Luận án tổng hợp và nghiên cứu hoạt tính sinh học của một số ketone α,β không no có cấu trúc tương tự trong thiên nhiên

174 7 0
Luận án tổng hợp và nghiên cứu hoạt tính sinh học của một số ketone α,β không no có cấu trúc tương tự trong thiên nhiên

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MỤC LỤC MỞ ĐẦU CHƯƠNG I TỔNG QUAN 1.1 Giới thiệu hợp chất ketone α,β-không no 1.1.1 Đặc điểm cấu tạo, quang phổ 1.1.2 Các hợp chất ketone α,β-khơng no có nguồn gốc thực vật 1.1.2.1 Các chalcone 1.1.2.2 Các flavone 1.1.2.3 Các ketone α,β-khơng no có nguồn gốc thực vật khác a Giới thiệu zerumbone b Một số chuyển hóa zerumbone 12 c Giới thiệu chalcone 14 1.1.3 Phản ứng tổng hợp chalcone 16 1.1.3.1 Tổng hợp chalcone phản ứng Claisen-Schmidt 16 1.1.3.2 Tổng hợp chalcone phản ứng Wittig 18 1.1.3.3 Tổng hợp chalcone từ bazơ Schiff 19 1.1.3.4 Tổng hợp chalcone từ hợp chất kim 19 1.1.3.5 Tổng hợp chalcone từ dẫn xuất α,β-dibromochalcone 20 1.1.3.6 Tổng hợp chalcone phản ứng quang hóa Fries 20 1.1.3.7 Tổng hợp chalcone từ β-chlorovinyl ketone 20 1.1.4 Hoạt tính sinh học ketone α,β-khơng no 21 1.1.4.1 Hoạt tính gây độc tế bào 21 1.1.4.2 Hoạt tính chống sốt rét 23 1.1.4.3 Hoạt tính kháng khuẩn 24 1.1.4.4 Hoạt tính kháng nấm 25 1.1.4.5 Hoạt tính kháng viêm 26 1.1.4.6 Hoạt tính kháng virus 27 1.2 Giới thiệu hoạt tính IDO hoạt tính ức chế hình thành phát triển khối u ba chiều thạch mềm 28 1.2.1 Hoạt tính ức chế IDO (indoleamine-2,3-dioxygenase) 28 1.2.2 Hoạt tính ức chế hình thành phát triển khối u chiều thạch mềm 31 CHƯƠNG II ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 32 i 2.1 Đối tượng nghiên cứu 32 2.2 Phương pháp nghiên cứu 33 2.2.1 Đối với zerumbone dẫn xuất zerumbone oxide 33 2.2.2 Đối với phản ứng tổng hợp chalcone 34 2.3 Hóa chất, thiết bị nghiên cứu 35 2.3.1 Hóa chất, dung mơi 35 2.3.2 Thiết bị dùng cho nghiên cứu 36 2.4 Phương pháp đánh giá hoạt tính gây độc tế bào 36 2.4.1 Phương pháp thử khả gây độc tế bào (cytotoxicity) 36 2.4.2 Phương pháp đánh giá hoạt tính ức chế hình thành phát triển khối u chiều thạch mềm in vitro 37 2.5 Phương pháp đánh giá hoạt tính IDO in vitro 38 CHƯƠNG III: THỰC NGHIỆM 39 3.1 Tổng hợp dẫn xuất zerumbone 39 3.1.1 Tổng hợp tổ hợp (112-114) azazerumbone azazerumbone oxide với AZT 39 3.1.1.1 Chuẩn bị azazerumbone (102, 103) 39 a Tổng hợp zerumbone oxime (100, 101) 39 b Chuyển vị Beckmann zerumbone oxime 39 3.1.1.2 Chuẩn bị azazerumbone oxide (107, 108) 40 a Tổng hợp zerumbone oxide (104) 40 b Tổng hợp zerumbone oxide oxime 105, 106 40 c Chuyển vị Beckmann zerumbone oxide oxime 40 3.1.1.3 Tổng hợp azazerumbone azazerumbone oxide propargyl (109-111) 40 3.1.1.4 Qui trình chung cho phản ứng đóng vịng Click triazole azazerumbone propargyl (109, 110) azazerumbone oxide propargyl (111) với AZT 41 3.1.2 Tổng hợp tổ hợp azazerumbone azazerumbone oxide với artemisinin (116-118) 41 3.1.2.1 Tổng hợp 2-(10β-dihydroarteminoxy)ethyl bromide (92) 42 3.1.2.2 Qui trình chung cho tổng hợp tổ hợp azazerumbone, azazerumbone oxide với artemisinin (116-118) 42 3.1.3 Tổng hợp tổ hợp azazerumbone azazerumbone oxide với PBr 121-122 43 ii 3.1.3.1 Tổng hợp PBr 120 43 3.1.3.2 Qui trình chung tổng hợp sản phẩm azazerumbone azazerumbone oxide với PBr (121-122) 43 3.1.4 Tổng hợp azazerumbone acetic acid (124) 43 3.1.4.1 Tổng hợp ethyl azazerumbone acetate (123) 43 3.1.4.2 Tổng hợp azazerumbone acetic acid (124) 44 3.2 Tổng hợp chalcone chứa nucleobase dẫn xuất có nguồn gốc thiên nhiên 44 3.2.1 Tổng hợp chalcone chứa vòng thymine (148-158) 44 3.2.1.1 Tổng hợp 5ꞌ-chloromethyl-2ꞌ-hydroxyacetophenone (126) 44 3.2.1.2 Tổng hợp 5ꞌ-thyminylmethyl-2ꞌ-hydroxyacetophenone (127) 45 3.2.1.3 Tổng hợp 3-chloromethyl-4-methoxybenzaldehyde (130a) 45 3.2.1.4 Qui trình chung cho tổng hợp dẫn xuất 4methoxybenzaldehyde (143-145) 45 3.2.1.5 Tổng hợp chalcone chứa vòng thymine khơng chứa nhóm – OH hợp phần aldehyde 148-152, 156-158 46 3.2.1.6 Tổng hợp chalcone chứa vịng thymine có nhóm –OH hợp phần aldehyde 153-155 47 3.2.2 Tổng hợp chalcone chứa vòng uracil 159-168 50 3.2.2.1 Tổng hợp 5ꞌ-uracilylmethyl-2ꞌ-hydroxyacetophenone (128) 50 3.2.2.2 Tổng hợp chalcone chứa vịng uracil khơng chứa nhóm -OH hợp phần aldehyde (159-162, 166-168) 50 3.2.2.3 Tổng hợp chalcone chứa vịng uracil có hợp phần aldehyde chứa nhóm –OH (163-165) 51 3.2.3 Tổng hợp chalcone chứa vòng 5-fluorouracil (171-179) 53 3.2.3.1 Tổng hợp 5ꞌ-(5-fluorouracilyl)methyl-2ꞌ-hydroxyacetophenone (169) 53 3.2.3.2 Qui trình chung cho tổng hợp 4-methoxy-3thyminylmethylbenzaldehyde (146) 4-methoxy-3uracilylmethylbenzaldehyde (147) 53 3.2.3.3 Qui trình chung để tổng hợp chalcone chứa vịng 5fluorouracil (171-179) 54 3.2.3.4 Tổng hợp tổ hợp chalcone 5-fluorouracil thông qua cầu liên kết 1,2,3 triazole (189-193) 55 3.3 Tổng hợp ketone α,β-không no khác 60 iii 3.3.1 Tổng hợp ketone α,β-khơng no chứa nhóm imidazole 196-202 60 3.3.1.1 Tổng hợp 5ꞌ-(1-imidazolyl)methyl-2ꞌ-hydroxyacetophenone (195) 60 3.3.1.2 Tổng hợp chalcone chứa vòng imidazole 61 3.3.2 Tổng hợp ketone α,β-không no chứa nhóm phenylacetamide 205211 62 3.3.2.1 Tổng hợp 5ꞌ-cyanomethyl-2ꞌ-hydroxyacetophenone 203 62 3.3.2.2 Tổng hợp 3'-acetyl-4'-hydroxyphenylacetamide 204 62 3.3.2.3 Qui trình chung tổng hợp 2'-hydroxy-5'-chalconylacetamide 205-211 63 3.3.3 Tổng hợp ketone α,β-không no chứa nhóm methoxymethyl 216230 64 3.3.3.1 Tổng hợp ketone α,β-khơng no chứa nhóm methoxymethyl từ 2ꞌ-hydroxyacetophenone 216-223 64 a Tổng hợp 5ꞌ-methoxymethyl-2ꞌ-hydroxyacetophenone 212 64 b Tổng hợp 5ꞌ-methoxymethyl-2ꞌ-hydroxychalcone 216-223 64 3.3.3.2 Tổng hợp ketone α,β-khơng no chứa nhóm methoxymethyl từ 4ꞌ-hydroxyacetophenone 224-230 65 a Tổng hợp 3ꞌ-chloromethyl-4ꞌ-hydroxyacetophenone 214 65 b Tổng hợp 3ꞌ-methoxymethyl-4ꞌ-hydroxyacetophenone 215 66 c Qui trình chung tổng hợp 3ꞌ-methoxymethyl-4ꞌ-hydroxychalcone 224-230 66 3.3.4 Tổng hợp số chalcone chứa nhóm 4-isopropyl khác 233-237 67 3.3.4.1 