Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 132 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
132
Dung lượng
10,76 MB
Nội dung
DANH M C KÝ HI U VÀ CH CS VI T T T Carbon sulfo hóa Mc Ro Bm Bã mía Vt V tr u Be Bèo l c bình Tn Thân ngô Ts Thân s n GO Graphene oxide AC Than ho t tính GO/AC Graphene oxide mang than ho t tính MeOH Metanol EtOH Ethanol LA Acid lactic EL Ethyl lactate HMF Hydroxymethylfurfural HPA Acid 12- phosphotungstic (H3PW12O40) MB Methylene blue (Xanh methylen) UV-Vis Ultraviolet-Visible (Ph T ngo i-kh ki n) TG-DTA Thermalgravimetry- Differential Thermal Analysis ( phân tích nhi t tr ng vi sai) XRD X-Ray Diffraction (Ph nhi u x tia X) SEM Scanning Electron Microscopy (Kính hi EDX EDX : Energy-dispersive X-ray (Ph tán x FT-IR Fourier Transform Infrared Spectroscopy (Quang ph h ng ngo i bi i) n t quét) ng tia X) BET Brunauer-Emmett-Teller ( ng nhi t h p ph - gi i h p ph N2) SBET Di n tích b m t riêng TKPT Tinh t phân tích %v Ph %kl Ph DMSH Dung môi sinh h c FAME Fatty acid methyl esters (Methyl este c a acid béo) Ho tích ng ng b m t NK 2010 New Kagel 2010 BVTV B o v th c v t EC u (Emunsifiable concentrates) TCVN Tiêu chu n Vi t Nam TCCS Tiêu chu DANH M C B NG B ng 1.1 M t s cơng trình nghiên c ng h c c a ph n ng este hóa gi a acid lactic ethanol 11 B ng 1.2 Xúc tác acid r n cho ph n ng este hóa acid lactic thành ethyl lactate 12 B ng 1.3 Xúc tác carbon sulfo hóa t ng h p h B ng 1.4 Ti i ph ph m nông nghi 19 26 B ng 2.1 Danh m c nguyên v t li u, hóa ch t 36 B ng 2.2 Ký hi u s n ph m nhi t phân xúc tác CS t sinh kh i 39 B ng 2.3 N B MB cân b ng ph thu c n ng MB h p ph 1g GO u 54 n cân b ng 55 B ng 3.1 Thành ph n hóa h c c a sinh kh i 62 B ng s n ph m than nhi c t ngu n sinh kh i 67 B ng 3.3 Di n tích b m t riêng c a than nhi t phân xúc tác CS t ngu n nguyên li u 68 B ng 3.4 Di n tích b m t riêng c a than nhi nhi B ng 3.5 S phân t bèo nhi t phân 69 ng c a th i gian nhi ng s n ph m than nhi t 70 B ng 3.6 Thành ph n nguyên t c a xúc tác CS.Mc t l ch t ph n ng 71 B ng 3.7 ng t l ch t ph n ng c n tính ch t acid c a xúc tác 72 B ng 3.8 ng c a nhi n tính ch t acid c a xúc tác 77 B ng 3.9 ng c a nhi SO3H c a xúc tác CS 79 B ng 3.10 ng c a nhi n thành ph n nguyên t c a m u xúc tác t B ng 3.11 80 ng c a nhi n di n tích b m t riêng c a m u xúc tác CS.Mc t nguyên li B ng 3.12 ng c a th 81 ng tâm acid SO3H 82 B ng 3.13 Tính ch t acid c acid-base 83 B ng 3.14 Tính ch t acid c B ng 3.15 L -NH3 86 ng tâm acid c a xúc tác CS.Mc sau tái sinh 94 B ng 3.16 Di n tích b m t riêng tâm acid SO3H c graphene oxide 98 B ng 3.17 S ph thu c kh t ch t vào thành ph n c a DMSH 104 B ng 3.18 Nhi ch p cháy c a DMSH v i t l thành ph n khác 105 B t b c a deltamethrin 2.5EC chloropyrifos ethyl 20EC 105 B ng 3.20 ng c b gi c a s n ph m deltamethrin 2.5EC chloropyrifos ethyl 20EC 106 B ng 3.21 K t qu ch tiêu k thu t c a DMSH 107 B ng 3.22 K t qu ch tiêu k thu t c a thu c BVTV Biosol-D2.5EC Biosol-Ch20EC 107 B ng 3.23 M sâu cu n hi u l c c a thu c BVTV th i gian kh o nghi m 108 DANH M C HÌNH Hình 1.1 Cơng th c c u t o c a ethyl lactate Hình 1.2 ph n ng este hóa acid lactic ph n ng th Hình 1.4 ph n ng este hóa b i xúc tác sulfated zirconia Hình 1.5 C xu t c a xúc tác carbon sulfo hóa 14 t ng h p xúc tác carbon sulfo hóa v i tác nhân 4-benzene diazonium sulfonate 16 Hình 1.7 C Hình 1.8 xu t acid r carbon c a Hara 16 u ch xúc tác carbon sufo hóa t saccharide 17 Hình 1.9 C u trúc phân t c a sinh kh i 22 Hình 1.10 C u trúc phân t c a monome h p ph n c a lignin 23 chuy n hóa thành ph n sinh kh i t trình nhi t phân 24 xu t c u trúc màng graphene oxide 28 Hình 1.13 t ng h p graphene oxide t b t than chì 32 Hình 2.1 H thi t b nhi t phân sinh kh i 38 Hình 2.2 S ph n x b m t tinh th 44 Hình 2.3 th s ph thu c c a Hình 2.4 P theo P/Po 46 W(Po - P) thi t b máy phân tích nguyên t 49 Hình 2.5 Ph UV-Vis c a m u so sánh (ref 50 mg.L-1) m u MB sau h p ph cân b ng 54 ng MB h p ph Hì Hình 3.1 Gi n cân b ng khác 55 th bi u di n s ph thu c c a Ceq/a vào Ceq 56 phân tích