1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng hợp đề thi thử ĐH môn Toán các khối Đề 29 pot

5 107 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 361,65 KB

Nội dung

SỞ GD&ĐT THANH HOÁ TRƯỜNG THPT MAI ANH TUẤN ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012-2013 Môn thi: TOÁN, khối A Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số 1 x m y x    ( m là tham số) a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với 2 m   . b) Tìm tất cả các giá trị của m để đường thẳng 2 1 y x   cắt đồ thị hàm số tại hai điểm phân biệt , A B sao cho 2 2 14 OA OB   ( với O là gốc tọa độ). Câu 2(1,0 điểm) Giải phương trình: (2cos 1)sin4 2sin 2 cos sin x x x x x    Câu 3 (1,0 điểm) Giải hệ phương trình:   2 2 0 , 2 2 x xy x x y x y y y x x              Câu 4 (1,0 điểm) Tính tích phân : 4 0 cos2 (1 sin 2 ).cos( ) 4 x I dx x x       . Câu 5 (1,0 điểm) Cho hình chóp . S ABCD có đáy ABCD là hình thang,   0 90 BAD ADC  , 3 AB a  , 2 AD CD SA a    , ( ) SA ABCD  . Gọi G là trọng tâm SAB  , mặt phẳng ( ) GCD cắt , SA SB lần lượt tại , M N . Tính theo a thể tích khối chóp . S CDMN và khoảng cách giữa hai đường thẳng , DM BC . Câu 6 (1,0 điểm) Cho ba số thực , , a b c không âm thay đổi thoả mãn 3 2 a b c    . Chứng minh rằng:     2 2 2 125 1 1 1 64 a b c     II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu 7.a (1,0 điểm) Trong hệ tọa độ Oxy cho hình bình hành ABCD tâm I , có diện tích bằng 4, phương trình đường thẳng : 0 BC x y   , biết (2;1) M là trung điểm của AB . Tìm tọa độ điểm I . Câu 8.a (1,0 điểm) Trong hệ toạ độ Oxy , cho đường tròn     2 2 ( ): 1 1 4 C x y     . Lập phương trình đường thẳng d cách gốc tọa độ một khoảng bằng 2 và tiếp xúc với đường tròn ( ) C . Câu 9.a (1,0 điểm) Cho 0 x  và 1 2 3 2 1 2 2 1 36 2 1 2 1 2 1 2 1 2 1 2 1 2 n n n n n n n n n n n n C C C C C C                   . Tìm số hạng không phụ thuộc x trong khai triển nhị thức Niu-tơn của 5 1 n x x          . B. Theo chương trình nâng cao Câu 7.b (1,0 điểm) Trong hệ toạ độ Oxy cho tam giác ABC có điểm (2; 1) G  là trọng tâm, đường thẳng :3 4 0 d x y    là đường trung trực của cạnh BC, đường thẳng AB có phương trình 10 3 1 0 x y    . Tìm tọa độ các điểm , , . A B C Câu 8.b (1,0 điểm) Trong hệ toạ độ Oxy cho elíp 2 2 ( ) : 1 16 9 x y E   và đường thẳng : 3 4 12 0 d x y    . Gọi các giao điểm của đường thẳng d và elip ( ) E là , A B . Tìm trên ( ) E điểm C sao cho tam giác ABC có diện tích bằng 6. Câu 9.b (1,0 điểm) Giải hệ phương trình: 2 1 3 2 2 4 2 2 2 6.4 log ( 1) log (2 1) log 2 x x y y x y y               Hết Cảm ơ n  bạ n  (  hot b o y t h 75 @gm ail.c o m )  đ ã gửi t ới www . l ais ac. page. t l SỞ GD&ĐT THANH HOÁ TRƯỜNG THPT MAI ANH TUẤN ĐÁP ÁN - THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM 2012-2013 Môn thi: TOÁN, khối A ( Đáp án - thang điểm gồm 03 trang) ĐÁP ÁN – THANG ĐIỂM Câu Đáp án Điểm Với 1 m  ta có 2 1 