Qui trình chung tổng hợp chalcone 233-235 67 3.3.4.2 Tổng hợp chalcone 236 68 3.3.4.3 Tổng hợp 4'-hydroxy-3'-(piperidinylmethyl)-4-isopropylchalcone (237) 68 3.4 Nghiên cứu hoạt tính gây độc tế bào ketone α,β-không no tổng hợp 69 3.5 Nghiên cứu hoạt tính ức chế hình thành phát triển khối u chiều thạch mềm số ketone α,β-không no tổng hợp 69 3.6 Phương pháp xác định hoạt tính ức chế IDO 69 CHƯƠNG IV KẾT QUẢ THẢO LUẬN 70 4.1 Tổng hợp số dẫn xuất ketone α,β-khơng no có cấu trúc tương tự thiên nhiên 70 4.1.1 Tổng hợp dẫn xuất zerumbone 70 iv 4.1.1.1 Tổ hợp azazerumbone với AZT 74 4.1.1.2 Tổ hợp aza zerumbone với dihydroartemisinin 80 4.1.1.3 Tổ hợp azazerumbone azazerumbone oxide với PBr 85 4.1.1.4 Tổ hợp aza zerumbone với acetic acid 87 4.1.2 Tổng hợp số chalcone chứa thymine, uracil dẫn xuất 5fluorouracil 89 4.1.2.1 Tổng hợp hợp chất trung gian ketone chứa nhóm thymine, uracil aldehyde chứa dẫn xuất piperazine 90 4.1.2.2 Tổng hợp số chalcone chứa thymine 93 4.1.2.3 Tổng hợp số chalcone chứa uracil 99 4.1.2.3 Tổng hợp số chalcone chứa dẫn xuất 5-fluorouracil 106 4.2 Tổng hợp dẫn xuất ketone α,β-không no khác 118 4.2.1 Tổng hợp dẫn xuất ketone α,β-khơng no có chứa imidazole 119 4.2.2 Tổng hợp dẫn xuất ketone α,β-khơng no có chứa nhóm phenylacetamide 124 4.2.3 Tổng hợp dẫn xuất ketone α,β-khơng no có chứa nhóm methoxymethyl 127 4.2.4 Tổng hợp số chalcone chứa nhóm 4-isopropyl khác 131 4.3 Kết nghiên cứu hoạt tính sinh học hợp chất ketone α,β-không no tổng hợp 133 4.3.1 Hoạt tính gây độc tế bào dẫn xuất zerumbone 133 4.3.2 Hoạt tính gây độc tế bào chalcone chứa nucleoside 135 4.3.2.1 Hoạt tính gây độc tế bào in vitro chalcone chứa thymine uracil 135 4.3.2.2 Hoạt tính gây độc tế bào chalcone chứa 5-fluorouracil 136 4.3.3 Kết nghiên cứu hoạt tính gây độc tế bào chalcone chứa nhóm acetamide 138 4.3.4 Kết nghiên cứu hoạt tính gây độc tế bào chalcone chứa nhóm methoxymethyl vịng A 139 4.3.5 Nghiên cứu ảnh hưởng hợp phần ketone đến hoạt tính gây độc tế bào chalcone 140 4.3.6 Nghiên cứu hoạt tính ức chế Indoleamine-2,3-dioxygenase (IDO) 141 4.3.7 Nghiên cứu hoạt tính ức chế hình thành phát triển khối u Hep-G2 thạch mềm 143 V KẾT LUẬN 145 v DANH MỤC CÁC BẢNG Bảng Tên bảng Trang 1.1 Một số chalcone điển hình có hoạt tính sinh học từ thực vật 1.2 Một số flavone điển hình từ thực vật hoạt tính sinh học chúng 1.3 Một số ketone α,β-không no điển hình khác thực vật 4.1 Dữ liệu phổ NMR 104 105/106 72 4.2 Dữ liệu phổ NMR hợp chất 107 108 75 4.3 Dữ liệu phổ NMR hợp chất 109, 110, 111 77 4.4 Dữ liệu phổ NMR hợp chất 112, 113, 114 80 4.5 Dữ liệu phổ NMR hợp chất 116, 117, 118 85 4.6 Dữ liệu phổ NMR hợp chất 121, 122 87 4.7 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần thymine 98 4.8 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần thymine 100 4.9 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần uracil 104 4.10 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần uracil 106 4.11 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần 5-fluorouracil 111 4.12 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần 5-fluorouracil 112 4.13 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần 5-fluorouracil 118 triazole 4.14 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần 5-fluorouracil 119 triazole 4.15 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần Imidazole 123 4.16 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần Imidazole 124 4.17 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần Acetamide 126 4.18 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần Acetamide 127 4.19 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần 2'-hydroxy-5’- 129 methoxymethyl 4.20 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần 2'-hydroxy-5’- 130 methoxymethyl 4.21 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần 4'-hydroxy-3’methoxymethyl vi 131 4.22 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần 4'-hydroxy-3’- 132 methoxymethyl 4.23 Tín hiệu phổ 1H-NMR chalcone chứa hợp phần Isopropyl 133 4.24 Tín hiệu phổ 13C-NMR chalcone chứa hợp phần Isopropyl 133 4.25 Hoạt tính gây độc tế bào dẫn xuất zerumbone 134 4.26 Hoạt tính gây độc tế bào chalcone chứa thymine uracil 136 4.27 Hoạt tính gây độc tế bào tổ hợp chalcone với 5- 138 fluorouracil 4.28 Hoạt tính gây độc tế bào chalcone chứa nhóm acetamide 140 4.29 Hoạt tính gây độc tế bào chalcone chứa nhóm methoxymethyl 141 4.30 Sự phụ thuộc hoạt tính gây độc tế bào vào hợp phần ketone 142 4.31 Kết đánh giá hoạt tính ức chế hình thành khối u thạch mềm 144 số chalcone vii DANH MỤC CÁC HÌNH Hình Tên hình 1.1 Q trình sinh tổng hợp chuyển hóa chalcone thành hợp Trang 16 chất khác 4.1 Một phần phổ HSQC 112 79 4.2 Một phần phổ HMBC 112 79 4.3 Một phần phổ HSQC 116 83 4.4 Một phần phổ HMBC 116 84 4.5 Phổ HRMS 116 84 4.6 Một phần phổ 1H-NMR 153 96 4.7 Phổ 13C-NMR 153 96 4.8 Một phần phổ HSQC 153 97 4.9 Một phần phổ HMBC hợp chất 153 97 4.10 Một phần phổ 1H-NMR 163 102 4.11 Phổ 13C-NMR 163 102 4.12 Một phần phổ HSQC 163 103 4.13 Một phần phổ HMBC 163 103 4.14 Phổ 1H-NMR 171 109 4.15 Phổ 13C-NMR 171 109 4.16 Một phần phổ HMBC 171 110 4.17 Một phần phổ HSQC 171 110 4.18 Phổ 1H-NMR 189 116 4.19 Phổ 13C-NMR 189 116 4.20 Một phần phổ HSQC 189 117 4.21 Một phần phổ HMBC 189 117 4.22 Một phần phổ 1H-NMR 197 121 4.23 Một phần phổ HSQC 197 122 4.24 Một phần phổ HMBC 197 122 4.25 Cấu trúc chalcone chứa nhóm methoxymethyl 129 4.26 Hình ảnh khối u thạch mềm mẫu đối chứng (a), mẫu 144 152 (b), mẫu 226 (c), 219 (d), 237 (e) 162 (f) viii DANH MỤC CÁC SƠ ĐỒ Sơ đồ Tên sơ đồ Trang 1.1 Sinh tổng hợp zerumbone 10 4.1 Quá trình tổng hợp azazerumbone 102 103 72 4.2 Quá trình tổng hợp azazerumbone oxime 72 4.3 Quá trình tổng hợp azazerumbone oxide 107 108 73 4.4 Quá trình epoxy hóa azazerumbone 73 4.5 Tổng hợp dẫn xuất propargyl azazerumbone azazerumbone oxide 76 4.6 Quá trình tổng hợp tổ hợp azazerumbone azazerumbone