1. Trang chủ
  2. » Tất cả

Luận văn một số lớp ánh xạ đa trị với giá trị không lồi

75 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 75
Dung lượng 562,14 KB

Nội dung

1 LỜI CẢM ƠN Tôi xin chân thành cảm ơn tất cả các Thầy Cô đã tận tình dạy dỗ chúng tôi trong suốt quá trình học Tôi xin chân thành cảm ơn Phòng Sau Đại Học đã tạo điều kiện cho chúng tôi được học tập[.]

LỜI CẢM ƠN Tôi xin chân thành cảm ơn tất Thầy Cơ tận tình dạy dỗ chúng tơi suốt q trình học Tơi xin chân thành cảm ơn Phòng Sau Đại Học tạo điều kiện cho chúng tơi học tập tốt Tơi xin kính gởi lời cảm ơn chân thành đến PGS TS Nguyễn Bích Huy , người thầy nhiệt tình hướng dẫn thực đề tài Trong suốt thời gian học tập thực khóa luận, tơi học tập nhiều kiến thức bổ ích nhiều kinh nghiệm bảo ân cần Thầy Mặc dù cố gắng hoàn thiện đề tài khơng tránh khỏi nhiều sai sót Kính mong nhận xét đánh giá Thầy Cô Tôi xin kính chúc Thầy Cơ ln khỏe mạnh, tiếp tục đạt nhiều thành công nghiệp giảng dạy nghiên cứu khoa học nghiệp trồng người Tôi xin chân thành cảm ơn MỤC LỤC LỜI CẢM ƠN MỤC LỤC LỜI MỞ ĐẦU BẢNG KÍ HIỆU CHƯƠNG ÁNH XẠ ĐA TRỊ CO VÀ ÁNH XẠ ĐA TRỊ KHÔNG GIÃN 1.1 Một số định nghĩa tính chất ánh xạ đa trị co ánh xạ đa trị khơng giãn 1.2 Một số định lí điểm bất động 1.3 Một số kết đồng luân ánh xạ đa trị co .14 CHƯƠNG ÁNH XẠ ĐA TRỊ TĂNG 25 2.1 Liểm bất động ánh xạ tăng đa trị 25 2.1.1 Nguyên lí Entropy 25 2.1.2 Một số khái niệm 26 2.2 Lát cắt ánh xa tăng đa trị 31 2.2.1 Các khái niệm liên quan .31 2.2.2 Một số định lí tồn lát cắt đơn điệu ánh xạ đa trị tăng 33 CHƯƠNG ÁNH XẠ ĐA TRỊ CÓ GIÁ TRỊ PHÂN TÍCH ĐƯỢC 45 3.1 Một số khái niệm liên quan 45 3.2 Tập phân tích được, tính chất 46 3.3 Sự tồn lát cắt ánh xạ đa trị có giá trị phân tích .60 KẾT LUẬN 73 TÀI LIỆU THAM KHẢO 74 LỜI MỞ ĐẦU Các ánh xạ đa trị nghiên cứu cách hệ thống Toán học năm 1950 -1960 nhu cầu phát triển nội Toán học nhu cầu mô tả nghiên cứu mơ hình phát sinh từ khoa học Tự nhiên Xã hội Chúng ứng dụng rộng rãi nghiên cứu bao hàm thức vi phân, tích phân, Lý thuyết điều khiển tối ưu, Tin học lý thuyết… Các ánh xạ đa trị nghiên cứu ban đầu có giá trị tập lồi Nhờ tính chất ta chứng minh tồn lát cắt đơn trị ánh xạ đa trị nhờ nhiều kết ánh xạ đơn trị mở rộng lên ánh xạ đa trị với giá trị lồi Các ánh xạ đa trị với giá trị lồi nghiên cứu đầy đủ Cùng với phát triển khoa học kĩ thuật mà nhu cầu nghiên cứu ánh xạ đa trị với giá trị không lồi đặt Việc nghiên cứu ánh xạ phức tạp nhiều ta cần tìm tính chất ánh xạ thay tính chất lồi, ví dụ tính