second glycerol gradient. Arrows indicate the 150 kDa proteins that were individually subjected to in-gel digestion with trypsin
protease as described in Materials and methods. (B) Matrix-assisted laser desorption/ionization, time of flight (MALDI-TOF) mass spectrum of
tryptic peptides isolated from the lower 150 kDa protein band. Asterisked ions (m/z ¼ 1070.48, 1115.64, 1122.59, 1128.64, 1131.57, 1159.58,
1264.60, 1270.65, 1296.66, 1315.70, 1331.66, 1357.74, 1436.68, 1461.78, 1500.80, 1640.85, 1830.98, and 2423.19 Da – left to right) match predicted
tryptic peptide masses (plus one amu) from human topoisomeraseIIb (MOWSE Score ¼ 1.35 · 10
9
).IonslabeledTmatchexpectedtrypsin
autolytic peptides (m/z ¼ 842.50, 1045.56 and 2211.09 Da) and were used to internally calibrate the mass spectrum to a mass accuracy of within
50 p.p.m. Ions labeled K match background peptides derived from keratin that were also present in controls. x-axis, mass-to-charge ratio (m/z);
y-axis, relative ion intensity. (C) Amino acid sequence of human topoisomerases IIb. Residues contained within the predicted tryptic peptides
matched by the MALDI-TOP MS data are indicated in boldface. The only bovine sequence found to significantly match the MALDI-TOF MS
data was the cDNA 211850 MARC 2BOV, which encodes a peptide containing a 100% match to the human amino acid sequence (shaded in gray,
amino acids 725–904).
Ó FEBS 2003 DNA Topo IIbmammalianmtDNA (Eur. J. Biochem. 270) 4181
proteinase K to degrade any DNAtopoisomerase II that
could be adherent to mitochondria. After several cycles of
washing to remove proteolytic debris and any trace
proteinase K activity, themitochondria were disrupted
with the addition of 0.5% Triton X-100, and the
mtDNA–protein complexes recovered, and proteins
released from themtDNA fractionated by glycerol gradient
velocity sedimentation. DNAtopoisomerase II activity,
measured either by ATP-dependent catenation or relaxation
assays, was identified in glycerol gradient fractions 7, 8, and
9, as expected. The amount of activity recovered was about
75% that obtained inthe mitoplast experiment (see Fig. 6).
In contrast, no topoisomerase II activity could be recovered
if themitochondria were first disrupted with 0.5% Triton
X-100 prior to the addition ofthe proteinase K.
Discussion
In this study, we present biochemical evidence that mam-
malian mitochondria contain a catalytically active, trun-
cated formofDNAtopoisomerase IIb. This activity
copurifies withmitochondria collected over successive
sucrose gradients, and the activity is associated with purified
complexes ofmtDNA and protein that are recovered from
isolated mitochondria and digitonin-treated mitoplasts
using steps that eliminate nuclear DNA contaminants.
Unlike the well-characterized nuclear formofDNA topo-
isomerase IIb that consists ofa 180-kDa polypeptide and
relaxes DNAina processive fashion in vitro [39,40], the
polypeptide ofthe mitochondrial DNAtopoisomeraseIIb is
150 kDa in size, and its relaxation activity acts fairly
nonprocessively. The mitochondrial formofDNA topo-
isomerase IIb retains sensitivity to well-known, clinically
useful inhibitors ofDNAtopoisomerase II activity, but the
enzyme fails to be recognized by atopoisomerase IIb-
specific antibody prepared against C-terminal epitopes not
present inDNAtopoisomerase a. Furthermore, mass
spectrometric analysis ofthe mitochondrial polypeptide
shows an absence of peptides predicted from the C-terminal
sequence. These findings suggest that the mitochondrial
activity lacks the 30-kDa C-terminal domain of the
nuclear enzyme.
This C-terminal truncation does not appear to be an
in vitro proteolytic artifact, as several other polypeptides
identified in these fractions of mitochondrial protein,
including the polypeptides for DNA polymerase c and its
accessory factor, adenylate kinase, apoptosis inducing
factor, and endonuclease G, each has a size that is what
should be expected (R. Low, K. Fang and D. Friedman,
unpublished data). Furthermore, we have been able to
detect this 150-kDa polypeptide (as shown in Fig. 6), but
not any protein band of 180-kDa on a Western blot at an
early step in purification suggesting that this formof the
enzyme is not a proteolytic artifact but what resides in
mtDNA–protein complexes.
Proteolytic degradation ofDNAtopoisomerase II during
its purification can be a major problem with some types of
tissue. For example, purification ofDNAtopoisomerase II
isoenzyme forms from calf thymus that is notoriously rich in
protease activity typically yields active 120- and 140-kDa
fragment artifacts ofDNAtopoisomerase II activity [41,42].
However, with heart tissue and isolated heart mitochondria
used in this study, proteolysis during enzyme isolation
appears much less problematic. In contrast to thymic and
other types of cells, adult myocytes contain relatively few
lysosomes [43], a major source of proteolysis. Furthermore,
Fig. 6. Thetruncated topo IIb arises from mtDNA not from contami-
nants of nuclear DNA fragments. (A) Identification of DNA
topoisomerase II activity among proteins released from mitoplast
mtDNA–protein complexes and fractionated by glycerol gradient
velocity sedimentation. Proteins released at 600 m
M
NaCl from
mtDNA–protein complexes of mitoplasts (see Materials and methods)
were concentrated ina Centricon 10 filter (Amicon). This concentrate
(150 mL) was then run through a 15–42% glycerol gradient as des-
cribed inthe Fig. 4 legend, except that the glycerol gradient contained
1
M
, not 300 m
M
NaCl. Topo II assays plus and minus ATP on active
fractions were carried out, are shown. An EcoR1 digest of DNA
phenol-purified from a sample ofthe mtDNA–protein complex (25%
of total) is also shown. (B) SDS/PAGE and Western blot analysis of
glycerol gradient fractions 8 plus 9. One-half of this pool was used for
each gel analysis. See Fig. 4 legend for details. (C) Topo II assays,
minus and plus ATP, performed on glycerol gradient fractionation of
proteins released at 600 m
M
NaCl from insoluble Ôouter membraneÕ
complexes of nuclear DNA–protein that were released from mitoplasts
with digitonin, and recovered at 16 000 g for 20 min. Velocity sedi-
mentation was carried out as described inthe legend of Fig. 4.
Agarose-gel analysis of an EcoR1 digest of 4 lg nuclear (nuc) DNA
recovered from the Ôouter membraneÕ fraction is shown. Relative
positions ofmtDNA EcoR1 fragments ina far lane (not seen) are
indicated.
4182 R. L. Low et al. (Eur. J. Biochem. 270) Ó FEBS 2003
[...]... mitochondrion, adds to the growing list of enzymes active inDNA metabolism that are shared by both nuclear and mitochondrial compartments Although many enzymes involved withmtDNA such as DNA polymerase c and the mitochondrial RNA polymerase likely act exclusively in mitochondria, other enzymes and DNA binding factors, including human N-glycosylase hOGG1 [49,50], DNA ligase III [51], DNAtopoisomerase IIIa [20],... and single-stranded DNA- binding protein: template-primer DNA binding and initiation and elongation ofDNA strand synthesis J Biol Chem 274, 14779–14785 4 Carrodeguas, J .A. , Kobayashi, R., Lim, S.E., Copeland, W.C & Bogenhagen, D.E (1999) The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity ofthe catalytic subunit of human DNA polymerase gamma and is related... start sites Inthe case of RXRa, yeast DNA helicase Hmi 1p [56], and Ku80 [52] proteolytic cleavage ofthe full-length nuclear protein creates atruncatedform that can selectively translocate into mitochondria For RXRa, this cleavage is carried out by a cytoplasmic or mitochondrial-associated protease, m-calpain that proteolytically removes a segment ofthe N-terminus, thereby apparently exposing a. .. mitochondrial targeting signal in vivo Possibly, removal ofthe C-terminal domain from the nuclear enzyme exposes this amphipathic helix and this allows the enzyme to be imported into mitochondria, inthe C- to N-terminal direction Of interest, removal ofthe C-terminal domain ofthe nuclear topo IIb also raises the pI ofthe enzyme from 8.8 to about 9.7 (assuming thetruncated enzyme is 1378 amino acids in. .. sites inthe nucleus and play different roles in orchestrating DNA topology [10,11,48] Sequence differences inthe C-terminal regions ofthe a- and b-isoforms are likely what makes this possible Consequently, truncation ofthe C-terminal domain may be essential for the b isoform to be targeted to the mitochondrion and to assume a role inmtDNA replication The presence ofDNAtopoisomeraseIIb within the. .. a mitochondrial targeting sequence Although most mitochondrial preproteins possess cleavable targeting signals at the N-terminus and translocate into mitochondriainthe N- to C-terminal direction, yeast DNA helicase Hmil 1p [56], and likely Ku80 [52] transport into mitochondria via cleavable, C-terminal targeting signals and translocate inthe C- to N-terminal direction [57] The mechanism for targeting... targeting DNAtopoisomeraseIIb to mitochondria is at this point speculative We suspect that removal ofthe C-terminal region, needed to at least eliminate the nuclear localization signal, probably plays an essential role inthe mechanism Whether this occurs by alternative splicing or proteolytic processing by a calpainlike protease or other activity prior to import remains unclear The human DNA topoisomerase. .. could be important for mitochondrial targeting as well For many proteins imported into mitochondria, the pI ofthe mitochondrial formofthe protein is higher than that ofthe cytosolic protein form [65,66] It will be surprising if the mitochondrial formofDNAtopoisomeraseIIb does not assume an important role inmtDNA replication By analogy to that of other eucaryotic 4184 R L Low et al (Eur J Biochem... enzymes, the mitochondrial type IIb activity may serve to de-catenate newly replicated mtDNA circles from one another at the end ofa cycle ofmtDNA synthesis In addition, the enzyme could support a structural role, serving to help attach themtDNA replication complex on mtDNA to a specific site on the inner membrane Although only a low level ofthe type II b-isozyme is likely targeted to mitochondria, an involvement... conserved The amino acid sequences inthe C-terminal quarter ofthe a- and b-isoform polypeptides, for example, only share about 34% identity In contrast, those from the remaining three-quarters ofthe polypeptides, that include the N-terminal and central domains, are 78% identical [7,10,11,45] Although the function of this domain is still not fully characterized, the C-terminal domain region contains phosphorylation . A truncated form of DNA topoisomerase IIb associates with the mtDNA genome in mammalian mitochondria Robert L. Low 1 , Shayla Orton 1 and David B. Friedman 2 1 Department of Pathology and 2 Department. electrophoresis. The mitochondrial DNA topoisomerases II activity appears to be associated with mtDNA An association of DNA topoisomerase II with mtDNA has been demonstrated by showing that treatment of the isolated. surprising if the mitochondrial form of DNA topoisomerase IIb does not assume an important role in mtDNA replication. By analogy to that of other eucaryotic Ó FEBS 2003 DNA Topo IIb mammalian mtDNA