oxide với AZT 78 4.7 Quá trình tổ hợp azazerumbone với artemisinin theo đường 82 4.8 Quá trình tổ hợp azazerumbone với artemisinin theo đường 82 4.9 Quá trình tổng hợp tổ hợp 119 azazerumbone 103, 108 86 4.10 Tổng hợp azazerumbone acetic acid 124 88 4.11 Tổng hợp hợp phần ketone chứa thymine uracil 92 4.12 Quá trình tổng hợp dẫn xuất 143-145 benzaldehyde 93 4.13 Quá trình tổng hợp chalcone chứa thymine 95 4.14 Quá trình tổng hợp chalcone chứa uracil 101 4.15 Quá trình tổng hợp hợp phần ketone chứa 5-fluorouracil 107 4.16 Quá trình tổng hợp dẫn xuất chứa thymine uracil benzaldehyde 108 4.17 Quá trình tổng hợp chalcone chứa 5-fluorouracil 108 4.18 Quá trình tổng hợp tổ hợp 5-fluorouracil 2ꞌ,4ꞌdihydroxychalcone 114 4.19 115 4.20 Cơ chế phản ứng Click đóng vịng triazole [176] Q trình tổng hợp chalcone chứa imidazole 4.21 Quá trình tổng hợp chalcone chứa nhóm acetamide 125 4.22 126 4.23 Cơ chế thủy phân nhóm nitril mơi trường axít Q trình tổng hợp chalcone chứa nhóm methoxymethyl 4.24 Q trình tổng hợp số 4-isopropylchalcone 132 ix 120 128 DANH MỤC CHỮ VIẾT TẮT Các phương pháp sắc ký TLC Thin Layer Chromatography: Sắc ký lớp mỏng CC Column Chromatography: Sắc ký cột Các phương pháp phổ HRMS High resolution Mass Spectroscopy: Phổ khối lượng phân giải cao FT-ICRMS Fourier transform ion cyclotron resonance mass spectrometer TOFMS Time-of-flight mass spectrometry ESI-MS Electrospray Ionization Mass Spectroscopy: Phổ khối ion hóa phun điện IR Infrared Spectroscopy: Phổ hồng ngoại UV Ultraviolet spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy: Phổ cộng hưởng từ H-NMR hạt nhân proton 13 C-NMR Carbon-13 Nuclear Magnetic Resonance Spectroscopy: Phổ cộng hưởng từ hạt nhân carbon 13 DEPT Distortioless Enhancement by Polarisation Transfer: Phổ DEPT COSY Correlation Spectroscopy: Phổ tương tác chiều đồng hạt nhân 1H-1H HSQC Heteronuclear Single Quantum Correlation: Phổ tương tác hai chiều trực tiếp dị hạt nhân HMBC Heteronuclear Multiple Bond Correlation: Phổ tương tác đa liên kết hai chiều dị hạt nhân s: singlet d: doublet t: triplet m: multiplet dd: double doublet q: quartet qui: quintet br: broad Các chữ viết tắt khác IC50 The half maximal inhibitory concentration: Nồng độ tác dụng ức chế 50% tăng sinh dòng tế bào thử nghiệm LD50 Lethal dose 50%: liều gây chết 50% cá thể nghiên cứu MIC Minimum inhibitory concentration: Nồng độ ức chế tối thiểu Tnc Nhiệt độ nóng chảy AZT azidothymidine DHA Dihydroartemisinin x 12 Frolich S., Schubert C., Bienzle U., Jenett-Siems K In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin J Antimicrob Chemother 55 (6): 883-887, 2005 13 Clarissa G., Axel A., Elke H., Amira G., Karin K., Jutta K., Isabell N., HansRudolf S., Norbert F., Helmut B., and Hans B Cancer Chemopreventive Activity of Xanthohumol, a Natural Product Derived from Hop Mol Cancer Ther., 1; 959, 2002 14 Ming L et all Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus) Molecules 20, 754-779, 2015 15 Shibata S., Inoue H., Iwata S., Ma R D., Yu L.J., Ueyama H., Takayasu J., Hasegawa T., Tokuda H., Nishino A., Iwashima A Inhibitory effects of licochalcone A isolated from Glycyrrhiza inflata root on inflammatory ear edema and tumour promotion in mice Planta Med., 57(3):221-224, 1991 16 Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., and Kinoshita T Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata Bioorg Med Chem 6, 339-347, 1998 17 Sara F et all Licocalchone-C Extracted from Glycyrrhiza Glabra Inhibits Lipopolysaccharide-Interferon-Inflammation by Improving Antioxidant Conditions and Regulating Inducible Nitric Oxide Synthase Expression Molecules 16, 5720-5734, 2011 18 Shu-Zhen Hua, Jian-Guang Luo, Xiao-Bing Wang, Jun-Song Wang, Ling-Yi Kong Two novel monoterpene-chalcone conjugates isolated from the seeds of Alpinia katsumadai Bioor Med Chem Letters, 19, 2728-2730, 2009 19 Kim, D., Choi, S.S., Kim, S., et al Isoliquiritigenin selectivity inhibits H2 histamine receptor signaling Mol Pharmacol., 70(2) 493-500, 2006 20 Kim, Y.M., Kim, T.H., Kim, Y.W., Yang Y.M., Ryu D.H., Hwang S.J., Lee J.R., Kim S.C., Kim S.G Inhibition of liver X receptor--dependent hepatic steatosis by isoliquiritigenin; a licorice antioxidant flavonoid, as mediated by JNK1 inhibition Free Radic Biol Med., 49 1722-1734, 2010 21 Liang Li, Xing-Tang Zhao, Yi-Ping Luo, Jing-Feng Zhao, Xiao-Dong Yang, Hong-Bing Zhang Novel cytotoxic chalcones from Litsea rubescens and Litsea pedunculata Bioor Med Chem Letters 21, 7431-7433, 2011 22 María L Falcone Ferreyra, Sebastián P Rius, and Paula Casati Flavonoids: biosynthesis, biological functions, and biotechnological applications Front Plant Sci 3: 222, 2012 23 Valkama, E., Salminen J-P; Koricheva, J; Pihlaja, K Changes in Leaf Trichomes and Epicuticular Flavonoids during Leaf Development in Three Birch Taxa Annals of Botany 94: 233–242, 2004 149 24 Hsu Y.L., Kuo P.L., Lin C.C Acacetin inhibits the proliferation of Hep-G2 by blocking cell cycle progression and inducing apoptosis Biochem Pharmacol 67(5), 823-829, 2004 25 Hertog M.G., Feskens E.J., Hollman P.C., Katan M.B., Kromhout D Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study Lancet 23; 342(8878):1007-11, 1993 26 Ko W.C., Shih C.M., Lai Y.H., Chen J.H., Huang H.L Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structureactivity relationships Biochem Pharmacol 68, 2087-2094, 2004 27 Patel D, Shukla S, Gupta S Apigenin and cancer chemoprevention: progress, potential and promise (review) Int J Oncol 30(1):233-45, 2007 28 Gửkbulut A., Ozhan O., Satilmi B., Batỗiolu K., Günal S., Sarer E Antioxidant and antimicrobial activities, and phenolic compounds of selected Inula species from Turkey Nat Prod Commun 8(4), 475-478, 2013 29 Ong K.C., Khoo H.E Biological Effects of Myricetin Gen Pharmacol 29 (2): 121-126, 1997 30 Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M Antiproliferative