CHƯƠNG 4: BIẾN ĐỔI LAPLACE VÀ CÁC ỨNG DỤNG TRONG PHÂN TÍCH HỆ THỐNG THỜI GIAN LIÊN TỤC
CHƯƠNG 4: BIẾN ĐỔI LAPLACE VÀ CÁC ỨNG DỤNG TRONG PHÂN TÍCH HỆ THỐNG THỜI GIAN LIÊN TỤC GV: ThS Đinh Thị Thái Mai CuuDuongThanCong.com https://fb.com/tailieudientucntt • Biến đổi Laplace tín hiệu • Hàm truyền hệ thống LTI thời gian liên tục • Biến đổi Laplace phía • Phân tích hệ thống CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Biến đổi Laplace • Biến đổi Laplace tín hiệu liên tục 𝑥𝑥(𝑡𝑡) định nghĩa sau: +∞ 𝑋𝑋 𝑠𝑠 = � 𝑥𝑥(𝑡𝑡)𝑒𝑒 −𝑠𝑠𝑠𝑠 𝑑𝑑𝑡𝑡 −∞ đó, s biến phức: 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗 • Biến đổi Laplace ngược: 𝑥𝑥 𝑡𝑡 = CuuDuongThanCong.com 𝜎𝜎+𝑗𝑗∞ 𝑠𝑠𝑠𝑠 𝑋𝑋(𝑠𝑠)𝑒𝑒 𝑑𝑑𝑠𝑠 ∫ 𝑗𝑗𝑗𝑗𝑗 𝜎𝜎−𝑗𝑗∞ https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Vùng hội tụ biến đổi Laplace • Vùng hội tụ biến đổi Laplace vùng không gian s cho với giá trị s vùng này, biến đổi Laplace ln ln hội tụ: Ví dụ: ROC biến đổi Laplace tín hiệu u(t) mặt phẳng bên phải mặt phẳng s ROC biến đổi Laplace tín hiệu 𝑥𝑥 𝑡𝑡 = −𝑢𝑢(−𝑡𝑡) mặt phẳng bên trái mặt phẳng s • Hai tín hiệu khác có biểu diễn Laplace vùng hội tụ phải khác CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Vùng hội tụ biến đổi Laplace • ROC biến đổi Laplace phụ thuộc vào phần thực s • ROC biến đổi Laplace khơng bao gồm điểm cực • Nếu tín hiệu có chiều dài hữu hạn tồn giá trị s cho biến đổi Laplace tín hiệu hội tụ, ROC biến đổi Laplace toàn mặt phẳng s CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Vùng hội tụ biến đổi Laplace • Nếu tín hiệu phía phải có ROC biến đổi Laplace chứa đường thẳng 𝜎𝜎 = 𝜎𝜎0 , ROC chứa tồn phía phải 𝜎𝜎0 mặt phẳng s • Nếu tín hiệu phía trái có ROC biến đổi Laplace chứa đường thẳng 𝜎𝜎 = 𝜎𝜎0 , ROC chứa tồn phía trái 𝜎𝜎0 mặt phẳng s CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Các tính chất biến đổi Laplace • Tính tuyến tính: ℒ 𝛼𝛼𝑥𝑥1 𝑡𝑡 + 𝛽𝛽𝑥𝑥𝑗 (𝑡𝑡) = 𝛼𝛼ℒ 𝑥𝑥1 (𝑡𝑡) + 𝛽𝛽ℒ 𝑥𝑥𝑗 (𝑡𝑡) với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋1 𝑠𝑠 ∩ 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋𝑗 𝑠𝑠 • Tính dịch thời gian: ℒ 𝑥𝑥(𝑡𝑡 − 𝑡𝑡0 ) = 𝑒𝑒 −𝑠𝑠𝑠𝑠0 𝑋𝑋(𝑠𝑠) với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋 𝑠𝑠 • Dịch mặt phẳng s: ℒ 𝑒𝑒 𝑠𝑠0 𝑠𝑠 𝑥𝑥(𝑡𝑡) = 𝑋𝑋(𝑠𝑠 − 𝑠𝑠0 ) với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋 𝑠𝑠 dịch khoảng 𝑠𝑠0 CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Các tính