Luận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tụcLuận văn thạc sĩ: Phương pháp phần tử hữu hạn đối với bài toán dầm liên tục
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC DÂN LẬP HẢI PHÒNG - PHẠM VĂN NAM PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN ĐỐI VỚI BÀI TOÁN DẦM LIÊN TỤC Chuyên ngành: Kỹ thuật Xây dựng Cơng trình Dân dụng & Cơng nghiệp Mã số: 60.58.02.08 LUẬN VĂN THẠC SỸ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC TS PHẠM THỊ LOAN Hải Phòng, 2017 i LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng Các số liệu, kết luận văn trung thực chưa cơng bố cơng trình khác Tác giả luận văn Phạm Văn Nam ii LỜI CẢM ƠN Tác giả luận văn xin trân trọng bày tỏ lòng biết ơn sâu sắc TS Phạm Thị Loan tận tình hướng dẫn cho nhiều dẫn khoa học có giá trị thường xuyên động viên, tạo điều kiện thuận lợi, giúp đỡ tác giả suốt trình học tập, nghiên cứu hoàn thành luận văn Tác giả xin chân thành cảm ơn nhà khoa học, chuyên gia ngồi trường Đại học Dân lập Hải phịng tạo điều kiện giúp đỡ, quan tâm góp ý cho luận văn hoàn thiện Tác giả xin trân trọng cảm ơn cán bộ, giáo viên Khoa xây dựng, Phòng đào tạo Đại học Sau đại học- trường Đại học Dân lập Hải phòng, đồng nghiệp tạo điều kiện thuận lợi, giúp đỡ tác giả q trình nghiên cứu hồn thành luận văn Tác giả luận văn Phạm Văn Nam iii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN iii MỤC LỤC iv MỞ ĐẦU CHƯƠNG 1.BÀI TOÁN CƠ HỌC KẾT CẤU VÀ CÁC PHƯƠNG PHÁP GIẢI 1.1 Bài toán học kết cấu 1.2 Các phương pháp giải 1.2.1 Phương pháp lực 1.2.2 Phương pháp chuyển vị 1.2.3 Phương pháp hỗn hợp phương pháp liên hợp 1.2.4 Phương pháp sai phân hữu hạn 1.2.5 Phương pháp hỗn hợp sai phân – biến phân CHƯƠNG 2PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN 2.1 Phương pháp phần tử hữu hạn 2.1.1 Nội dung phương pháp phần tử hữa hạn theo mô hình chuyển vị 2.1.1.1 Rời rạc hố miền khảo sát 2.1.1.2 Chọn hàm xấp xỉ 2.1.1.3 Xây dựng phương trình cân phần tử, thiết lập ma trận độ cứng K e vectơ tải trọng nút Fe phần tử thứ e 2.1.1.4 Ghép nối phần tử xây dựng phương trình cân tồn hệ 12 2.1.1.5: Sử lý điều kiện biên toán 22 2.1.1.6 Giải hệ phương trình cân 28 2.1.1.7 Xác định nội lực 28 2.1.2 Cách xây dựng ma trận độ cứng phần tử chịu uốn 28 iv 2.1.3 Cách xây dựng ma trận độ cứng tổng thể kết cấu 31 CHƯƠNG 3.PHƯƠNG PHÁP PHẦN TỬ HỮU HẠNĐỐI VỚI DẦM CHỊU UỐN 36 3.1 Lý thuyết dầm Euler – Bernoulli [ ] 36 3.1.1 Dầm chịu uốn túy phẳng 36 3.1.2 Dầm chịu uốn ngang phẳng 39 3.2 Giải toán dầm liên tục phương pháp phần tử hữu hạn 46 3.2.1 Tính tốn dầm liên tục 46 KẾT LUẬN VÀ KIẾN NGHỊ 71 v MỞ ĐẦU Bài tốn học kết cấu nói chung xây dựng theo bốn đường lối là: Xây dựng phương trình vi phân cân phân tố; Phương pháp lượng; Phương pháp nguyên lý công ảo Phương pháp sử dụng trực tiếp Phương trình Lagrange Các phương pháp giải gồm có: Phương pháp coi xác như, phương pháp lực, phương pháp chuyển vị, phương pháp hỗn hợp, phương pháp liên hợp phương pháp gần như: Phương pháp phần tử hữu hạn, phương pháp sai phân hữu hạn, phương pháp hỗn hợp sai phân - biến phân Phương pháp phần tử hữu hạn phương pháp xây dựng dựa ý tưởng rời rạc hóa cơng trình thành phần tử nhỏ (số phần tử hữu hạn) Các phần tử nhỏ nối lại với thông qua phương trình cân phương trình liên tục Để giải tốn học kết cấu, tiếp cận phương pháp theoba mơ hình gồm:Mơ hình chuyển vị, xem chuyển vị đại lượng cần tìm hàm nội suy biểu diễn gần dạng phân bố chuyển vị phần tử; Mơ hình cân bằng,hàm nội suy biểu diễn gần dạng phân bố ứng suất hay nội lực phần tử mơ hình hỗn hợp, coi đại lượng chuyển vị ứng suất hai yếu tố độc lập riêng biệt Các hàm nội suy biểu diễn gần dạng phân bố chuyển vị lẫn ứng suất phần tử Đối tượng, phương pháp phạm vi nghiên cứu đề tài Trong luận văn này, tác giả sử dụng phương phần tử hữu hạntheo mơ hình chuyển vị để xây dựng giải toán dầm liên tục chịu tác dụng tải trọng tĩnh tập trung Mục đích nghiên cứu đề tài “Xác định nội lực chuyển vị dầm liên tục chịu tải trọng tĩnh tập trung phương pháp phần tử hữu hạn” Nhiệm vụ nghiên cứu đề tài Tìm hiểu giới thiệu phương pháp giải tốn học kết cấu Trình bày lý thuyết dầm Euler - Bernoulli Trình bày phương pháp phần tử hữu hạn áp dụng để giải toán dầmliên tục, chịu tác dụng tải trọng tĩnh tập trung Lập chương trình máy tính điện tử cho toán nêu CHƯƠNG BÀI TOÁN CƠ HỌC KẾT CẤU VÀ CÁC PHƯƠNG PHÁP GIẢI Trong chương giới thiệu toán học kết cấu (bài toán tĩnh) phương pháp giải thường dùng 1.1 Bài toán học kết cấu Bài toán học kết cấu nhằm xác định nội lực chuyển vị hệ thanh, tấm, vỏ tác dụng loại tải trọng, nhiệt độ, chuyển vị cưỡng bức,…và chia làm hai loại: - Bài tốn tĩnh định: tốn có cấu tạo hình học bất biến hình đủ liên kết tựa với đất, liên kết xếp hợp lý, chịu loại tải trọng Để xác định nội lực chuyển vị cần dùng phương trình cân tĩnh học đủ; - Bài toán siêu tĩnh: tốn có cấu tạo hình học bất biến hình thừa liên kết (nội ngoại) chịu loại tải trọng, nhiệt độ, chuyển vị cưỡng bức,…Để xác định nội lực chuyển vị ngồi phương trình cân ta cịn phải bổ sung phương trình biến dạng Nếu tính đến tận ứng suất, nói tốn học vật rắn biến dạng nói chung tốn học kết cấu nói riêng tốn siêu tĩnh 1.2 Các phương pháp giải Đã có nhiều phương pháp để giải toán siêu tĩnh Hai phương pháp truyền thống phương pháp lực phương pháp chuyển vị Khi sử dụng chúng thường phải giải hệ phương trình đại số tuyến tính Số lượng phương trình tùy thuộc vào phương pháp phân tích Từ phương pháp chuyển vị ta có hai cách tính gần hay sử dụng H Cross G Kani Từ xuất máy tính điện tử, người ta bổ sung thêm phương pháp số khác như: Phương pháp phần tử hữu hạn; Phương pháp sai phân hữu hạn… 1.2.1 Phương pháp lực Trong hệ siêu tĩnh ta thay liên kết thừa lực chưa biết, giá trị chuyển vị hệ tương ứng với vị trí phương lực ẩn số thân lực ngun nhân bên ngồi gây khơng Từ điều kiện ta lập hệ phương trình đại số tuyến tính, giải hệ ta tìm ẩn số từ suy đại lượng cần tìm 1.2.2 Phương pháp chuyển vị Khác với phương pháp lực, phương pháp chuyển vị lấy chuyển vị nút làm ẩn Những chuyển vị phải có giá trị cho phản lực liên kết đặt thêm vào hệ thân chúng nguyên nhân bên gây khơng Lập hệ phương trình đại số tuyến tính thỏa mãn điều kiện giải hệ ta tìm ẩn, từ xác định đại lượng lại Hệ phương pháp chuyển vị giới hạn giải toán phụ thuộc vào số phần tử mẫu có sẵn 1.2.3 Phương pháp hỗn hợp phương pháp liên hợp Phương pháp hỗn hợp, phương pháp liên hợp kết hợp song song phương pháp lực phương pháp chuyển vị Trong phương pháp ta chọn hệ theo phương pháp lực không loại bỏ hết liên kết thừa mà loại bỏ liên kết thuộc phận thích hợp với phương pháp lực; chọn hệ theo phương pháp chuyển vị không đặt đầy đủ liên kết phụ nhằm ngăn cản toàn chuyển vị nút mà đặt liên kết phụ nút thuộc phận thích hợp với phương pháp chuyển vị Trường hợp đầu hệ siêu tĩnh, trường hợp sau hệ siêu động Trong hai cách nói trên, tốn ban đầu đưa hai toán độc lập: Một theo phương pháp lực theo phương pháp chuyển vị 1.2.4 Phương pháp sai phân hữu hạn Phương pháp sai phân hữu hạn thay hệ liên tục mơ hình rời rạc, song hàm cần tìm (hàm mang đến cho phiếm hàm giá trị dừng),nhận giá trị gần số hữu hạn điểm miền tích phân, cịn giá trị điểm trung gian xác định nhờ phương pháp tích phân Phương pháp cho lời giải số phương trình vi phân chuyển vị nội lực điểm nút Thông thường ta phải thay đạo hàm sai phân hàm nút.Phương trình vi phân chuyển vị nội lực viết dạng sai phân nút, biểu thị quan hệ chuyển vị nút nút lân cận tác dụng ngoại lực 1.2.5 Phương pháp hỗn hợp sai phân – biến phân Kết hợp phương pháp sai phân với phương pháp biến phân ta có phương pháp linh động hơn: Hoặc sai phân đạo hàm phương trình biến phân sai phân theo phương biến phân theo phương khác (đối với toán hai chiều) ... Các phương pháp giải gồm có: Phương pháp coi xác như, phương pháp lực, phương pháp chuyển vị, phương pháp hỗn hợp, phương pháp liên hợp phương pháp gần như: Phương pháp phần tử hữu hạn, phương pháp. .. suất phần tử Hiện nay, áp dụng phương pháp phần tử hữu hạn để giải toán học thường sử dụng phương pháp phần tử hữu hạn theo mô hình chuyển vị Sau luận văn trình nội dung phương pháp phần tử hữu hạn. .. phương pháp phần tử hữu hạn chương 2.1 Phương pháp phần tử hữu hạn Phương pháp phần tử hữu hạn phương pháp số đặc biệt có hiệu để tìm dạng gần hàm chưa biết miền xác định V Tuy nhiên phương pháp