activity of flavonoids on several cancer cell lines Biosci Biotechnol Biochem 63(5), 896-899, 1999 31 Chaumontet C., Droumaguet C., Bex V., Heberden C., Gaillard-Sanchez I., Martel P Flavonoids (apigenin, tangeretin) counteract tumor promoter-induced inhibition of intercellular communication of rat liver epithelial cells Cancer Lett., 114(1-2), 207-210, 1997 32 Calderon-Montaño J.M., Burgos-Moron E., Perez-Guerrero C, Lopez-Lazaro M A review on the dietary flavonoid kaempferol Mini Rev Med Chem 11 (4): 298–344, 2011 33 Sahu S C., Gray G C Kaempferol-induced nuclear DNA damage and lipid peroxidation Cancer Lett 85(2), 159-164, 1994 34 Hui K.M., Huen M.S., Wang H.Y., Zheng H., Sigel E., Baur R., Ren H., Li Z.W., Wong J.T., Xue H Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi Biochem Pharmacol 64 (9): 1415–24, 2002 35 Kai Z., Xiuming S., Yujie H., Jing Y., Mi Z., Zhiyu L., Qidong Y., Qinglong G., Na Lu Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling Eur J of Pharm Volume 737, 15, 57–69, 2014 36 Van Luu C, Van Chau M, Lee JJ, Jung SH Exploration of essential structure of Malloapelta B for the inhibitory activity against TNF induced NF-κB activation Arch Pharm Res 29(10): 840-4, 2006 150 37 Ma J., Shi H., Mi C., Li H.L., Lee J.J., Jin X Malloapelta B suppresses LPSinduced NF-κB activation and NF-κB-regulated target gene products Int Immuno-pharmacol 24(2):147-52, 2015 38 Murakami A., Takahashi D., Kinoshita T., Koshimizu K., Kim H.W., Yoshihiro A., Nakamura Y., Jiwajinda S., Terao J., Ohigashi H Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the ,-unsaturated carbonyl group is a prerequisite Carcinogenesis 23(5):795-802, 2002 39 Sakinah S.A., Handayani S.T., Hawariah L.P Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio Cancer Cell Int 7:4, 2007 40 A.B.H Abdul, A.S Al-Zubairi, N.D Tailan, S.I.A Wahab, Z.N.M Zain, S Ruslay and M.M Syam Anticancer Activity of Natural Compound (Zerumbone) Extracted from Zingiber zerumbet in Human HeLa Cervical Cancer Cells International Journal of Pharmacology 4, 3, 160-168, 2008 41 Van Puyvelde L., Bosselaers J., Stevens C., De Kimpe N., Van Gestel J., and Van Damme P Phytotoxins from the leaves of Laggera decumbens J Agric Food Chem 47, 2116, 1999 42 Cos P., Maes L., Vanden Berghe D., Hermans N., Pieters L., and Vlietinck A Plant substances as anti-HIV agents selected according to their putative mechanism of action J Nat Prod 67, 284 (2004) 43 Reason W., Mysore S V., Marilene B W., and Eri S S Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma Mol Cancer 10: 12, 2011 44 Shukla P K., Khanna V K., Ali M M., Khan M Y., Srimal R C Anti-ischemic effect of curcumin in rat brain Neurochem Res 33(6):1036-43, 2008 45 Menon V.P., Sudheer A.R Antioxidant and anti-inflammatory properties of curcumin Adv Exp Med Biol 595:105-25, 2007 46 Dev S Studies of sesquiterpenes-XVI Zerumbone, amonocyclic- sesquiterpene ketone Tetrahedron 8, 171–180, 1960 47 Damodaran N P., Dev S Stereochemistry of zerumbone Tetrahedron Letters 6(24), 1977-1981, 1965 48 Dev S., Anderson J E., Cormer V., Damodaran N P., Roberts J D Nuclear magnetic resonance spectroscopy The conformational mobility of humulene and zerumbone Journal of the American Chemical Society, 90(5), 1246- 1248, 1968 49 Hall S.R., Nimgirawath S., Raston C.L., Sittatrakul A., Thadaniti S., Thirasasana N and WhiteA.H Crystal structure of zerumbone [(E,E,E)-2,6,9,9151 Tetramethylcycloundeca-2,6,10-trien-1-one] Australian Journal of Chemistry 34(10) 2243 – 2247, 1981 50 Yu F., Okamoto S., Harada H., Yamazaki K., Misawa N., Utsumi R Zingiber zerumbet CYPA7BA1 catalyzes the conversion of α-humulene to 8hydroxy-α-humulene in zerumbone biosynthesis Cell Mol Life Sci 68, 10331040, 2011 51 Murakami A., Tanaka T., Lee J.Y., Surh Y J., Kim H W., Kawabata K., Nakamura Y., Jiwajinda S., Ohigashi H Zerumbone, a sesquiterpene in subtropical ginger, suppresses skin tumor initiation and promotion stages in ICR mice International Journal of Cancer, 110(4), 481–490, 2004 52 Adbul A B H, Al-Zubairi A S, Tailan N D, Wahab S.I.A, Zain Z.N.M, Ruslay S, Syam M M Anticancer activity of natural compound (Zerumbone) extracted from Zingiber zerumbet in human HeLa cervical cancer cells International Journal of Pharmacology 4(3), 160–168, 2008 53 Phan M Giang, Phan T Son, Hui Z Jin, Jeong H Lee, Jung J Lee Comparative Study on Inhibitory Activity of Zerumbone and Zerumbone 2,3-Epoxide on NFκB Activation and NO Production Sciential Pharmaceutica 77, 589-595, 2009 54 Murakami A, Takahashi M, Jiwajinda S, Koshimizu K, Ohigashi H Identification of zerumbone in Zingiber zerumbet Smith as a potent inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus activation Biosci Biotechnol Biochem 63(10), 1811–1812, 1999 55 Prasannan R., Kalesh K.A., Shanmugam M.K., Nachiyappan A., Ramachandran L., Nguyen A.H., Kumar A.P., Lakshmanan M., Ahn K.S., Sethi G Key cell signaling pathways modulated by zerumbone: role in the prevention and treatment of cancer Biochem Pharmacol 84 (10): 1268-1276, 2012 56 Takada Y, Murakami A, Aggarwal BB Zerumbone abolishes NF-κB and IκB kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion Oncogene 24: 6957–6969, 2005 57 Hoffman A, Spetner L M, Burke M Redox-regulated mechanism may account for zerumbone's ability to suppress cancer-cell proliferation Carcinogenesis, 23 (11), 1961-1972, 2002 58 Abdul A B., Abdullah M N H., Lajis M N., Tailan N D., Zain Z N M., Wahab S I A., Al-Zubairi A S Use of an anti-cancer compound US patent 2009/0239953 A1, 2009 59 Huang G C, Chien T Y, Chen L G, Wang C C Antitumor effects of zerumbone from Zingiber zerumbet in P-388D1 cells in vitro and in vivo Planta Medica 71(3), 219–224, 2005 152 60 Kirana C., McIntosh G.H., Record I.R., Jones G.P Antitumor activity of extract of Zingiber aromaticum and its bioactive sesquiterpenoid zerumbone Nutr Cancer 45(2):218-25, 