x y x     Tập xác định: \{1} D R   Sự biến thiên: - Chiều biến thiên: 2 1 ' 0 1 ( 1) y x x      0.25 Hàm số đồng biến trên mỗi khoảng ( ;1)  và (1; )  - Giới hạn và tiệm cận: lim x  -∞ y = 1, lim x  +∞ y = 1 ; tiệm cận ngang là y = 1 1 lim x   y = + ∞ ; 1 lim x   y = -∞; tiệm cận đứng là x = 1 0.25 - Bảng biến thiên: x - ∞ 1 +∞ y’ + + y +∞ 1 1 -∞ 0.25 1a (1 điểm)  Đồ thị: 6 4 2 -2 5 Đồ thị nhận giao hai tiệm cận I(1;1) làm tâm đối xứng 0.25 Phương trình hoành độ giao điểm: 2 1 2 1 1 2 4 1 0(*) x x m x x x x m                0.25 đường thẳng 2 1 y x   cắt đồ thị hàm số tại hai điểm phân biệt (*)  có hai nghiệm phân biệt khác 1 1 m    0.25 Gọi 1 1 2 2 ( ;2 1); ( ;2 1) A x x B x x   ; 2 2 2 1 2 1 2 1 2 14 5( ) 10 4( ) 12 OA OB x x x x x x         0.25 1b (1 điểm) Vì 1 2 1 2 2; 1 x x x x m     nên 1 m  (thỏa mãn). 0.25 Điều kiện: ( ) 4 x m m Z      . Phương trình đã cho tương đương với:     sin 2 cos sin 2cos 1 sin 2 x x x x x    0.25    sin 2 0(*) cos sin 2cos 1 1(**) x x x x         . Ta có (*) ( ) 2 k x k Z     0.25 2 (1 điểm) (**) sin 2 sin ( ) 2 4 4 6 3 x k x x k Z k x                                0.25 So sánh điều kiện ta được 2 ; ( ) 2 6 3 k k x x k Z        0.25 Điều kiện: 0, 0. x y   Ta có 2 2 0 0; 2 1 x xy x x x y         Với 0 x  thay vào phương trình thứ hai ta được 0 y  . 0.25 Với 2 1 x y    ta có ta có     2 1 2 2 2 2 2 x y x y x y y y x x x y y y x x                  0.25     2 5 0 x y x xy y x y        0.25 3 (1 điểm) Với x y  suy ra 1 x y   .Vậy hệ có hai nghiệm 0; 1 x y x y     0.25 Ta có 4 4 2 2 0 0 (cos sin )(cos sin ) (cos sin ) 2 1 (sin cos ) (sin cos ) . (cos sin ) 2 x x x x x x I dx dx x x x x x x             0.25 Đặt sin cos (cos sin ) t x x dt x x dx      ; 0 1; 2 4 x t x t        0.25 2 2 1 2 2 2 1 dt I t t     0.25 4 (1 điểm) 2 1   0.25 Vì / / DC AB nên / / ; / / MN AB MN CD 2 2 3 MN AB a CD    ; 2 4 2 2. 3 3 SCDMN SCDM SCDA SCDA V V V V   0.25 3 3 1 4 16 . 3 3 9 SCDA CDA SCDMN V SA S a V a      0.25 / / DM CN nên 2 ( , ) ( ,( )) ( ,( )) 3 d DM BC d M SBC d A SBC   Gọi K là hình chiếu của A trên BC , H là hình chiếu của A trên SK thì ( ,( )) d A SBC AH  0.25 5 (1 điểm) K M N G C B A D S H 2 6 5 ABC S a AK BC    ; 2 2 2 1 1 1 6 14 a AH AH AS AK     4 ( , ) 14 a d DM BC  Chú ý: Có thể sử dụng phương pháp tọa độ. 0.25 Ta có           2 2 2 2 2 2 125 5 1 1 1 ln 1 ln 1 ln 1 3ln 64 4 a b c a b c           0.25 Xét hàm số 2 2 4 3 2 4 1 ( ) ln(1 ) , 0; ; '( ) 0 5 2 1 5 2 t f t t t t f t t t                 1 5 2 3 13 6 5 2 3 (0) 0; ln ; ln ( ) ln 0; 2 4 5 2 4 5 4 5 2 f f f f t t                             0.25 Do đó         2 2 2 4 5 6 ln 1 ln 1 ln 1 3ln 5 4 5 a b c a b c            đpcm 0.25 6 (1 điểm) Dấu bằng xảy ra 1 2 a b c     0.25 Đường thẳng MI qua M và song song với BC nên có phương trình 1 0 x y    0.25 7a (1 điểm) I M C A B D 1 ( , ) ; 4 2. ( , ). 4 2 2 2 ABCD d M BC S d M BC BC BC       2 2 BC MI   0.25 Gọi 3 ( ; 1); 2 1 a I a a MI a         0.25 Suy ra (3;2) I hoặc (1;0) I . 0.25 Gọi phương trình đường thẳng d là 2 2 0( 0) ax by c a b      , 2 2 ( ; ) 2 2 c d d O a b     0.25 Đường tròn có tâm (1;1) I bán kính 2 R  . Vì d tiếp xúc với ( ) C nên 2 2 ( ; ) 2 2 a b c d d O a b       0.25 suy ra: | | | | a b c c     2 b a a b c          0.25 8a (1 điểm) Với b a   , chọn 1 1; 2 2 a b c      ta được phương trình 2 2 0 x y    Với 2 a b c    ta có 2 2 15 2 15 0 0 a ab b a b       (không thỏa mãn). 0.25 Ta có 2 1 2 1 2 1 : 0 2 1 k n k n n C C k k n          nên   1 2 3 2 1 2 2 1 0 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C                                 0.25 Mà 2 1 0 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 (1 1) n n n n n n n n n n C C C C C C                  suy ra 36 2 2 18 n n    0.25   18 18 18 18 6 18 5 5 5 5 18 18 0 0 1 1 1 .( ) ( 1) . n k k k k k k k x x C x C x x x x                                      0.25 9a (1 điểm) Số hạng không phụ thuộc x ứng với 6 18 0 3 5 k k     . Suy ra số hạng cần tìm là 3 3 18 ( 1) 816 C    0.25 Gọi M là trung điểm BC , vì M d  nên ( ;3 4) M m m  . Mà 2 GA GM     nên (6 2 ;5 6 ) A m m   0.25 2 (2;2), (2; 7) A AB m M A      0.25 BC qua M và vuông góc với d nên có phương trình 3 8 0 x y    B AB BC   nên ( 1;3) B  0.25 7b (1 điểm) M là trung đểm BC nên (5;1) C . 0.25 Vì , A B là.các giao điểm của đường thẳng d và elip ( ) E nên (4;0), (0;3) A B hoặc (4;0), (0;3) B A 5 AB   0.25 Gọi ( ; ) C a b , 3 4 24 1 6 . ( , ) 6 3 4 12 12 3 4 0 2 ABC a b S AB d C d a b a b                 0.25 Vì ( ) C E  nên 2 2 1 16 9 a b   0.25 8b (1 điểm) Giải hệ ta tìm được 3 2 2; 2 C        hoặc 3 2 2; 2 C        0.25 Điều kiện 1 1; 2; 2 x y y       . Từ phương trình đầu ta có: 2( ) 2 2 2.2 2 6 0 1 3 2 2 x y x y x y x y y x                    0.25 Thế vào phương trình thứ hai ta được: 3 2 2 4 2 log ( 1) log (2 1) log 1 x x x      3 3 2 2 2 log ( 1) log 2 1 ( 1) 1 2 1 ( 1) 1 2 1 x x x x x x x x x               0.25 9b (1 điểm) Với 1 2 x  thì ta được phương trình: 2 1 3 2 0 2 x x x x          0.25 Với 1 1 2 x    thì ta được phương trình: 2 0 0 x x x     Vậy hệ phương trình có 3 nghiệm   ( ; ) (0; 1),(1;0),(2;1) x y   0.25 Hết Cảm ơ n  bạ n  (  hot b o y t h 75 @gm ail.c o m )  đ ã gửi t ới www . l ais ac. page. t l . THANH HOÁ TRƯỜNG THPT MAI ANH TUẤN ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012-2013 Môn thi: TOÁN, khối A Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ. GD&ĐT THANH HOÁ TRƯỜNG THPT MAI ANH TUẤN ĐÁP ÁN - THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM 2012-2013 Môn thi: TOÁN, khối A ( Đáp án - thang điểm gồm 03 trang) ĐÁP ÁN – THANG ĐIỂM . mặt phẳng ( ) GCD cắt , SA SB lần lượt tại , M N . Tính theo a thể tích khối chóp . S CDMN và khoảng cách giữa hai đường thẳng , DM BC . Câu 6 (1,0 điểm) Cho ba số thực , , a b c

Ngày đăng: 24/03/2014, 23:20