co ánh xạ, tính tăng ánh xạ thứ tự, tính phân tích tập ảnh,… Lớp ánh xạ đa trị với giá trị không lồi chưa nghiên cứu nhiều Các kết nhận chưa đầy đủ nhiều vấn đề chờ nghiên cứu Luận văn nghiên cứu ba dạng ánh xạ đa trị không lồi ánh xạ co đa trị, ánh xạ tăng đa trị ánh xạ đa trị có giá trị phân tích Gồm có ba chương : Chương 1: “Ánh xạ đa trị co ánh xạ đa trị không giãn”.Trong chương này, khái niệm ánh xạ đa trị co ánh xa đa trị không giãn định nghĩa dựa vào khái niệm metric Hausdorff Tôi trình bày vài kết điểm bất động lớp ánh xạ đa trị Chương 2: “Ánh xạđa trị tăng” Chương trình bày số khái niệm quan hệ thứ tự hai tập hợp Từ định nghĩa kiểu tăng ánh xạ đa trị Trong chương này, tơi có trình bày định lý điểm bất động điều kiện đề có lát cắt đơn điệu loại ánh xạ Chương 3: “Ánh xạ đa trị có giá trị phân tích được”.Chương giới thiệu khái niệm ánh xạ đa trị có giá trị phân tích số tính chất Ngồi tơi trình bày số điều kiện để tồn lát cắt liên tục loại ánh xạ Kết chương định lí điểm bất động ánh xạ đa trị có giá trị phân tích BẢNG KÍ HIỆU N : tập hợp số tự nhiên R : tập hợp số thực N ( X ) : tập hợp tập khác rỗng X cl ( X ) : tập hợp tập đóng khác rỗng X bcl ( X ) : tập hợp tập đóng, bị chặn, khác rỗng X co ( X ) : tập hợp tập lồi khác rỗng X X * : không gian đối ngẫu không gian X M (T , X ) : tập hợp ánh xạ đo từ T vào X Lp (T , X ) : không gian ánh xạ khả tích Bochner với chuẩn pp  = u p  ∫ u ( t )  , ≤ p < +∞ , u   T  ∞ B( x, r ) : cầu mở tâm x bán kính r U : bao đóng U = ess sup u ( t ) CHƯƠNG ÁNH XẠ ĐA TRỊ CO VÀ ÁNH XẠ ĐA TRỊ KHƠNG GIÃN Trong chương chúng tơi trình bày vài kết điểm bất động ánh xạ co ánh xạ đa trị không giãn Các kết trích dẫn từ tài liệu [1] 1.1 Một số định nghĩa tính chất ánh xạ đa trị co ánh xạ đa trị không giãn Cho ( X , d ) không gian metric Với C ⊂ X , r > ta định nghĩa B (C , r ) =  B ( x, r ) x∈C ĐỊNH NGHĨA 1.1.1 [1]:Với C , K hai tập đóng khác rỗng X Ta định nghĩa khoảng cách hai tập hợp C , K D(C= , K ) : inf {ε > :C ⊆ B( K , ε ), K ⊆ B(C , ε ) } ∈ [ 0, +∞ ] D gọi metric Hausdorff Ví dụ 1.1.1 : Trong R ,C = {( x, y ) :0 ≤ x ≤ 1,0 ≤ y ≤ 1}, K = {( x, y ) : y = 2,1 ≤ x ≤ 2} Khi D ( C , K ) = Thật vậy, với ε > thỏa mãn C ⊆ B( K , ε ) ta có ( 0,0 ) ∈ K ⇒ ( 0,0 ) ∈ B ( C , ε ) ⇒ ∃( a, b ) ∈ C : mà ≤ a ≤ 2, b = nên ε > a + b ≥ ( a − 0) + (b − 0) < ε Với δ > ta chứng minh C ⊆ B( K , + δ ), K ⊆ B(C , + δ ) Với ( a, b ) ∈ C , ∃(1, ) ∈ K , (1 − a ) + ( − b ) ≤ 12 + 22 = ( c,2 ) ∈ K , ∃(1,1) ∈ C , ( c − 1) + ( − 1) 2 ≤ ( c − 1) < +δ +1 ≤ < +δ Vậy inf {ε > :C ⊆ B ( K , ε ), K ⊆ B (C , ε ) } = = C Nhận xét 1.1.1: Nếu x} , K { y} D ( C , K ) = d ( x, y ) {= Nếu C = { x} , K có phần tử d ( x, K ) D ( C , K ) nói chung khơng MỆNH ĐỀ 1.1.1:Với C , K tập đóng, bị chặn, khác rỗng không gian metric ( X , d ) ta có định nghĩa khoảng cách hai tập sau = d ( c, K ) inf {d ( c, k ) , k ∈ K } ρ ( C , K )= sup {d ( c, K ) , c ∈ C} , ρ ( K , C )= sup {d ( k , C ) , k ∈ K } D ( C , K ) = max { ρ ( C , K ) , ρ ( K , C )} Khi định nghĩa tương đương với định nghĩa 1.1.1 Chứng minh Đặt α = inf {ε > :C ⊆ B ( K , ε ), K ⊆ B (C , ε ) } β = max { ρ ( C , K ) , ρ ( K , C )} Chứng minh β ≤ α Lấy ε > thỏa mãn C ⊆ B ( K , ε ), K ⊆ B (C , ε ) Với c ∈ C , C ⊆ B ( K , ε ) nên ∃k ∈ K : c ∈ B (k , ε ) Do d ( c, k ) < ε Suy d ( c, K ) < ε ⇒ ρ ( C , K ) ≤ ε Lập luận tương tự ta có ρ ( K , C ) ≤ ε Vậy β ≤ α Chứng minh α < β + ε , ∀ε > Với c ∈ C , ta có ρ ( C , K ) ≤ n ⇒ d ( c, K ) ≤ n ⇒ ∃k ∈ K : d ( c, k ) < n + ε Do c ∈ B (k , β + ε ) ⇒ C ⊆ B ( K , β + ε ) Lập luận tương tự ta có K ⊆ B (C , β + ε ) Do định nghĩa α nên ta có α < β + ε , ∀ε > Suy α ≤ β Vậy α = β Nhận xét 1.1.2 *) C , K tập đóng, bị chặn, khác rỗng, x ∈ X ta có d ( x, C ) ≤ d ( x, K ) + D ( K , C ) *) với A, B hai tập đóng , bị chặn, khác rỗng không gian Banach X số t > Khi D ( tA, tB ) = tD ( A, B ) Thật= , đặt α D= ( tA, tB ) , β D ( A, B ) +) Với ε > thỏa mãn tA ⊂ B ( tB, ε ) , tB ⊂ B ( tA, ε ) Với a ∈ A, ∃b ∈ B : ta − tb < ε ( tA ⊂ B ( tB, ε ) ) Do a − b < ε  ε ⇒ A ⊂ B  B, t  t    ε   Chứng minh tương tự ta có B ⊂ B  A,  Suy β ≤ t ε ⇒ βt ≤ ε t Mà α = inf {ε > : tA ⊂ B ( tB, ε ) , tB ⊂ B ( tA, ε )} nên β t ≤ α +) Với δ > bất kì, ta chứng minh α ≤ β t + δ   Với mọi= y ta, a ∈ A Do A ⊂ B  B, β + δ δ  nên có b ∈ B : a − b < b + t t Suy ta − tb < t b + δ nên ⇒ tA ⊂ B ( tB, t β + δ ) Chứng minh tương tự tB ⊂ B ( tA, t β + δ ) Suy α ≤ β t + δ Vậy α ≤ β t ĐỊNH NGHĨA 1.1.2 [1] Cho C tập khác rỗng X Ánh xạ đa trị F : C → X có giá trị đóng, bị chặn, khác rỗng gọi co tồn số k ,0 ≤ k < thỏa mãn D ( F ( x), F ( y ) ) ≤ kd ( x, y ) , ∀x, y ∈ C Và F gọi không giãn D ( F ( x), F ( y ) ) ≤ d ( x, y ) , ∀x, y ∈ C     B 0, x , x ≠ O(0,0) Ví dụ 1.1.2 Cho F : R → R định F ( x) =    , O(0,0) , x = O(0,0)  xét với chuẩn Euclide Với x, y ∈ R ta có     1  D ( F ( x), F ( y ) ) = D  B  0, x  , B  0, y   = x − y ≤ x− y      Vậy F ánh xạ co với hệ số k =     Ví dụ 1.1.3 : F :[0,1] → R định F ( x) = 0, x  Với ( x, y ) ∈ [0,1] ta có    3 D ( F ( x), F (= y ) ) D  0, x  , 0, y= x − y3       1 = ( x − y ) ( x + xy + y ) ≤ x − y = x − y 3 Vậy F ánh xạ ánh xạ co 1.2 Một số định lí điểm bất động ĐỊNH LÍ 1.2.1 [ Sam B Nadler, Multip-valued Contraction Mappings, trang 479, định lí ] Cho ( X , d ) không gian metric đầy đủ , F : X → X ánh xạ đa trị co với giá trị đóng, bị chặn, khác rỗng Khi F có điểm bất động Chứng minh Gọi k hệ số co F Lấy p0 ∈ X Chọn p1 ∈ F ( p0 ) ( F ( p0 ) ≠ ∅ ) Vì F ( p1 ) , F ( p0 ) tập đóng bị chặn p1 ∈ F ( p0 ) nên tồn p2 ∈ F ( p1 ) ( ) cho d ( p1 , p2 ) ≤ D F ( p0 ) , F ( p1 ) + k Thật , D ( F ( p0 ) , F ( p1 ) ) := inf {ε > : F ( p0 ) ⊆ B( F ( p1 ) , ε ), F ( p1 ) ⊆ B( F ( p0 ) , ε ) } ( ) Do F ( p1 ) , F ( p0 ) tập đóng bị chặn nên D F ( p0 ) , F ( p1 ) hữu hạn ( ) ( ) Do tính chất infimun nên có D F ( p0 ) , F ( p1 ) ≤ ε < D F ( p0 ) , F ( p1 ) + k cho ( F ( p0 ) ⊆ B ( F ( p1 ) , ε ) ⇒ p1 ∈ B ( F ( p1 ) , ε ) ⊆ B F ( p1 ) , D ( F ( p0 ) , F ( p1 ) ) + k ( ) ) suy p2 ∈ F ( p1 ) cho d ( p1 , p2 ) ≤ D F ( p0 ) , F ( p1 ) + k Tương tự ta chọn p3 ∈ F ( p2 ) cho d ( p2 , p3 ) ≤ D ( F ( p1 ) , F ( p2 ) ) + k Tiếp tục trình ta xây dựng dãy { pi } thỏa mãn pi +1 ∈ F ( pi ) ( ) i cho d ( pi , pi +1 ) ≤ D F ( pi −1 ) , F ( pi ) + k vói i ≥ ( ) i i Ta có d ( pi , pi +1 ) ≤ D F ( pi −1 ) , F ( pi ) + k ≤ kd ( pi −1 , pi ) + k i −1 ≤ k ( kd ( pi −2 , pi −1 ) + k= ) + k i k 2d ( pi−1, pi ) + 2k i ≤ ≤ k i d ( p0 , p1 ) + ik i ) ( ( Do d pi , pi + j ≤ d ( pi , pi +1 ) + d ( pi +1 , pi + ) + + d pi + j −1 , pi + j ) ≤ k i d ( p0 , p1 ) + ik i + k i +1d ( p0 , p1 ) + ( i + 1) k i + + k i + j −1d ( p0 , p1 ) + ( i + j − 1) k i = i + j −1 ∑ k i+n d ( p0 , p1 ) + i + j −1 ∑ (i + n) k i+n = n 0= n ∞ Chuỗi ∑ ( i + n )α n =0 i + j −1 ∑ ( i + n )α n =0 i+n i+n i + n + 1)α i + n+1 ( hội tụ lim = α < Suy n→∞ ( i + n )α i + n → i, j → +∞ Do d ( pi , pi + j ) → i, j → +∞ 10 ... cứu Luận văn nghiên cứu ba dạng ánh xạ đa trị không lồi ánh xạ co đa trị, ánh xạ tăng đa trị ánh xạ đa trị có giá trị phân tích Gồm có ba chương : Chương 1: ? ?Ánh xạ đa trị co ánh xạ đa trị không. .. ÁNH XẠ ĐA TRỊ CO VÀ ÁNH XẠ ĐA TRỊ KHÔNG GIÃN 1.1 Một số định nghĩa tính chất ánh xạ đa trị co ánh xạ đa trị không giãn 1.2 Một số định lí điểm bất động 1.3 Một số kết đồng luân ánh. .. Các ánh xạ đa trị nghiên cứu ban đầu có giá trị tập lồi Nhờ tính chất ta chứng minh tồn lát cắt đơn trị ánh xạ đa trị nhờ nhiều kết ánh xạ đơn trị mở rộng lên ánh xạ đa trị với giá trị lồi Các ánh

Ngày đăng: 16/02/2023, 15:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w