2003 61 Sharifah Sakinah S.A., Tri Handayani S., Azimahtol Hawariah L.P Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio Cancer cell Int 7(4), 1186-1192, 2007 62 Xia, Y., Yang, Z Y., Xia, P., Bastow, K F., Nakanishi, Y., Lee, K H Antitumor agents Part 202: Novel 2'-aminochalcones: design, synthesis and biological evaluation Bioorg Med Chem Lett 10, 699-701, 2000 63 Ibrahim M Y., Abdul A B., Ibrahim T A T., Abdelwahab S I., Elhassan M M., Syam M M Evaluation of acute toxicity and the effect of single injected doses of zerumbone on the kidney and liver functions in Sprague Dawley rats African Journal of Biotechnology 9(28), 4442-4450, 2010 64 Kitayama T., Masuda T., Kawai Y., Hill R K., Takatani M., Sawada S., Okamoto T The chemistry of zerumbone Part 3: Stereospecific creation of five stereogenic centers by double Sharpless reaction Tetrahedron: Asymmetry, 12, 2805–2810, 2001 65 Kitayama T., Nagao, R., Masuda T., Hill R K., Morita M., Takatani M., Sawada S., Okamoto T The chemistry of zerumbone IV Asymmetric synthesis of zerumbol Journal of Molecular Catalysis B: Enzymatic, 17, 75–79, 2002 66 Pitchuanchom S., Yenjai C Weerapreeyakul N Synthesis of Bioreductive Esters of Zerumbone Derivatives PACCON2009 Pure and Applied Chemistry International Conference 394-396, 2009 67 Kitayama T., Yokoi T., Kawai Y., Hill R K., Morita M., Okamoto T., Yamamoto Y., Fokin V V., Sharpless K B., Sawada S Chemistry of zerumbone Part 5: Structural transformation of the dimethylamine derivatives Tetrahedron 59(26), 4857–4866, 2003 68 Kitayama T., Okamoto T., Hill R K., Kawai Y., Takahashi S.,Yonemori S., Yamamoto Y., Ohe K., Uemura S., Sawada, S Chemistry of zerumbone Simplified Isolation, Conjugate Addition Reactions, and a Unique Ring Contracting Transannular Reaction of Its Dibromide J Org Chem, 64, 2667– 2672, 1999 69 Kitayama T., Masuda T., Sakai K., Imada C., Yonekura Y., Kawai Y Remarkable synthesis and structure of allenen type zerumbone Tetrahedron 62, 10859–10864, 2006 70 Matthes H W D., Luu B., Ourisson G Transannular cyclizations of zerumbone epoxide Tetrahedron 38(21), 3129-3135, 1982 153 71 v Kostanecki, St and Tambor, J Ueber die sechs isomeren Monooxybenzalacetophenone (Monooxychalkone) Ber Dtsch Chem Ges., 32: 1921–1926, 1899 72 Durga Nath Dhar The Chemistry of Chalcones and Related Compounds John Wiley & Sons Inc; 1st edition, 1981 73 Gibbons, E.G Total synthesis of (t)-pleuromutilin J Am Chem Soc Vol 101, pp 1767-1778, 1982 74 Goff, D.A; Harris, R, N; Bottaron, J.C; Bedford, C, D Cleavage of methoxymethyl ethers with boron trichloride A convenient versatile preparation of chloromethyl ether derivatives J Org Chem Vol 51, pp 4711-4714, 1986 75 S Sogawa, Y Nihro, H Ueda, A Izumi, T Miki, H Matsumoto and T Satoh 3,4-dihydroxychalcones as potent-5 lipocygenase and cyclooxygenase inhibitors J Med Chem Vol 36, 3904-3909, 1993 76 Georg Wittig, Ulrich Schöllkopf Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien I Chemische Berichte 87 (9): 1318, 1954 77 Trippett S and Walker D The phosphobetaines: preparation and properties J Chem Soc 1961, 1266-1272, 1961 78 Bestman H J., Kratzer O New Reactions of Alkylidenephosphoranes and their Preparative Uses Part I: The Acid-Base Character of Phosphonium Salts and Alkylidenephosphoranes Angew Chem 77, 609, 1965 79 Kozlov N S., Pinegina L Y., and Selezneva E A., Zh Obshch Khim., 32, 436, 1962 80 Normant H., Mantione R., Compt Rend., 259 1635, 1964 81 Dershowitz S., Proskauer S Notes - Debrominations with Trialkyl Phosphites J Org Chem 26, 3595-3596, 1961 82 Bhatia V.K.; Kagan J A Photochemical Synthesis of 2´,6´-Dihydroxy-4´methoxy- and 2´,4´-Dihydroxy-6´-methoxychalcones J Chem Ind 1203-1204, 1970 83 Onodera, J., Obara, H The Photo-Fries Rearrangement of Bis(methoxy)-phenyl Cinnamates Bull Chem Soc Jpn 47, 240-241, 1974 84 Belyaev V F A synthesis of chalcones and their thiophene analogs based on βchlorovinylketones Chem Heterocycl Compd 1: 141, 1965 85 Lee K.H., Hall I.H., Mar E.C., Starnes C.O., Elgrebaly S.A., Waddell T.G., Hadgraft R.I., Ruffner C.G and Weidner I: Sesquiterpene antitumor agents: inhibitors of cellular metabolism Science 196: 533-536, 1977 154 86 Glaab V., Collins A.R., Eisenbrand G and Janzowski C DNA-damaging potential and glutathione depletion of 2-cyclohexen-1-one in mammalian cells, compared to food relevant 2-alkenals Mutat Res 497: 185-197, 2001 87 Cunningham M L., Price H C., O'Connor R W., Moorman M P., Mahler J F., Nold J B and Morgan D L Inhalation toxicity studies of the ,-unsaturated ketones: 2-cyclohexen-1-one Inhal Toxicol 13: 25-36, 2001 88 Nakayachi T., Yasumoto E., Nakano K., Morshed S R., Hashimoto K., Kikuchi H., Nishikawa H., Kawase M., Sakagami H Structure-activity relationships of alpha, beta-unsaturated ketones as assessed by their cytotoxicity against oral tumor cells Anticancer Res 24(2B):737-42, 2004 89 Sakagami H., Kawase M., Wakabayashi H., Kurihara T Factors that Affect the Type of Cell Death Induced by Chemicals Autophagy 3:5, 493-495, 2007 90 S Kapoor The rapidly emerging role of zerumbone in attenuating tumor growth in systemic malignancies Molecular Nutrition and Food Research, vol 56, no 10, 1487-1487, 2012 91 A Hoffman, L M Spetner, and M Burke Redox-regulated mechanism may account for zerumbone's ability to suppress cancer-cell proliferation (multiple letters) Carcinogenesis, vol 23, no 11, 1961-1962, 2002 92 Go M.L.; Wu X., Liu, X.L Chalcones: An update on cytotoxic and chemoprotective properties Curr Med Chem 12(4):481-499, 2005 93 Yit C C, Das N P Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation Cancer Lett 15; 82(1):65-72, 1994 94 Zhang K, Das NP Inhibitory effects of plant polyphenols on rat liver glutathione S-transferases Biochem Pharmacol 1;47(11):2063-8, 1994 95 Ramanathan R, Tan CH, Das NP Cytotoxic effect of plant polyphenols and fatsoluble