nhi t TGA c a m u nguyên li u môi ng N2 63 Hình 3.2 Ph Raman c a than nhi Hình 3.3 Gi nhi 64 XRD c a m u than nhi t phân sinh kh i 66 Hình 3.4 nh SEM c a m u xúc tác CS t ngu n sinh kh i 74 ng ngo Hình 3.6 Gi 75 XRD c a xúc tác CS t ngu n sinh kh i 76 Hình 3.7 nh SEM c a m u CS.Mc t Hình 3.8 Gi nhi t h p ph NH3 nhi sulfo hóa 81 Calorimetry c a xúc tác CS.Mc 83 Hình 3.9 Gi TPD-NH3 c a xúc tác carbon sulfo hóa t sinh kh i 85 ng chu ng ethyl lactate 87 Hình 3.11 Hi u su t t o thành ethyl lactate sau gi ph n ng 88 Hình 3.12 Hi u su t t o thành ethyl lactate sau gi ph n ng 89 Hình 3.13 Hi u su t t o thành ethyl lactate theo th i gian v ng xúc tác khác sau gi ph n ng 90 Hình 3.14 Hi u su t t o thành ethyl lactate sau chu k ph n ng 92 Hình 3.15 Hi u su t t o thành ethyl lactate c a xúc tác CS.Mc tái sinh sau chu k ph n ng 93 Hình 3.16 Ph h ng ngo i c u (CS.Mc) sau tái sinh (CS.Mc.TS) 94 Hình 3.17 nh SEM c Hình 3.18 Gi u (a) sau tái sinh (b) 94 XRD c a than ho t tính (AC); graphene oxide (GO); GO/AC 96 Hình 3.19 nh SEM- EDX c a GO (a), SEM c a AC (b), GO/AC (c) 97 Hình 3.20 Ph FT-IR c a AC (a), GO (b), GO/AC (c) 97 Hình 3.21 Hi u su t t o thành ethyl lactate theo th i gian than ho t tính (a), CS.Mc (b), graphene oxide (c), GO/AC (d) 99 Hình 3.22 Ho t tính c a xúc tác GO/AC sau chu k ph n ng 100 Hình 3.23 Ho t tính c a xúc tác CS.Mc sau chu k ph n ng 101 Hình 3.24 Mơ hình s este hóa gi a than ho t tính v i graphene oxide 102 Hình 3.25 Ph h ng ngo i c a xúc tác GO/AC GO/AC6 sau chu k ph n ng 102 M U Ethyl lactate m t nh ng dung môi sinh h c có kh thay th dung mơi truy n th ng có ngu n g c d u m d ng công nghi th c v ng n xu t ch t t y r a, pha ch thu c b o v c tính t cháy, r t t n s c kh h y sinh h c, s d ng ngu n nguyên li u tái t o ozone c bi ng x ng c t o thành t ph n ng cân b ng nhi ng gi a acid lactic ethanol Bên c nh bi n pháp nh m c i thi n hi u su t thu i b ng phí v i m c liên t c b ng cách c k t h p s d ng xúc tác acid gi i pháp hi u qu c n thi t nh ph n ng t o thành s n ph m ethyl lactate Xúc tác hi u qu cho q trình este hóa acid lactic thành ethyl lactate pha l ng thi t b ng c tách kh i h n h p sau ph n n ng l n ch t th zeolite, nh /ZrO2 ng th ng Do v y, xúc tác acid d th i ion Amberlyst 15, Nafion NR 50, H3PW12O40, SO42- c nghiên c u s d ng thay th dàng tách kh i h n h p sau ph n ch n l ph n ng ph , có kh m ch n l c th p, t o d ng m i s d ng th d n ch c tb.G n carbon sulfo hóa cho q trình t ng h p ethyl lactate t acid lactic ethanol Xúc tác v i b n ch t carbon thân thi ng, khơng b hịa tan h u h t ng acid, base hay dung môi h c m nh v i ch t h u a nhóm ch c phenolic ( OH), carboxylic ( COOH) nhóm ch c acid m nh sulfonic ( SO3 ch c ch t o t ngu n nguyên li u c bi t t sinh kh i ph ph ph m nông, lâm nghi c t n d ng hi u qu V acid r t này, xúc tác carbon sulfo hóa h a h n xúc tác hi u qu cho ph n ng este hóa Bên c t lo i v t li u carbon ch a nhóm ch c acid m nh sulfonic ( SO3H) u ch b i trình oxy hóa graphite b s nhà khoa h c b c s quan tâm c a n hình, cịn mang tính ch u trúc x p d ng màng m ch c ch a oxy, kh n t nhanh, phân tán t Do v y, v t li T nh u ki n phù h p, có nhóm c xem xúc tác acid r nh trên, m c y ti m t cho lu n án nghiên c u tìm t ng h p acid r carbon t sinh kh i graphene oxide làm xúc tác cho ph n ng este hóa acid lactic thành ethyl lactate, ng d u ch dung môi sinh h c gia công thu c b o v th c v t th c hi n m ra, lu n án d ki n s th c hi n n i dung sau: - Nghiên c u m t cách h th ng trình t ng h ch g tính carbon sulfo hóa t ngu n sinh kh i ph bi n - T ng h - graphene oxide t tính c a xúc tác t ng h c ph n ng este hóa acid lactic thành ethyl lactate - Nghiên c u kh d ng xúc tác - Nghiên c u ng d ng s n ph sinh h c gia công thu c b o v th c v t u ch dung môi NG QUAN 1.1 Q trình este hóa acid u ch ethyl lactate 1.1.1 Tính ch t ng d ng c a ethyl lactate Các este h nhi t quan tr ng có ng d ng c cơng nghi c ph m, ch t d o, dung môi ch t trung gian ph n ng [1] a acid h ch ng n tiêu bi u ethyl lactate có th thay th dung mơi truy n th ng có ngu n g cd um ng d ng [2] Ngày nay, v i vi s n xu t xanh s b i kh t tiêu chu n u este tr nên quan tr ng y sinh h c c s n xu t t ngu n nguyên li u tái t o Ethyl lactate s n ph m este hóa c a acid lactic ethanol ki u ng, ethyl lactate m t ch t l ng không màu ho c ph t ánh vàng, i th p c a nó, ethyl lacta c s d ng ch ph ng c ph m, ph gia th c ph c hoa Hình 1.1 minh h a công th c c u t o c a ethyl lactate Hình 1.1 Cơng th c c u t o c a ethyl lactate c tìm th y t nhiên v i s m t lo t lo i th c ph Ethyl lactate có th ng nh , u vang, th t gà, nhi u lo i trái c s n xu t t ngu n sinh h c, có th t n t i ng phân quang h c (L) ho c (D), tùy thu c ngu n g c sinh h c c a acid lactic H u h t, ethyl lactate sinh h c ethyl (-) - L-lactate (ethyl (S)c s n xu t cơng nghi p t q trình hóa d ng h n h p c ng phân (L) (D) C ng ph i c tìm th y t nhiên ethyl lactate có th d dàng phân h y sinh h c coi m t dung môi xanh (green solvent) Ethyl lactate m c bi t h p d xu i v i ngành s n m sôi cao, áp su b m t th p v i ng d p s n hình t o l p ph t t cho g , polyeste kim lo tt t cách hi u qu Các ng d ng khác c a ethyl lactate làm ch t làm s ch công nghi p polyuretan cho b m t kim lo lo i m t cách hi u qu m , d u, keo dán nhi n li u r n M kh i ta cịn nh n ethyl lactate có th lo t b ô nhi m [3] ng c s d ng ngành c làm ph gia hòa tan ho c phân tán công th c bào ch c a nhi u lo i thu i ho ch t H p ch t tác nhân hi u qu c lý c a ho t hòa tan h p ch t có ho t tính sinh h ng [4] 1.1.2 Dung môi sinh h c H u h t dung môi h r c, ng n g c hóa th ch d b t cháy n s c kh ng (phá h y t ng ozone, gây ô nhi c), v d ng ngu n nguyên li u s n xu vi c s n c n ki t [5] Trong nh ng th p k tr l an toàn s c kh e môi n s phát tri n c a dung mơi sinh h c, dung mơi có ngu n g c t nhiên Các lo i dung mơi sinh h c có ngu n g c t th c v t có kh ng th i kh c ph ch uh dung mơi có ngu n g c hóa th khơng hóa gây có kh mc a t cháy, n s c kh e, không tham gia vào trình ozone quang ng c bi t có kh o Nh y sinh h c c s d ng ph bi n este DANH MỤC CÁC CƠNG TRÌNH KHOA HỌC ĐÃ CƠNG BỐ Nguyễn Mạnh Hà, Bùi Ngọc Quỳnh, Nguyễn Minh Đăng, Hoàng Trọng Hà, Nguyễn Đăng Quang, Vũ Thị Thu Hà, Ứng dụng phương pháp chuẩn độ axit-bazơ định lượng tâm axit xúc tác cacbon sulfonat hóa, Tạp chí Xúc tác Hấp phụ số T5, N2, 2016, 146-151 Nguyễn Mạnh Hà, Nguyễn Minh Đăng, Hoàng Trọng Hà, Nguyễn Đăng Quang, Vũ Thị Thu Hà, Nghiên cứu tổng hợp xúc tác axit rắn sở carbon sulfo hóa từ sinh khối, ứng dụng phản ứng este hóa axit lactic tạo thành etyl lactat, Tạp chí Hóa học, 55(5E 1,2), 2017, 178-183 Nguyễn Mạnh Hà, Nguyễn Minh Đăng, Nguyễn Quang Minh, Nguyễn Đăng Quang, Vũ Thị Thu Hà, Tổng hợp, đặc trưng xúc tác axit rắn từ mùn cưa, ứng dụng phản ứng este hóa axit lactic, Tạp chí Xúc tác Hấp phụ số T7, N1, 2018, 86-92 Phạm Thị Nam Bình, Hồng Thân Hoài Thu, Cao Thị Thúy, Nguyễn Mạnh Hà, Vũ Thị Thu Hà, Đánh giá hiệu dung môi sinh học gia công thuốc bảo vệ thực vật chứa hoạt chất deltamethrin, Tạp chí Hóa học ứng dụng, Giấy chứng nhận đăng số 35/2018/GCN, ngày 20 tháng 06 năm 2018 Vũ Thị Thu Hà, Vũ Văn Hà, Nguyễn Mạnh Hà, Lâm Thị Tho, Nguyễn Văn Chúc, Nguyễn Minh Đăng Sáng chế, Phương pháp sản xuất chất xúc tác cacbon sulfonat hóa dạng rắn có độ bền cao từ bèo lục bình Số đơn 1-201701752 ngày 11/05/2017, Quyết định chấp nhận đơn hợp lệ số 38021QĐSHTT ngày 12/06/2017 Thu Ha Thi Vu, Manh Ha Nguyen, Minh Dang Nguyen, Synthesis of Acidic Heterogeneous Catalysts with High Stability Based on Graphene Oxide/Activated Carbon Composites for the Esterification of Lactic Acid, Journal of Chemistry, Vol 2019, Article ID 7815697, pages, https://doi.org/10.1155/2019/7815697 112 TÀI LI U THAM KH O [1] K Weissermel, H Arpe, Industrial Organic Chemistry, 3rd, Completely Revised Edition, VCH Publishers Inc, New York (1997) [2] G Philip, Jessop, Searching for green solvents, Green Chemistry 13 (2011) 1391- 1398 [3] J Muse, H.A Colvin, Use of ethyl lactate as an excipient for pharmaceutical compositions, US 2005-0287179 A1 (2005) [4] J.T.Mc Conville, T.C Carvalho, S.A Kucera , E Garza, Ethyl lactate as a pharmaceutical grade excipient and developement of a sensitive peroxide assay, Pharm Technol 33 (2009) 74-82 [5] Thu Hà, Dung môi sinh h c xúc tác t ng h p ti n trình ng d ng, Nhà xu t b n khoa h c T nhiên Công ngh (2015) [6] S Wildes, Methyl soyate: A new green alternative solvent, Chemical Health and Safety 9(3) (2002) 24-26 [7] Robert Denton, Environmentally safe insecticides, US 0253287 A1, (2004) [8] Henneberry, Mark, Snively, A Joshua, Vasek, J Gerald, Datta, Rathin, Biosolvent composition of lactate ester and D-limonene with improved cleaning and solvating properties, US 6797683, (2004) [9] A.S Roy, M Bhattacharjee, R Mondal, S Ghosh, Development of mineral oil free offset printing ink using vegetable oil esters, J Oleo Sci 56(12) (2007) [10] G Robert Goss, Michael J, Hopkinson, E and Herbert M Collins, Pesticide formulations and application systems, American Society for Testing and Materials STP 1183, 13 (Philadelphia 1993) [11] Abribat B, Lachut F, Anderson T, Pompeo M, Michail D, Microemulsions as adjuvants for agricultural chemicals, World Patent WO2004080177A2 (2004) 113 [12] D Rattanaphra, A Harvey, P Srinophakun, Simultaneous Conversion of Triglyceride/Free Fatty Acid Mixtures into Biodiesel Using Sulfated Zirconia, Topics in Catalysis 53 (2010) 773-782 [13] V Akhil, Nakhate, Ganapati D Yadav, Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Solvothermal Carbonization for Esterification and Unsymmetrical Ether Formation, ACS Sustainable Chem Eng (2016) 1963-1973 [14] R Montgomery, Acidic Constituents of Lactic Acid-Water Systems, J Am Chem Soc 74 (1952) 1466-1468 [15] D.T Vu, A.K Kolah, N.S Asthana, L Peereboom, C.T Lira, D.J Miller, Oligomer distribution in concentrated lactic acid solutions, Fluid Phase Equilib 236 (2005) 125-135 [16] N.S Asthana, A.K Kolah, D.T Vu, C.T Lira, D.J Miller, A kinetic model for the esterification of lactic acid and its oligomers, Ind Eng Chem Res 45 (2006) 5251-5257 [17] Kazuhiro Tanaka, Ryuuhei Yoshikawa, Cui Ying, Hidetoshi Kita, Kenichi Okamoto, Application of zeolite T membrane to vapor-permeationaided esterification of lactic acid with ethanol, Chemical Engineering Scienc 57 (2002) 1577-1584 [18] Martino-Gauchi et al, Continuous method for preparing ethyl lactate, US Patent No 7297809 B2 Nov.20 (2007) [19] the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa, Fluid Phase Equilib 255 (2007) 17-23 [20] C.S.M Pereira, S.P Pinho, V.M.T.M Silva, A.E Rodrigues, Thermodynamic equilibrium and reaction kinetics for the esterification of lactic acid with Ethanol Catalyzed by acid ion exchange resin, Ind Eng Chem Res 47 (2008) 1453-1463 114 [21] Van Chuc Nguyen, Ngoc Quynh Bui, Pascale Mascunan, Thi Thu Ha Vu, Pascal Fongarland, Nadine Essayem, Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts: Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide, Applied Catalysis A, General, doi.org/10.1016/j.apcata.2017.12.024 (2018) 184-191 [22] N Asthana, A Kolah, D.T Vu, C.T Lira, D.J Miller, A Continuous Reactive Separation Process for Ethyl Lactate Formation, Org Process Res Dev (2005) 599-607 [23] J Gao, X.M Zhao, L.Y Zhou, Z.H Huang, Investigation of Ethyl Lactate Reactive Distillation Process, Chem Eng Res Des 85 (2007) 525-529 [24] Thu Ha Thi Vu, Hang Thi Au, Thuy Ha Thi Nguyen, Thu Trang Thi Nguyen, Manh Hung Do, Ngoc Quynh Bui, Nadine Esayem, Esterification of Lactic Acid by Catalytic Extractive Reaction: An Efficient Way to Produce a Biosolvent Composition, Catal Lett DOI 10.1007/s10562-013-1077-4 (2013) 950-956 [25] F.F Bamoharram, M.M Heravi, P Ardalan, T Ardalan, A kinetic study of the esterification of lactic acid by ethanol in the presence of Preyssler acid an eco-friendly solid acid catalyst, React Kinet Mech and Catal 100 (2010) 71-78 [26] Nguy n Th Thúy Hà, Nghiên c u ch h p ph n c a dung môi sinh h c b ng trình xúc tác d th , Lu n án ti n Hóa h c Cơng nghi p Vi t Nam (2012) [27] R.A Troupe, E DiMilla, Kinetics of the Ethyl Alcohol Lactic Acid Reaction, Ind Eng Chem Res 49 (1957) 847-855 [28] D.J Benedict, S.J Parulekar, S.P Tsai, Esterification of Lactic Acid and Ethanol with/without Pervaporation, Ind Eng Chem Res 42 (2003) 2282-2291 115 [29] Yang Zhang, Li Ma, Jichu Yang, with ethanol catalyzed by cation-exchange resins, Reactive & Functional Polymers 61 (2004) 101-114 [30] Patricia Delgado, Maria Teresa Sanz, Sagrario Beltran, Kinetic study for hanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst, Chemical Engineering Journal 126 (2007) 111-118 [31] Martino-Gauchi G, R Teissier, Continues method for preparing ethyl lactate, U.S Patent No 7297809 A2 (2007) [32] S Tretjak , E Burtin, R Teissier, Continuous ethyl lactate preparation method, U.S Patent No 2006/0041165 A1 (2006) [33] Peter M Budd, Nágila M P S Ricardo, Jalal J Jafar, Ben Stephenson, R Hughes, Zeolite/Polyelectrolyte Multilayer Pervaporation Membranes for Enhanced Reaction Yield, Ind Eng Chem Res 43 (2004) 1863-1867 [34] Qiu Xiaoning, Synthesis of ethyl lactate over SO42-/SiO2-ZrO2 as catalyst, Gongye Cuihua 14 (2006) 41-43 [35] Chen Shufen, Gan Liming, Shi Wenquan, Suo Longning, Yang Xingkai, M Lihai, Catalytic synthesis of ethyl lactate by lanthanum solid superacid SO42- /TiO2/La2O3, Applied chemical industry 35(3) (2006) 173-175 [36] Zhou Li-ya, Huang Zhi-hong, Gao Jing, Catalytic synthesis of ethyl lactate with SO42-/TiO2-SnO2/La3+, Lanzhou Ligong Daxue Xuebao 31(3) (2005) 68-71 [37] Gao Jing, Zhao Xue-ming, Huang Zhi-hong, Study on synthesis of ethyl lactate utilizing SO42-/ZrO2-TiO2 as catalyst, Sichuan Daxue Xuebao, Gongcheng Kexueban 34(5) (2002) 36-38 [38] Liu Rong-fang, Xiao Xiu-feng, Wang Qin-ping, Zhu Ze-shan, Synthesis of ethyl lactate by esterification with solvent drying, Jingxi Huagong 17(12) (2002) 116 [39] Li Ru-Zhen, SuTao, Comparison of catalysts in lactic acid esterification, Guangxi Huagong 28(3) (1999) 35-37 [40] Nadine Esayem, Gibert Sapaly, Vu Thi Thu Ha, Nguyen Thi Thu Trang, Nguyen Thi Thuy Ha, Method for obtaining biosolvent composition by esterification and resulting biosolvent composition, World Patent WO 2011/107712 (2011) [41] Shimin Kang, Jun Ye, Jie Chang, Recent Advances in Carbon-Based Sulfonated Catalyst: Preparation and Application, International Review of Chemical Engineering (2) (2013) 133-144 [42] X Li, Y Jiang, L Shuai, L Wang, L Meng, X Mu, Sulfonated copolymers with -SO3H and COOH groups for the hydrolysis of polysaccharides, J Mater Chem 22 (2012) 1283-1289 [43] M Hara, T Yoshida, A Takagaki, T Takata, J.N Kondo, S Hayashi, K Domen, A carbon material as a strong protonic acid, Angew Chem Int Ed 43 (2004) 2955-2958 [44] Xiao-Yan Liu, Miao Huang, Hai-Long Ma, Zeng-Quiang Zhang, JinMing Gao, Yu-Lei Zhu, Xiao-Jin Han, Xiang-Yun Guo, Preparation of a Carbon-Based Solid Acid Catalyst by sulfonating Activeted Carbon in a Chemical Reduction Process, Molecules 15 (2010) 7188-7196 [45] X Wang, R Liu, M.M Waje, Z Chen, Y Yan, K.N Bozhilov, P Feng, Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst, Chem Mater 19 (2007) 2395-2397 [46] R Liu, X Wang, X Zhao, P Feng, Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel, Carbon 46 (2008) 16641669 [47] V.L Budarin, R Luque, D.J Macquarrie, J.H Clark, Towards a bio-based industry: benign catalytic esterification of succinic acid in the presence of water, Chem Eur J 13 (2007) 6914-6919 117 [48] V.L Budarin, J.H Clark, R Luque, D.J Macquarrie, A Koutinas, C Webb, Tunable mesoporous materials optimised for aqueous phase esterifications, Green Chem (2007) 992-995 [49] K Liu, C Li, X Zhang, W Hua, D Yang, J Hu, Y Yue, Z Gao, Poly (styrene sulfonic acid)-grafted carbon nanotube as a stable protonic acid catalyst, Catal Commun 12 (2010) 217-221 [50] Atsushi Takagaki, Masakazu Toda, Mai Okamura, Junko N Kondo, Shigenobu Hayashi, Kazunari Domen, Michikazu Hara, higher fatty acids by a novel strong solid acid, Catalysis Today 116 (2006) 157-161 [51] T Masakazu, A Takagaki, M Okamura, J.N Kondo, S Hayashi, K Domen, M Hara, Biodiesel made with sugar catalyst, Nature 438 (2005) 178 [52] M.H Zong, Z.Q Duan, W.Y Lou, T.J Smith, H Wu, Preparation of a sugar catalyst and its use for highly efficient production of biodiesel, Green Chem (2007) 434-437 [53] X Mo, D.E Lopez, K Suwannakarn, Y Liu, E Lotero, J.G Goodwin, C Lu, Activation and deactivation characterisitics of sulfonated carbon catalysts, J Catal 254 (2008) 332-338 [54] Haiping Yang, Rong Yan, Hanping Chen, Dong Ho Lee, Chuguang Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (2007) 1781-1788 [55] Tiantian Liu, Zhilong Li, C.S Wei Li, Yun Wang, Preparation and characterization of biomass carbon-based solid acid catalyst for the (2013) 618-621 [56] W.Y Lou, Q Guo, W.J Chen, M.H Zong, H Wu, T.J Smith, A highly active bagasse-derived solid acid catalyst with properties suitable for production of biodiesel, ChemSusChem (2012) 1533-1541 118 [57] Mei-Lin Tao, Hong-Yu Guan, Xiao-Hong Wang, Yi-Chun Liu, Rong-Fuh Louh, Fabrication of sulfonated carbon catalyst frombiomass waste and its 355-360 [58] Ya-Ting Yang, Xing-Xia Yang, Yi-Tong Wang, Jia Luo, Fan Zhang, Wen-Jing Yang, Jiang-Hua Chen, Alcohothermal carbonization of biomass to prepare novel solid catalysts for oleic acid esterification, Fuel 219 (2018) 166-175 [59] R.H Prager, Z Yurui, Preparation of carboxylate esters of polyhydric alcohols by using a sulfonated charcoal catalyst, Aust J Chem 42 (1989) 1003 1005 [60] H.K Patney, Sulfonated charcoal, a mild and efficient reagent for the preparation of cyclic acetals, dithioacetals and benzodioxepines, Tetrahedron Lett (1991) 413-416 [61] Ruyi Zhong, Bert F Sels, Sulfonated mesoporous carbon and silicacarbon nanocomposites for biomass conversion, Applied Catalysis B: Environmental 236 (2018) 518-545 [62] Akash Pratim Bora, Sumit H Dhawane, Kumar Anupam, Gopinath Halder, Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst, Renewable Energy doi: 10.1016/ j.renene.2018.01.036 (2108) 195-204 [63] Nguy n Thanh H ng, Phan Ng ch t Kim Hoa, Nghiên c u a v t li u cacbon Sulfonat hóa, T p chí Hóa h c 42 (4) (2004) 405 - 410 [64] W.Y Lou, M.H Zong, Z.Q Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydratederived solid acid catalysts, Bioresour Technol 99 (2008) 8752 - 8758 119 [65] Xunhua Mo, Edgar Lotero, Changqing Lu, Yijun Liu, James G Goodwin, A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis, Catal Lett 123 (2008) 1-6 [66] Duckhee Lee, Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst, Molecules 18 (2013) 8168-8180 [67] S Suganuma, K Nakajima, M Kitano, D Yamaguchi, H Kato, S Hayashi, M Hara, Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups, J Am Chem Soc 130 (2008) 1278712793 [68] S.V.D Vyver, L Peng, J Geboers, H Schepers, F.D Clippel, C.J Gommes, E.B Goderis, P.A Jacobs, B.F Sels, Sulfonated silica/carbon nanocomposites as novel catalyst for hydrolysis of cellulose to glucose, Green Chem 12 (2010) 1560-1563 [69] W Daengprasert, P Boonoun, N Laosiripojana, M Goto, A Shotipruk, Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural, Ind Eng Chem Res 50 (2011) 7903-7910 [70] B Kamm, M Kamm, P.R Gruber, S Kromus, Biorefinery Systems - An Overview, In Biorefineries - Industrial Processes and Products: Status Quo and Future Directions Vol 1, Eds Wiley-VCH: Weinheim (2006) [71] B Kamm, P.R Gruber, M Kamm, Lignin Chemistry and its Role in Biomass Conversion, In Biorefineries Industrial Processes and Products: Status Quo and Future Directions Vol 2, Eds Wiley-VCH: Weinheim (2006) 151-163 [72] H Zoebelin, Dictionary of Renewable Resources, Wiley VCH: Weinheim (2001) [73] Energy Efficiency and Renewable Energy (EERE), U.S Department of Energy Biomass Program: 120 Biomass Basic, http://www1.eere.energy.gov/biomass/biomass_basics.html (Accessed Date: 17 June 2007) [74] M Sasaki, T Adschiri, K Arai, Production of cellulose II from native cellulose by near- and supercritical water solubilization, J.Agric Food Chem 51 (2003) 5376-5381 [75] D Mohan, C.U Pittman, P.H Steele, Pyrolysis of Wood/Biomass for Bio-889 [76] R.H Venderbosch, W Prins, Fast pyrolysis technology development, www.interscience.wiley.com); DOI: 10.1002/bbb.205; Biofuels, Bioprod Bioref 4:178-208 (2010) [77] Q.M K Waheed, M.A Nahil, P.T Williams, Pyrolysis of waste biomass: investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition, Journal of the Energy Institute 86:4 (2013) 233-241 [78] A.V Bridgwate, Review of fast pyrolysis of biomass and product upgrading, Biomass and bioenergy 38 (2011) 68-94 [79] A.V Bridgwater, D Meier, D Radlein, An overview of fast pyrolysis of biomass, Organic Geochemistry 30 (1999) 1479-1493 [80] Thu Hà, Graphene xúc tác kim lo i ch t mang graphene, Nhà xu t b n Khoa h c K thu t (2016) [81] M S Shafeeyan, W M A W Daud, A Houshmand, A Shamiri, A Review on Surface Modification of Activated Carbon for Carbon Dioxide Adsorption, Journal of Analytical and Applied Pyrolysis, 89, (2010) 143151 [82] Daniel R Dreyer, Sungjin Park, Christopher W Bielawski, Rodney S Ruoff, The chemistry of graphene oxide, Chem Soc Rev 39 (2010) 228240 121 [83] M S Khan , A Shakoor, G T Khan, S Sultana, A Zia, A Study of Stable Graphene Oxide Dispersions in Various Solvents, J.Chem.Soc.Pak., (37) (2015) 62-67 [84] D Konios, M M Stylianakis, E Stratakis, E Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide, Journal of Colloid and Interface Science, 430 (2014) 108 112 [85] Xiaoqing Gao, Shanhui Zhu, Yongwang Li, Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification, Catalysis Communications 62 (2015) 48-51 [86] J Cheng, Y Qiu, R Huang, W Yang, J Zhou, K Cen, Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst, Bioresour Technol 221 (2016) 344-349 [87] Triveni Kumar Mahto, Rajat Jain, Soumen Chandra, Dhrubojyoti Roy, Vikas Mahto, Sumanta Kumar Sahu, Single step synthesis of sulfonic group bearing graphene oxide: A promising carbo-nano material for biodiesel production, Journal of Environmental Chemical Engineering (2016) 2933-2940 [88] S Zhu, C Chen, Y Xue, J Wu, J Wang, W Fan, Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification Reactions, ChemCatChem (2014) 3080-3083 [89] S Kumari, A Shekhar, H.P Mungse, O.P Khatri, D.D Pathak, Metal-free one-pot synthesis of amides using graphene oxide as an efficient catalyst, RSC Adv (2004) 41690-41695 [90] Ozra Mohammadi, Mohsen Golestanzadeh, Majid Abdouss, Recent Advances in Organic Reactions Catalyzed by Graphene Oxide and Sulfonated Graphene as Heterogeneous Nanocatalysts: A Review, New J Chem 41 (2017) 11471 11497 [91] W.S Hummers, R.E Offeman, Preparation of Graphitic Oxide, J Am Chem Soc 80 (1958) 1339 122 [92] D Khalili, Graphene oxide: a reusable and Metal-Free Carbocatalyst for the one-pot synthesis of 2-amino-3-cyanopyridines in water, Tetrahedron Lett 57 (2016) 1721-1723 [93] N Kausar, P Mukherjee, A.R Das, Practical carbocatalysis by graphene oxide nanosheets in aqueous medium towards the synthesis of diversified dibenzodiazepine scaffolds, RSC Adv (2016) 88904-88910 [94] M.R Acocella, C.E Corcione, A Giuri, M Maggio, A Maffezzoli, G Guerra, Graphene oxide as a catalyst for ring opening reactions in amine crosslinking of epoxy resins, RSC Adv (2016) 23858-23865 [95] A Dhakshinamoorthy, M Alvaro, P Concepcion, V Fornes, H Garcia, Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides, Chem Commun 48 (2012) 5443-5445 [96] Thu Hà c ng s , Nghiên c u công ngh s n xu t m t s dung môi công nghi p có ngu n g c th c v t ng d nh ng, t y d u m cho kim lo i x lý ch t th i công nghi p, Báo cáo t ng k tài B [97] M nh Hùng, Nguy n Th Thúy Hà, Nghiên c u s d ng xúc tác d th u ch ethyl lactate, T p chí Hóa h c T.47 (6A) (2009) 114-117 [98] Thu Hà, Nguy n Th Thu Trang, Nghiên c u công ngh s n xu t dung môi sinh h c t ngu n nguyên li u tái t o, Báo cáo t ng k t nhi m v h p tác qu c t theo Ngh Khoa h c công ngh v i c ng hòa Pháp 2008-2010 (2010) [99] H T Nga, Nguy n Khánh Di u H Th Ng , Nghiên c u t ng h p dung môi sinh h t y m c in bao bì polime, T p chí hóa h c ng d ng 21 (2009) 41-44 [100] H n Khánh Di u H Ng , Nghiên c u t ng h p ethyl lactat làm ti n ch t pha dung môi sinh h c, T p chí Hóa h c T.47 (2A) (2009) 198-201 123 [101] B ch Th Tâm, Nghiên c u t ng h th dùng cho ph n ng este hóa axit 2-keto-L-gulonic trình t ng h p vitamin C, Lu n án ti n Hóa h c Cơng nghi p Vi t Nam (2015) [102] Nguy c An, Nguy n Thanh H i, Ph m Hoàng H i, H Ng , Ch t ng d o cho ph n ng chuy n hóa d u h t cao su thành biodiesel, T p chí xúc tác h p ph (2) (2015) 17-24 [103] Nguyen Khanh Dieu Hong, Vu Dinh Duy, Dinh Thi Ngo, Study on the preparation and characterization of carbon based catalyst derived from partial carbonization of cellulose, T p chí Hóa h c 53 (2e1) (2015) 62-68 [104] Thi Thu Ha Vu, Thanh Thuy Thi Tran, Hong Ngan Thi Le, Lien Thi Tran, Phuong Hoa Thi Nguyen, Minh Dang Nguyen, Ngoc Quynh Bui, Synthesis of Pt/rGO with two different reducing agents and their methanol electrooxidation activity, Materials Research Bulletin 73 (2016) 197-203 [105] Thu Hà c ng s , Nghiên c u phát tri n ch s nano kim lo i quý mang graphene ng d ng pin nhiên li u, Báo cáo tông k t k t qu nhi m v c Khoa h c Công ngh theo Ngh c, H p tác qu c t v i C ng hịa Pháp, C c thơng tin khoa h c Công ngh qu c gia, s h (2015) [106] Nguy Thu Hà, Lê Th H ng Ngân, Nguy n Th m Thy San, ng d ng xúc tác lai Pt-AlOOH- SiO2/graphene ch t o mơ hình pin nhiên li u DMFC, T p chí Hóa h c ng d ng (2016) 70-73 [107] Nguy ng Vy, Hu nh L p Trung, Mai Thanh Tâm, Hà Thúc Huy, T ng h p graphene t graphite oxide giãn n nhi t hydrazine t 124 ng d ng ch t o nanocomposite PMMA/graphene, Science & Technology Development 19, (2016) 214-226 [108] Nguy n Th Thu Hi ng, Hoàng Mai Chi, T Quang Minh, Nguy n Tr u t ng h p v t li u nano graphene oxide t ngu n nguyên li u graphite Vi t Nam làm ph gia gi m th c cho dung d ch khoan nhi cao, D u khí (2015) 41- 50 [109] Nguy n H u Hi ng Th Minh Ki u, Phan Th Hoài Di m, T ng h p Fe3O4 x c th i nhi m kim lo i n ng, Science & Technology Development 18 (6) (2015) 212-220 [110] B Hunger, J Hoffmann Kinetic analysis of NH3 temperature programmed desorption (TPD) On a HZSM-5 zeolite, Thermochimica Acta 106 (1986) 133-140 [111] Michael J McAllister, Je-Luen Li, Douglas H Adamson, Hannes C Schniepp, Ahmed A Abdala, Jun Liu, Margarita Herrera-Alonso, David L Milius, Roberto Car, Robert K Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem Mater 19 (2007) 4396-4404 [112] Otto W Flörke, et al, Silica, Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH doi:10.1002/14356007.a23_583.pub3 (2008) [113] Feng Li, Kaixuan Shen, Xiaolin Long, Jiasheng Wen, Xiaojie Xie, Xiangyun Zeng, Yanyan Liang, Yansha Wei, Zefeng Lin, Wenrou Huang, Ruida Zhong, Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions, PLOSONE|DOI: 10.1371/journal.pone.0148132 (2016) 1-13 [114] Stephanie Reich, Christian Thomsen, Raman spectroscopy of graphite, The Royal Society A 362 (2004) 2271-2288 125 [115] Joe Hodkiewicz, Characterizing Carbon Materials with Raman [116] Frederik Ronsse, Sven Van Hecke, Dane Dickinson, Wolter Prinsp, feed stock type and pyrolysis conditions, GCB Bioenergy (2013) 104115 [117] Win Mar, E Somsook, Sulfonic-Functionalized Carbon Catalyst for Esterification of High Free Fatty Acid, Procedia Engineering 32 (2012) 212-218 [118] L Ai , J Jiang, Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene carbon nanotube hybrid, Chemical Engineering Journal, 192 (2012), 156 163 126 ... nghiên c u s d ng xúc tác acid r n cho ph n ng este hóa acid lactic B ng 1.2 Xúc tác acid r n cho ph n ng este hóa acid lactic thành ethyl lactate Tài li u [33] Xúc tác Ch t ph n ng Acid p-toluene... t tính y có cơng trình nghiên c u s d ng carbon sulfo hóa graphene oxide cho ph n ng este hóa acid lactic t o thành ethyl lactate 1.2 Xúc tác acid r n carbon sulfo hóa 1.2.1 Gi i thi u Xúc tác. .. dung d ch acid lactic, t l mol ethanol /acid lactic 4:1, nhi ph n ng 82oC xúc tác Amberlyst 15, carbon sulfo hóa t g graphene oxide K t qu cho th y, v u 50% dung d ch acid lactic trình este hóa khơng