chất biến đổi Laplace • Thay đổi thang thời gian: ℒ 𝑥𝑥(𝛼𝛼𝑡𝑡) = với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋 𝑠𝑠 • Vi phân: ℒ với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋 𝑠𝑠 CuuDuongThanCong.com 𝛼𝛼 𝑠𝑠 𝑋𝑋( ) 𝛼𝛼 thay đổi với hệ số 𝛼𝛼 𝑑𝑑𝑑𝑑(𝑠𝑠) 𝑑𝑑𝑠𝑠 = 𝑠𝑠𝑋𝑋(𝑠𝑠) https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Các tính chất biến đổi Laplace • Tích phân: 𝑠𝑠 ℒ[∫−∞ 𝑥𝑥(𝜏𝜏) 𝑑𝑑𝜏𝜏]= 𝑋𝑋(𝑠𝑠) 𝑠𝑠 với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋 𝑠𝑠 ∩ 𝜎𝜎 > • Tích chập: ℒ 𝑥𝑥1 𝑡𝑡 ∗ 𝑥𝑥𝑗 𝑡𝑡 = 𝑋𝑋1 (𝑠𝑠)𝑋𝑋𝑗 (𝑠𝑠) với 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋1 𝑠𝑠 ∩ 𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋𝑗 𝑠𝑠 CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 Biến đổi Laplace tín hiệu Các tính chất biến đổi Laplace • Định lý giá trị đầu: Nếu 𝑥𝑥 𝑡𝑡 tín hiệu nhân liên tục 𝑡𝑡 = 0, 𝑥𝑥 = lim 𝑠𝑠𝑋𝑋(𝑠𝑠) 𝑠𝑠→∞ • Định lý giá trị cuối: Nếu 𝑥𝑥 𝑡𝑡 tín hiệu nhân liên tục 𝑡𝑡 = 0, lim 𝑥𝑥 𝑡𝑡 = lim 𝑠𝑠𝑋𝑋(𝑠𝑠) 𝑠𝑠→∞ CuuDuongThanCong.com 𝑠𝑠→0 https://fb.com/tailieudientucntt 4.2 Hàm truyền hệ thống LTI liên tục Định nghĩa hàm truyền • Đáp ứng xung hệ thống xác định cách thực biến đổi Fourier ngược hàm truyền hệ thống: ℎ 𝑡𝑡 = ℒ −1 𝐻𝐻(𝑠𝑠) = ℒ −1 CuuDuongThanCong.com 𝑌𝑌(𝑠𝑠) 𝑋𝑋(𝑠𝑠) https://fb.com/tailieudientucntt 4.2 Hàm truyền hệ thống LTI liên tục Định nghĩa hàm truyền • Một hệ thống LTI thường biểu diễn tổng quát phương trình vi phân tuyến tính hệ số có dạng sau: 𝑁𝑁 𝑀𝑀 𝑑𝑑 𝑦𝑦(𝑡𝑡) 𝑑𝑑 𝑗𝑗 𝑥𝑥(𝑡𝑡) � 𝑎𝑎𝑖𝑖 = � 𝑏𝑏𝑗𝑗 𝑖𝑖 𝑑𝑑𝑡𝑡 𝑑𝑑𝑡𝑡 𝑗𝑗 𝑖𝑖=0 𝑖𝑖 𝑗𝑗=0 • Thực biến đổi Laplace hai phía phương trình trên, ta có: 𝑀𝑀 𝑖𝑖 𝑗𝑗 ∑𝑁𝑁 ∑ 𝑎𝑎 𝑠𝑠 𝑌𝑌 𝑠𝑠 = 𝑏𝑏 𝑠𝑠 𝑖𝑖=0 𝑖𝑖 𝑗𝑗=0 𝑗𝑗 𝑋𝑋(𝑠𝑠) CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.2 Hàm truyền hệ thống LTI liên tục Định nghĩa hàm truyền • Hàm truyền hệ thống tính sau: 𝑗𝑗 𝑌𝑌(𝑠𝑠) ∑𝑀𝑀 𝑗𝑗=0 𝑏𝑏𝑗𝑗 𝑠𝑠 𝐻𝐻 𝑠𝑠 = = 𝑁𝑁 𝑋𝑋(𝑠𝑠) ∑𝑖𝑖=0 𝑎𝑎𝑖𝑖 𝑠𝑠 𝑖𝑖 • Hàm truyền xác định hệ thống, dựa nghiệm phương trình vi phân sử dụng biến đổi Laplace biến đổi Laplace ngược: 𝑦𝑦 𝑡𝑡 = ℒ −1 𝐻𝐻 𝑠𝑠 𝑋𝑋(𝑠𝑠) CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.2 Hàm truyền hệ thống LTI liên tục Hàm truyền hệ thống kết nối • Kết nối liên tục: 𝐻𝐻 𝑠𝑠 = 𝐻𝐻1 (𝑠𝑠)𝐻𝐻𝑗 (𝑠𝑠) CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.2 Hàm truyền hệ thống LTI liên tục Hàm truyền hệ thống kết nối • Kết nối song song: CuuDuongThanCong.com 𝐻𝐻 𝑠𝑠 = 𝐻𝐻1 𝑠𝑠 + 𝐻𝐻𝑗 (𝑠𝑠) https://fb.com/tailieudientucntt