vitamins on malignant human cultured cells Cancer Lett 62:217-224, 1992 96 Satomi Y Inhibitory effects of 3'-methyl-3-hydroxy-chalcone on proliferation of human malignant tumor cells and on skin carcinogenesis Int J Cancer 30;55(3):506-14, 1993 97 Fu X, Sévenet T, Remy F, Païs M, Hamid A, Hadi A, Zeng LM Flavonone and chalcone derivatives from Cryptocarya kurzii J Nat Prod 56(7):1153-63, 1993 98 Dimmock J.R., Kandepu N M, Hetherington M., Quail J W., Pugazhenthi U., Sudom A.M., Chamankhah M., Patricia Rose , Eric Pass , Theresa M Allen, Sarah Halleran, Jen Szydlowski, Bulent Mutus, Marie Tannous, Elias K Manavathu, Timothy G Myers, Erik De Clercq, and Jan Balzarini Cytotoxic activities of Mannich bases of chalcones and related compounds J Med Chem 26; 41(7): 1014-1026, 1998 155 99 Liu M, Wilairat P, Go ML Antimalarial alkoxylated and hydroxylated chalcones: Structure-activity relationship analysis J Med Chem 44(25): 444352, 2001 100 Mei-Lin Go, Mei Liu, Prapon Wilairat, Philip J Rosenthal, Kevin J Saliba, and Kiaran Kirk Antiplasmodial Chalcones Inhibit Sorbitol-Induced Hemolysis of Plasmodium falciparum-Infected Erythrocytes Antimicrob Agents Chemother 48(9): 3241–3245, 2004 101 J.N Dominguez, C Leon, J Rodrigues, N Gamboa de Dominguez, J Gut, P.J Rosenthal Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives J Med Chem 48, 3654-3658, 2005 102 Nowakowska Z: A review of anti-infective and anti-inflammatory chalcones Eur J Med Chem 42(2):125-137, 2007 103 H Kromann, M Larsen, T Boesen, K Schønning, S.F Nielsen Synthesis of prenylated benzaldehydes and their use in the synthesis of analogues of licochalcone A Eur J Med Chem 39, 993-1000, 2004 104 Machado T.B., Leal I C.R., Amaral A C.F., Kuster R M., Kokis V.M., Silva M G., Santos K.R.N Brazilian phytopharmaceuticals evaluation against hospital bacteria Phytother Res 19:519–525, 2005 105 Bremner P D, Meyer J J Pinocembrin chalcone: an antibacterial compound from Helichrysum trilineatum Planta Med 64 (8): 777, 1998 106 Belofsky G, Percivill D, Lewis K, Tegos GP, Ekart J Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic J Nat Prod 67:481-484, 2004 107 López S N., Castelli M.V., Zacchino S.A., Domínguez J.N., Lobo G., CharrisCharris J., Cortés J C., Ribas J C., Devia C., Rodríguez A.M., Enriz R D In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall Bioorg Med Chem 9(8): 1999-2013, 2001 108 ElSohly H N, Joshi A S, Nimrod A C, Walker L A, Clark A M Antifungal chalcones from Maclura tinctoria Planta Med 67(1), 87-89, 2001 109 Svetaz L., Tapia A., Lopez S N., Furlan, R L., Petenatti E., Pioli, R., SchmedaHirschmann, G and Zacchino, S A Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi J Agric Food Chem 52: 3297-3300, 2004 110 Daikonya A, Katsuki S, Kitanaka S Antiallergic agents from natural sources Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae) Chem Pharm Bull 52:1326-1329, 2004 156 111 Zhao F, Nozawa H, Daikonnya A, Kondo K, Kitanaka S Inhibitors of nitric oxide production from hops (Humulus lupulus L.) Biol Pharm Bull 26:61–65, 2003 112 Wei, B L,, Teng, C H., Wang, J P., Won, S J., and Lin, C N Synthetic 2',5'dimethoxychalcones as G(2)/M arrest-mediated apoptosis-inducing agents and inhibitors of nitric oxide production in rat macrophages Eur J Med Chem 42:660-668, 2007 113 Wang Q, Ding Z H, Liu J K, Zheng Y T Xanthohumol, a novel anti-HIV-1 agent purified from hops Humulus lupulus Antiviral Res 64(3):189–194, 2004 114 Wu J H, Wang X H, Yi Y H, Lee K H Anti-AIDS agents 54 A potent antiHIV chalcone and flavonoids from genus Desmos Bioorganic & Medicinal Chemistry Letters 13(10):1813–1815, 2003 115 Xu H X, Wan M, Dong H, But P P, Foo L Y Inhibitory activity of flavonoids and tannins against HIV-1 protease Biol Pharm Bull 23:1072–1076, 2000 116 Uchiumi F, Hatano T, Ito H, Yoshida T, Tanuma S Transcriptional suppression of the HIV promoter by natural compounds Antiviral Res 58:89–98, 2003 117 Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J., and Panphadung, T HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt Songklanakarin J Sci Technol., 25(4) : 503-508, 2003 118 Mellor A L, Munn D H IDO expression by dendritic cells: tolerance and tryptophan catabolism Nat Rev Immunol 4(10):762-774, 2004 119 Hwu P, Du MX, Lapointe R, et al Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation J Immunol 164:3596-3599, 2000 120 Munn D H, Zhou M, Attwood J T, et al Prevention of allogeneic fetal rejection by tryptophan catabolism Science 281(5380):1191-1193, 1998 121 Friberg M, Jennings R, Alsarraj M, et al Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection Int J Cancer 101(2):151-155, 2002 122 Uyttenhove C, Pilotte L, Théate I, et al Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3dioxygenase Nat Med 9(10):1269-1274, 2003 123 Muller AJ, DuHadaway JB, Donover PS, et al Inhibition of indoleamine 2,3dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy Nat Med 11(3): 312-319, 2005 124 Liu, X.; Shin, N.; Koblish, H K.; Yang, et all Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity Blood, 115, 3520 −3530, 2010 157 125 Yang, S.; Li, X.; Hu, F.; Li, Y.; Yang, Y.; Yan, J.; Kuang, C.; Yang, Q Discovery of tryptanthrin derivatives as potent inhibitors of indoleamine 2,3dioxygenase with therapeutic activity in Lewis lung cancer (LLC) tumor-bearing mice J Med Chem 56, 8321 −8231, 2013 126 Li, M.; Bolduc, A R.; Hoda, M N.; et all The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemoradiation therapy against murine glioblastoma J Immunother Cancer 2, 21 2014 127 Platten M, Wick W, Van den Eynde BJ Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion Cancer Res 72:5435-40, 2012 128 Kudo Y, Boyd CA Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection Biochim Biophys Acta 1500:119-124, 2000 129 Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen-Mersh TG Serum trytophan decrease