1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 22 - Đề 12 potx

1 69 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 140,79 KB

Nội dung

I/- PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7, 0 điểm) Câu I (2,0 điểm): Cho hàm số 4 2 2 2 1 (1) y x m x   1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Chứng minh rằng đường thẳng y = x + 1 luôn cắt đồ thị của hàm số (1) tại hai điểm phân biệt với mọi giá trị của m. Câu II (2,0 điểm): 1. Giải phương trình: sin 4 cos4 1 4(sin cos ) x x x x     2. Giải hệ phương trình: 3 3 2 2 4 16 1 5(1 ) x y y x y x          Câu III (1,0 điểm): Tính giới hạn 2 0 1 cos2 tan lim .sin x x x x x    Câu IV (1,0 điểm): Trong không gian, cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đương thẳng d đi qua A và vuông góc với mặt phẳng (ABC) lấy điểm S, sao cho mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 60 0 . Tính diện tích mặt cầu ngoại tiếp tứ diện SABC. Câu V (1,0 điểm): Tìm giá trị nhỏ nhất của hàm số 4 3 2 2 4 8 8 5 ( ) 2 2 x x x x f x x x        II. PHẦN RIÊNG(3,0 điểm): Thí sinh chỉ được làm một trong phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu VIa (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ 0xy, cho elíp (E) có tiêu điểm thứ nhất ( 3;0)  và đi qua điểm 4 33 (1; ) 5 M . Hãy xác định toạ độ các đỉnh của (E). 2. Giải phương trình: 2.27 18 4.12 3.8 x x x x    . Câu VII a (1,0 điểm): Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn và hai chữ số lẻ. B. Theo chương trình Nâng cao Câu VI.b(2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ 0xy, cho điểm A(2; 1). Lấy điểm B nằm trên trục hoành có hoành độ không âm sao cho tam giác ABC vuông tại A. Tìm toạ độ B, C để tam giác ABC có diện tích lớn nhất. 2. Có bao nhiêu số tự nhiên có 5 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn và ba chữ số lẻ. Câu VII.b(1,0 điểm): Tìm m để hàm số: 2 1 mx y x   có hai điểm cực trị A, B và đoạn AB ngắn nhất. . số 4 3 2 2 4 8 8 5 ( ) 2 2 x x x x f x x x        II. PHẦN RIÊNG(3,0 điểm): Thí sinh chỉ được làm một trong phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu VIa (2,0 điểm) . Trên đương thẳng d đi qua A và vuông góc với mặt phẳng (ABC) lấy điểm S, sao cho mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 60 0 . Tính diện tích mặt cầu ngoại tiếp tứ diện SABC. Câu. I /- PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7, 0 điểm) Câu I (2,0 điểm): Cho hàm số 4 2 2 2 1 (1) y x m x   1. Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1)

Ngày đăng: 30/03/2014, 22:20