correlates with immune activation and impaired quality of life in colorectal cancer Br J Cancer 86(11):1691-1696, 2002 130 Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients Dermatology 214(1):8-14, 2007 131 Munn DH, Shafizadeh E, Attwood JT, et al Inhibition of T cell proliferation by macrophage tryptophan catabolism J Exp Med 189(9):1363-1372, 1999 132 Brandacher G, Perathoner A, Ladurner R, et al Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells Clin Cancer Res 12:1144-51, 2006 133 Okamoto A, Nikaido T, Ochiai K, et al Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells Clin Cancer Res.11: 6030-6039, 2005 134 Muller A J, Malachowski W P Prendergast GC Indoleamine 2,3-dioxygenase in cancer: targeting pathological immune tolerance with small-molecule inhibitors Expert Opin Ther Targets 9:831-489, 2005 135 Muller AJ, Prendergast GC Marrying immunotherapy with chemotherapy: why say IDO? Cancer Res 65:8065-8068, 2005 136 Muller AJ, Prendergast GC Indoleamine 2,3-dioxygenase in immune suppression and cancer Curr Cancer Drug Targets 7:31-40, 2007 137 Di Pucchio T, Danese S, De Cristofaro R, Rutella S Inhibitors of indoleamine 2,3-dioxygenase: a review of novel patented lead compounds Expert Opin Ther Patents 20:229-50, 2010 158 138 Cady, S G.; Sono, M 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DLalanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DLalanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase Arch.Biochem Biophys., 291, 326 – 333, 1991 139 Nakashima H, Uto Y, Nakata E, et al Synthesis and biological activity of 1methyl-tryptophan-tirapazamine hybrids as hypoxia-targeting indoleamine 2,3dioxygenase inhibitors Bioorg Med Chem., 16:8661– 8669, 2008 140 Andersen, R.; Pereira, A.; Huang, X.-H.; Mauk, G.; Vottero, E.; Roberge, M.; Balgi, A Indoleamine 2,3-dioxygenase (IDO) inhibitors Patent WO2006/005185, 2006 141 Ute F Röhrig, Somi Reddy Majjigapu, Pierre Vogel, Vincent Zoete, and Olivier Michielin Challenges in the Discovery of Indoleamine 2,3-Dioxygenase (IDO1) Inhibitors J Med Chem., 58 (24), 9421–9437, 2015 142 Sono, M.; Cady, S G Enzyme kinetic and spectroscopic studies of inhibitor and effector interactions with indoleamine 2,3-dioxygenase Norharman and 4phenylimidazole binding to the enzyme as inhibitors and heme ligands Biochemistry 28, 5392 −5399, 1989 143 Peterson, A C.; Loggia, A J L.; Hamaker, L K.; Arend, R A.; Fisette, P L.; Okazi, Y.; Will, J A.; Brown, R R.; Cook, J M Evaluation of substituted βcarbolines as noncompetitive indoleamine 2,3-dioxygenase inhibitors Med Chem Res 3, 473 −482, 1993 144 Yamamoto, R.; Yamamoto, Y.; Imai, S.; Fukutomi, R.; Ozawa, Y.; Abe, M.; Matuo, Y.; Saito, K Effects of various phytochemicals on indoleamine 2,3dioxygenase activity: galanal is a novel, competitive inhibitor of the enzyme PLoS one 9, e88789, 2014 145 Sugimoto, H.; Oda, S.; Otsuki, T.; Hino, T.; Yoshida, T.; Shiro, Y Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase Proc Natl Acad Sci U.S.A 103, 2611 - 2616, 2006 146 Kumar, S.; Jaller, D.; Patel, B.; LaLonde, J M.; DuHadaway, J.B.; Malachowski, W P.; Prendergast, G C.; Muller, A J Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase J Med Chem 51, 4968 - 4977, 2008 147 Bakmiwewa, S M.; Fatokun, A.; Tran, A.; Payne, R J.; Hunt, N.H.; Ball, H J Identification of selective inhibitors of indoleamine 2,3-dioxygenase Bioorg Med Chem Lett 22, 7641 - 7646, 2012 148 Rohrig, U F.; Majjigapu, S R.; Chambon, M.; Bron, S.; Pilotte, L.; Colau, D.; Van den Eynde, B J.; Turcatti, G.; Vogel, P.; Zoete, V.; Michielin, O Detailed 159 analysis and follow-up studies of a highthroughput screening for indoleamine 2,3-dioxygenase (IDO1) inhibitors Eur J Med Chem 84, 284 - 301, 2014 149 Kumar, S.; Waldo, J.; Jaipuri, F.; Mautino, M Tricyclic compounds as inhibitors of immunosuppression mediated by tryptophan metabolization Patent WO2014/159248, 2014 150 Rohrig, U F.; Awad, L.; Grosdidier, A.; Larrieu, P.; Stroobant, V.; Colau, D.; Cerundolo, V.; Simpson, A J G.; Vogel, P.; Van den Eynde, B J.; Zoete, V.; Michielin, O Rational design of indoleamine 2,3-dioxygenase inhibitors J Med Chem 53, 1172 - 1189, 2010 151 Rohrig, U F.; Majjigapu, S R.; Grosdidier, A.; Bron, S.; Stroobant, V.; Pilotte, L.; Colau, D.; Vogel, P.; Van den Eynde, B J.; Zoete, V.; Michielin, O Rational design of 4-aryl-1,2,3-triazoles for indoleamine 2,3-dioxygenase inhibition J Med Chem 55, 5270 – 5290, 2012 152 Boyall, D.; Davis, C.; Dodd, J.; Everitt, S.; Miller, A.; Weber, P.; Westcott, J.; Young, S Compounds useful as inhibitors of indoleamine 2,3-dioxygenase Patent WO2014/081689, 2014 153 Shingo Matsumura, Hiroshi Enomoto, Yoshiaki Aoyagi, Haruo Tanaka Carbamylpiperazine compounds US Patent No 4435397 A 1984 154 Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J.T., Bokesch H., Kenney S., Boyd M.R New colorimetric cytotoxicity assay for anticancer agents Eur J Cancer 27:1162–1168, 1991 155 Likhitayawuid K., Angerhofer C.K., Cordell G.A., Pezzuto J.M., Ruangrungsi N Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta Jounal of natural products 56 (1): 30–38, 1993 156 Jong Bin Kim Three-dimensional tissue culture models in cancer biology Seminar in Cancer Biology 15, 365-377, 2005 157 Huiyuan Gao, Bailing Hou, Masonori Kuroyanagi, Lijun Wu Constituents from anti-tumor-promoting active part of Dioscorea bulbifera L in JB6 mouse epidermal cells Asian J of Trad Medi (3), 104-109, 2007 158 Kumar S C S., Srinivas P., Negi P S., Bettadaiah B K Antibacterial and antimutagenic activities of novel zerumbone analogues Food Chemistry, 141 (2), 1097-1103, 2013 159 Yajing Liu, Zijian Liu, Jiyue Shi, Huimin Chen, Bin Mi, Peng Li, Ping Gong Synthesis and cytotoxicity of novel 10-substituted dihydroartemisinin derivatives containing N-arylphenyl-ethenesulfonamide groups Molecules 18, 2864-2877, 2013 160 160 Wong, C W., Nornam, H C H., Fabrizio, S C., Jan, O J Pharmaceutical composition for the prevention and treatment of complex diseases and their delivery by insertable medical devices U.S Patent 20090029987A1, 2009 161 G Damian, W Stanislaw Transformation of chloromethylbenzaldehydes into corresponding (2-Nitroalkenyl-1) benzyl chlorides or acetates III Journal f Pratk Chemie 322, 536 – 542, 1980 162 Kitayama T, Yamamoto K, Utsumi R, Takatani M, Hill R.K., Kawai Y, Sawada S, Okamoto T: Chemistry of zerumbone Regulation of ring bond cleavage and unique antibacterial activities of zerumbone derivatives Biosci Biotechnol Biochem 65(10), 2193-2199, 2001 163 Nguyen Van Minh, Nguyen Le Anh, Do Thi Thao Tran Khac Vu Triazolelinked Chalcone and Flavone Hybrid Compounds Based on AZT Exhibiting in vitro Anti-Cancer Activity Letters in Drug Design & Discovery 11(3), 297-303, 2014 164 Tuyet Anh Dang Thi, Nguyen Thi Kim Tuyet, Chinh Pham The, Ha Thanh Nguyen, Cham Ba Thi, Hoang Thi Phuong, Luu Van Boi, Tuyen Van Nguyen, Matthias D’hooghe Synthesis and cytotoxic evaluation of novel amide-triazolelinked triterpenoid-AZT conjugates Tetrahedron Let., 56(1), 218-224, 2015 165 Kamel A.O., Mahmaud A.A Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system J Biomed Nanotechnol 9(1), 26-39, 2013 166 Wong, C W.; Nornam, H C H.; Fabrizio, S C.; Jan, O J Pharmaceutical composition for the prevention and treatment of complex diseases and their delivery by insertable medical devices U.S Patent 20090029987A1, 2009 167 Trave Roberto The chloromethylation of hydroxyacetophenone I Synthesis of homoprotocatechunitrile Gazzeta Chimica Italiana 80, 502-509, 1952 168 Damian, G.; Stanislaw, W Transformation of chloromethylbenzaldehydes into corresponding (2-Nitroalkenyl-1) benzyl chlorides or acetates III Journal f Pratk Chemie 322, 536 – 542, 1980 169 Canizaro S Ueber den der Benzoesaure ensprechenden Alkohol Liebigs Annalen 90 (2), 190-210, 1853 170 Hong, M S.; Chong, Y L.; Pui L R E.; Mei, L G Dimethoxyaurones: potent inhibitors of ABCG2 (breast cancer resistance protein) Eur J Pharm Sci., 35, 293-306, 2008 171 Pandey, S.; Suryawanshi, S N.; Gupta, S.; Srivastava, V M L Chemotherapy of leishmaniasis part II: synthesis and bioevaluation of substituted arylketene dithioacetals as antileishmanial agents Eur J Med Chem , 40, 751-756, 2005 161 172 Joseph J Romanoa, Eduard Casillas A short synthesis of morachalcone A Tetrahedron Letters 46(13), 2323–2326, 2005 173 Ko, H H.; Tsao, L T.; Yu, K L.; Liu, C T.; Wang, J P.; and Lin, C N Structure-activity relationship studies on chalcone derivatives-the potent inhibition of chemical mediators release Bioorg Med Chem 11, 105-111 2003 174 Tian, Z Y.; Du, G J.; Xie, S Q.; Zhao, J.; Gao, W Y.; Wang, C J Synthesis and bioevaluation of 5-fluorouracil derivatives Molecules., 12, 2450-2457, 2007 175 Da Silva, G D.; Da Silva, M G.; Souza, E M P V E.; Simões, A B S C.; Varotti, F P.; Barbosa, L A.; Viana, G H R.; Villar, J A F P Design and synthesis of new chalcones substituted with azide/triazole groups and analysis of their cytotoxicity towards Hela Cells Molecules, 17, 10331-10343, 2012 176 Jason E Hein, Valery V Fokin Copper(I)-Catalyzed azide-ankyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I)acetylides Chem Soc Rew., 39 (4), 1302-1315, 2010 177 F Himo, T Lovell, R Hilgraf, V V Rostovtsev, L Noodleman, K B Sharpless, V V Fokin Copper(I) catalyzed synthesis of azoles DFT study predicts unprecedented reactivity and intermediates J Am Chem Soc., 127, 210-216, 2005 178 David Leitsch, Sarah Schlosser, Anita Burgess, Michael Duchêne Nitroimidazole drugs vary in their mode of action in the human parasite Giardia lamblia International Journal for Parasitology: Drugs and Drug Resistance 2, 166–170, 2012 179 M Gerecke Chemical structure and properties of midazolam compared with other benzodiazepines Br J Clin Pharmacol 16 (Suppl 1): 11S–16S, 1983 180 Sono M and Cady S G Enzyme kinetic and spectroscopic studies of inhibitors and effector interactions with indoleamine 2,3-dioxygenase Norharman and 4phenylimidazole binding to enzyme as inhibitors and heme ligands Biochemistry 28, 5392-5399, 1989 181 Ankany M.M., Ames S K., Huxley J W., Ames F J., Ames T K., Zhang X X (2014) Fused imidazole derivatives useful as IDO inhibitors US Patents 20140066625 A1, 2014 182 Matusoka, Keiichiro Synthesis of flavanones XXII The diazotization and optical resolution of 3'-amino-5,7-dimethylflavanones Nippon Kagaku Zasshi 78 64951, 1957 183 Matsumura S., Hiroshi K., Aoyagi Y., Tanaka H Carbamylpiperazine compounds Patent US 4,435,397, 1984 162 184 Čižmáriková R., Polakovičová M., Mišíková E Synthesis, physicochemical properties, and comformational studies of (3-alkoxymethyl-4hydroxyphenyl)ethanones, Chem Pap., 56, 256-260, 2002 185 Hieu, B T.; Thuy, L T.; Thuy, V T.; Tien, H X.; Chinh, L V.; Hoang, V D.; and Vu, T K Design, synthesis and in vitro cytotoxic activity evaluation of new Mannich bases Bull Korean Chem Soc., 33, 1586-1592, 2012 186 Takikawa O, Kuroiwa T, Yamazaki F, Kido R Mechanism of interferon-gamma action Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity J Biol Chem 263(4):2041–2048, 1988 163 ... từ thiên nhiên sử dụng hỗ trợ điều trị điều trị bệnh ung thư Với mục đích đóng góp thêm nghiên cứu đối tượng này, luận án ? ?Tổng hợp nghiên cứu hoạt tính sinh học số ketone α,β? ??khơng no có cấu trúc. .. chìa khóa định đến hoạt tính sinh học chúng Trong thiên nhiên hợp chất ketone α,β- không no tạo thành trình sinh tổng hợp số đường, chẳng hạn thực vật hợp chất ketone α,β- không no mang màu chalcone,... 1.1.2 Các hợp chất ketone α,β- không no có nguồn gốc thực vật Do thiên nhiên hợp chất ketone α,β- không no xuất với số lượng lớn có cấu trúc đa dạng liệt kê đầy đủ khuôn khổ luận án, luận án khái

Ngày đăng: 21/02/2023, 14:49

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan