1. Trang chủ
  2. » Thể loại khác

phan tich binh luan 111 bai toan bat dang thuc nguyen cong loi

96 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 1,51 MB

Nội dung

2 TUYỂN CHỌN 111 BÀI TOÁN BẤT ĐẲNG THỨC ĐẶC SẮC Trong chủ đề n|y, tuyển chọn v| giới thiệu số b|i to{n bất đẳng thức hay v| khó, với l| qu{ trình ph}n tích để đến hình th|nh lời giải cho b|i to{n bất đẳng thức Từ c{c b|i to{n ta thấy qu{ trình ph}n tích đặc điểm giả thiết b|i to{n bất đẳng thức cần chứng minh, từ có nhận định, định hướng để tìm tịi lời giải v| c{ch trình b|y lời giải cho b|i to{n bất đẳng thức Bài Cho a, b, c l| c{c số thực dương Chứng minh rằng: bc ca ab 1      a  b  c  b  c  a  c  a  b  2a 2b 2c Phân tích lời giải Trước hết ta dự đo{n dấu đẳng thức xẩy a  b  c Có thể nói đ}y l| bất đẳng thức hay nhiên khơng thực khó Quan s{t bất đẳng thức ta có c{ch tiếp cận b|i to{n sau Cách Từ chiều bất đẳng thức, ý tưởng l| sử dụng bất đẳng thức AM – GM để đ{nh gi{ Nhưng ta sử dụng bất đẳng thức AM – GM cho bao nhiều số? Để ý bên vế tr{i bất đẳng thức có chứa 1 v| bên vế phải lại chứa nên ta sử dụng bất đẳng thức AM a a – GM cho hai số, ta cần triệt tiêu c{c đại lượng bc Chú ý đến bảo to|n dấu đẳng bc thức ta có đ{nh gi{ sau bc bc bc bc  2   a  b  c  4bc a  b  c  4bc a Thực tương tự ta có ca ca ab ab   ;   b  c  a  4ca b c  a  b  4ab c Cộng theo vế c{c bất đẳng thức ta bc ca ab bc ca a  b 1         a  b  c  b  c  a  c  a  b  4bc 4ca 4ab a b c THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC Để ý l| bc ca a  b 1 1 1      , lúc n|y ta thu 4bc 4ca 4ab  a b c  bc ca ab 1 1 1 1           a  b  c  b  c  a  c a  b  a b c  a b c  Hay bc ca ab 1      a  b  c  b  c  a  c  a  b  2a 2b 2c Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c Cách Ý tưởng thứ hai l| {p dụng bất đẳng thức Cauchy – Schwarz dạng ph}n thức ta  ab  bc  ca  bc ca ab    a  b  c  b  c  a  c  a  b  abc a  b  c   b  c  a   c  a  b  Bất đẳng thức chứng minh ta  ab  bc  ca  1    abc a  b  c   b  c  a   c  a  b  2a 2b 2c Biến đổi vế tr{i ta  ab  bc  ca   ab  bc  ca      abc a  b  c   b  c  a   c  a  b  2abc  ab  bc  ca  2a 2b 2c 2 Điều n|y có nghĩa l| bất đẳng thức chứng minh Cách Ý tưởng l| sử dụng phép biến đổi tương đương để chứng minh b|i to{n Chú ý đến phép biến đổi bc ab  bc  ca , ta thu bất đẳng thức cần   a b  c a a b  c chứng sau ab  bc  ca ab  bc  ca ab  bc  ca  1         2a b c a2  b  c  b c  a  c a  b  Biến đổi vế tr{i ta lại chứng minh th|nh  1   ab  bc  ca     Đến lúc n|y ta đưa b|i to{n cần  a b c  2abc 1    a  b  c  b  c  a  c  a  b  2abc Đến đ}y ta biến đổi bất đẳng thức c{ch nh}n hai vế với tích abc ta THCS.TOANMATH.com TÀI LIỆU TỐN HỌC bc ca ab    ab  ca bc  ab ca  bc Bất đẳng thức cuối l| bất đẳng thức Neibitz Điều n|y đồng nghĩa với việc bất đẳng thức chứng minh Cách Ta tiếp tục ph}n tích tìm lời giải với ý tưởng đổi biến, quan s{t bất đẳng thức ta nhận thấy bc  a b  c , bất đẳng thức cần chứng minh viết lại th|nh 1 2 a    b c 1 1 1 1         1 1 1 1 1 2a b c a    b2    c    b c c a a b 1 Đến đ}y ta đặt x  ; y  ; z  Khi bất đẳng thức trở th|nh a b c y2 xyz x2 z2    yz zx xy Bất đẳng thức cuối l|m ta liên tưởng đến bất đẳng thức Bunhiacopxki dạng ph}n thức  x  y  z  x  y  z y2 x2 z2    y  z z  x x  y  x  y  z 2 Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c Bài Cho a, b, c l| c{c số thực dương Chứng minh rằng: a5 b5 c5 a  b3  c    a  ab  b2 b2  bc  c c  ca  a Phân tích lời giải Quan s{t c{ch ph{t biểu b|i to{n ý tưởng l| sử dụng bất đẳng thức Bunhiacopxki dạng ph}n thức v| ta   a  b3  c a5 b5 c5    a  ab  b2 b2  bc  c c  ca  a a  b3  c  a b  ab  b 2c  bc  c 2a  ca Như ta cần  a  b3  c  a  b3  c  a b  ab2  b2 c  bc  c 2a  ca  a  b3  c 3  Hay a  b3  c  a b  ab2  b2c  bc  c 2a  ca THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC Dễ thấy a  b3  ab  a  b  ; b3  c  bc  b  c  ; c  a  ca  c  a  Cộng theo vế c{c bất đẳng thức ta   a  b3  c  a b  ab2  b2c  bc  c 2a  ca Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c a5 Ý tưởng thứ hai l| sử dụng bất đẳng thức AM – GM, để ý đến đại lượng a  ab  b2 bên vế tr{i v| đại lượng a3 bên vế phải, ta nghĩ đến sử dụng bất đẳng AM – GM cho hai số dương, để ý đến dấu đẳng thức xẩy a  b  c v| cần triệt tiêu a  ab  b2   a a  ab  b2 a5 nên ta chọn hai số l| Khi ta ; a  ab  b2     a a  ab  b2 a a  ab  b2 a5 a5 2a  2   9 a  ab  b2 a  ab  b2 Áp dụng tương tự ta có     b b2  bc  c c c  ca  a b5 2b3 c5 2c   ;   c  ca  a b2  bc  c Để đơn giản hóa ta đặt A  a5 b5 c5   a  ab  b2 b2  bc  c c  ca  a Cộng theo vế c{c bất đẳng thức ta A Hay A   a a  ab  b2    bb  bc  c   c c    ca  a a  b3  c  a b  ab2  b2 c  bc  c 2a  ca   a  b3  c   Phép chứng minh ho|n tất ta    a  b3  c  a b  ab2  b2 c  bc  c 2a  ca   a b c 3   a b  ab2  b2 c  bc  c 2a  ca a  b3  c 3 Đến đ}y ta thực tương tự c{ch Vậy bất đẳng thức chứng minh Bài Cho a, b, c l| c{c số thực dương thỏa mãn a  b  c  Chứng minh rằng: 1 1     30 2 a  b  c ab bc ca THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC Phân tích lời giải Trước hết ta dự đo{n đẳng thức xẩy a  b  c  Quan s{t bất đẳng thức cần chứng minh ta nhận thấy c{c biến nằm mẫu nên tự nhiên ta nghĩ đến c{c bất đẳng thức AM – GM, Cauchy – Schwarz dạng ph}n thức, … Cách Trước hết ta tiếp cận bất đẳng thức với ý tưởng đ{nh gi{ bất đẳng thức AM – GM Để ý đến bảo to|n dấu đẳng thức ta có a  b2  c2  ab  bc  ca nên để tạo đại lượng ab  bc  ca ta có đ{nh gi{ quen thuộc l| Do ta có bất đẳng thức 1    ab bc ca ab  bc  ca 1 1      2 2 a  b  c ab bc ca a  b  c ab  bc  ca Như ta cần phải chứng minh   30 2 a  b  c ab  bc  ca Lại ý đến đ{nh gi{ tương tự ta cần cộng c{c mẫu cho viết th|nh  a  b  c  điều n|y có nghĩa l| ta cần đến  ab  bc  ca  Đến đ}y ta hai hướng l|:   1 2 + Thứ l| đ{nh gi{     , Tuy nhiên 2 2  ab  bc  ca   a  b  c  a b c   đ{nh gi{ n|y không xẩy dấu đẳng thức + Thứ hai l| đ{nh gi{ 1     2 a  b  c ab  bc  ca ab  bc  ca  a  b  c 2 Bất đẳng thức chứng minh ta Tuy nhiên, dễ thấy Do ta a  b  c   21 ab  bc  ca  ab  bc  ca  ab  bc  ca   21 Vậy bất đẳng thức chứng minh ab  bc  ca Cách Sử dụng bất đẳng thức Cauchy – Schwarz dạng ph}n thức, ý đến dấu đẳng thức xẩy ta 1 1 16      2 2 a  b  c 3ab 3bc 3ca a  b  c   ab  bc  ca  THCS.TOANMATH.com 16  12 2 a  b  c   a  b  c  TÀI LIỆU TOÁN HỌC Bất đẳng thức chứng minh ta 2 1      18   ab bc ca  Để ý tiếp bất đẳng thức Cauchy – Schwarz ta 2 1  6      18   ab bc ca  ab  bc  ca a  b  c  Vậy bất đẳng thức chứng minh 1    ab bc ca ab  bc  ca Cách Theo đ{nh gi{ quen thuộc ta có Do ta có bất đẳng thức 1 1      2 2 a  b  c ab bc ca a  b  c ab  bc  ca Áp dụng tiếp đ{nh gi{ ta  1    a  b2  c  2ab  2bc  2ca    2  a  b  c ab  bc  ca ab  bc  ca   Hay    Mặt kh{c ta lại có  21 2 ab  bc  ca a  b  c ab  bc  ca Cộng theo vế c{c bất đẳng thức ta 1 1     30 2 a  b  c ab bc ca Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c  Bài Cho a, b, c l| c{c số thực dương thỏa mãn a  b  c  Chứng minh rằng: a b  b c  c a 3 Phân tích lời giải Trước hết để dấu ta đặt x  a; y  b; z  c , từ giả thiết ta có x2  y2  z2  v| bất đẳng thức viết lại th|nh x2 y2 z2    Quan s{t bất đẳng y z x thức v| dự đo{n dấu đẳng thức xẩy x  y  z  , ta có số ý tưởng tiếp cận b|i to{n sau Cách Từ c{ch ph{t biểu vế tr{i ta nghĩ đến sử dụng bất đẳng thức Cauchy – Schwarz dạng ph}n thức Tuy nhiên cần ý đến giả thiết x2  y2  z2  , ta có đ{nh gi{ THCS.TOANMATH.com TÀI LIỆU TỐN HỌC   x2  y2  z2 y4 x2 y2 z2 x4 z4        2 y z x x y y z z x x y  y z  z x x y  y2z  z2x Ta quy b|i to{n chứng minh    x2 y  y2 z  z2 x 2 x yy zz x M| theo bất đẳng thức AM – GM ta x3  xy2  2x2 y; y3  yz2  2y2 z; z3  zx2  2z2 x  Do ta có x3  y3  z3  x2 y  xy2  x2 z  xz2  y2 z  yz2  x2 y  y2 z  xz2  M| ta có đẳng thức quen thuộc x  y2  z2  x  y  z  x   y  z3  x2 y  xy  x2 z  xz  y z  yz   Do ta x2  y2  z2  x  y  z   x2 y  xz2  y z  Để ý tiếp đến giả thiết x2  y2  z2  , ta có x  y  z  x2 y  y2 z  xz2   Mà ta có x  y  z  x2  y  z  suy  x2 y  y z  z2 x Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c  Cách Cũng từ c{ch ph{t biểu vế tr{i ta nghĩ đến đ{nh gi{ bất đẳng thức AM – GM, nhiên {p dụng trực tiếp ta cần ý l|m triệt tiêu c{c mẫu số v| đ{nh gi{ bình phương c{c biến Do ta đ{nh gi{ sau y2 x2 z2  x2 y  2x2 ;  y z  2y ;  z x  2z y z x Cộng theo vế c{c bất đẳng thức ta x2 y2 z2    x2 y  y z  z2 x  2x  2y  2z  y z x Hay   x2 y2 z2     x2 y  y2 z  z2 x y z x   B|i to{n chứng minh ta  x2 y  y z  z2 x  hay  x2 y  y z  z2 x Đến đ}y ta l|m c{ch thứ Cách Cũng {p dụng bất đẳng thức AM – GM, nhiên tình n|y ta bình phương hai vế trước THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC Đặt A  x2 y2 z2   , ta y z x  x2 y2 z2   x2 y y2 z z2 x  x4 y4 z4 A         2    x x y  y z x  y z  z Đến đ}y ta ý đến c{ch ghép cặp sau 4 y2 z y2 z x4 x2 y x2 y z2 x z2 x 2 y 2 z    z  4x ;    x  4y ;    y  4z z z x x y y y2 z2 x2 Cộng theo vế c{c bất đẳng thức ta     A2  x  y  z  x  y  z  A   A  x2 y2 z2 Hay    Vậy bất đẳng thức chứng minh y z x Đẳng thức xẩy v| a  b  c  Cách Trong c{c hướng tiếp cận ta thực đ{nh gi{ sau qu{ trình đổi biến m| quên đ{nh gi{ quan trọng l| b  b  , ta có a b  2a Đ}y l| đ{nh b1 gi{ chiều m| bảo to|n dấu đẳng thức, ta thử thực tiếp xem a Theo bất đẳng thức AM – GM ta có b  b c  c a  2a 2b 2c   b1 c 1 a 1 Bất đẳng thức chứng minh ta 2a 2b 2c    Nhìn b1 c 1 a 1 c{ch ph{t biểu bất đẳng thức ta nghĩ đến bất đẳng thức Bunhiacopxki dạng ph}n thức Theo bất đẳng thức Bunhiacopxki dạng ph}n thức ta có a  b  c  a  b  c  2a 2b 2c     b  c  a  ab  bc  ca   a  b  c 2  Ta cần chứng minh a  b  c  a  b  c   2 3 Hay  a  b  c    a  b  c     a  b  c    a  b  c  2 Đẳng thức cuối l| giả thiết Vậy bất đẳng thức chứng minh Bài Cho a, b, c l| c{c số thực không }m Chứng minh rằng: THCS.TOANMATH.com TÀI LIỆU TỐN HỌC 10 a  b2  c  2abc    ab  bc  ca  Phân tích lời giải Trước hết ta dự đo{n dấu đẳng thức xẩy a  b  c  , quan s{t bất đẳng thức ta nghĩ đến số ý tưởng tiếp cận sử dụng nguyên lí Dirichlet, sử dụng tính chất tam thức bậc hai, sử dụng bất đẳng thức AM – GM,…, b}y ta ph}n tích ý tưởng để tìm lời giải cho b|i to{n Cách Trước hết ta thấy ta để ý đến đẳng thức xẩy a  b  c  điều n|y có nghĩa l| đẳng thức xẩy a  1; b  1; c  0, ngo|i ta bất đẳng thức chứa c{c đại lượng ac, bc,abc, nên ta nghĩ đến tích c  a  1 b  1 , nhiên ta chưa thể khẳng định tích có khơng }m hay khơng nên ta sử dụng ngun lí Dirichlet Theo nguyên lí Dirichlet ba số a  1; b  1; c  tồn tai hai số dấu, khơng tính tổng qu{t ta giả sử hai l| a  1; b  , ta có a  1 b  1   c a  1 b  1   abc  ac  bc  c  Khi ta có a  b2  c  2abc    a  b   1  c    abc  ac  bc  c    ab  bc  ca  2 Dễ thấy  a  b   1  c    abc  ac  bc  c   nên ta có a  b 2  2ab  1  c   2c  2abc  2ac  2bc   bc  ca   ab  bc  ca  Suy a  b2  c  2abc    ab  bc  ca  Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c  Cách Dễ thấy bất đẳng thức có b}c hai biến ta viết lại bất đẳng thức dạng đa thức biến a, cịn b v| c đóng vai trị tham số Ta viết lại bất đẳng thức cần chứng minh l| a   bc  b  c  a  b2  c  2bc   Xét f(a)  a   bc  b  c  a  b2  c  2bc  Quan s{t đa thức f(a) ta nhận thấy bc  b  c  ta ln có f(a)  , tức a   bc  b  c  a  b2  c  2bc   B}y ta xét trường hợp sau bc  b  c  THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 11   Khi ta có 'a   bc  b  c   b2  c  2bc  Để ý đến hệ số hạng tử bậc hai l| số dương nên để f(a)  ta phải   'a   bc  b  c   b2  c  2bc   Hay bc  b   c     Để ý đến bc  b  c  ta  b  1 c  1  , lúc n|y xẩy ta c{c khả sau + Cả  b  1 ;  c  1 nhỏ hay b, c nhỏ 2, theo bất đẳng thức Cauchy ta b   b  b   b   1; c   c  c   c  1 Suy bc  b   c    nên ta có bc  b   c     + Trong hai số  b  1 ;  c  1 có số lớn v| số nhỏ b, c có số lớn v| số nhỏ suy bc  b   c    nên ta có bc  b   c     Như hai khả cho 'a  nên bất đẳng thức chứng minh Vậy b|i to{n chứng minh xong Cách Dễ thấy theo bất đẳng thức Cauchy ta có đ{nh gi{ 2abc   abc  abc   3 a b2c Lúc n|y ta bất đẳng thức a  b2  c  2abc   a  b2  c  3 a b2c Ta cần a  b2  c  3 a b2c   ab  bc  ca  Để l|m bậc ta đặt a  x3 ; b2  y3 ; c  z3 , bất đẳng thức viết lại th|nh x3  y3  z3  3xyz   x3 y3  y3 z3  z3 x3  Để ý đến đ{nh gi{ xy  x  y ta viết   x3 y3  y z3  z3 x3  xy  x  y   yz  y  z   zx  z  z  Bất đẳng thức chứng minh xong ta x3  y3  z3  3xyz  xy  x  y   yz  y  z   zx  z  z  THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 83 Đ{nh gi{ cuối l| đ{nh gi{ Vậy b|i to{n chứng minh xong Bài 43 Cho a, b, c l| c{c số thực dương tùy ý Chứng minh rằng: a b  bc ac c  ab   a b c  Phân tích lời giải Trước hết ta dự đo{n dấu đẳng thức xẩy a  b  c , Quan s{t bất đẳng thức ta nhận thấy có số nhận xét sau + Bất đẳng thức có dấu hiệu sử dụng bất đẳng thức Bunhiacopxki dạng ph}n thức + Bất đẳng thức chứa c{c bậc hai nên ta nghĩ đến bất đẳng thức Cauchy + Đ}y l| bất đẳng thức đồng bậc nên ta nghĩ đến phép đổi biến Từ nhận xét ta tìm hiểu c{c hướng tiếp cận b|i to{n sau Cách Trước hết ta bắt đấu với bất đẳng thức Bunhiacopxki dạng ph}n thức đ{nh gi{ a b  bc ac  c ab   a b c  a b  bc  ca Như phép chứng minh ho|n tất ta  a b c  a b  bc  ca Hay    a b c   a  b  c  a b  bc  ca Tuy nhiên đ{nh gi{ cuối lại l| đ{nh gi{ sai, ta khơng thể dụng trực tiếp vậy, điều n|y l|m ta nghĩ đến việc biến đối bất đẳng thức trước a Để ý l| bc  abc bc  b  c , ho|n to|n tương tự ta viết vế tr{i bất đẳng thức l| a bc  b ac   1   a  b  c      ab ab ac   bc c  bc  ac  ab  Do bất đẳng thức viết lại th|nh  a  b  c    bc THCS.TOANMATH.com  ab    ac    bc  ac  a b   a b c  TÀI LIỆU TOÁN HỌC 84 Đến đ}y theo bất đẳng thức Bunhiacopxki ta  a  b  c    bc  ab a  b  c    ac  a b  bc  ca  Phép chứng minh ho|n tất ta a  b  c   a b  bc  ca   a b  bc  ca   a b c  a  b  b  c  c  a  3.2  a  b  c  Để ý l| theo bất đẳng thức Cauchy ta Do ta có a  b  c  a b  bc  ca a Suy ta bc a  b  c   a  b  c  b  ac  c ab a  b  c   a  b  c      a b c  a b c   Vậy bất đẳng thức chứng minh xong Cách B}y ta thử {p dụng bất đẳng thức Cauchy xem có chứng minh b|i to{n khơng Để ý ta thấy c{c ph}n số có mẫu chứa c{c bậc hai v| ta phải đ{nh gi{ cho bất đẳng thức thu chiều với bất đẳng thức cần chứng minh Điều n|y l|m ta liên tưởng đế bất đẳng thức Cauchy dạng xy  x  y Chú ý đến dấu đẳng thức xẩy ta viết lại bất đẳng thức cần chứng minh th|nh  a b c      2a  2b  2c  b  c ac ab  Lúc n|y ta cần đ{nh gi{ c{c mẫu theo kiểu khai triển đẳng  2a  2b  2c thức  2a b  c  2a  2b  2c b  c  2a b  c  x  y   x  y  v| 2b  2c  b  c;  bất  đẳng 2b  2c thức   b  c  ? Để ý l| b  c Do theo bất Cauchy ta 2a  b  c Nên ta có  2a  2b  2c  b  c  2a b  c   THCS.TOANMATH.com  2b  2c  bc 2a  b  c 2a  5b  5c  b  c b  c  2 TÀI LIỆU TỐN HỌC 85 Từ suy   a 2a  2b  2c b 2a  2b  2c  ca  2a Áp dụng tương tự ta có 2a  5b  5c  bc  2b ; 2b  5c  5a c  2a  2b  2c  ab  2c 2c  5a  5b Đến đ}y cộng theo vế c{c bất đẳng thức  a b c  2a 2b 2c       2a  2b  2c  b  c ac a  b  2a  5b  5c 2b  5a  5c 2c  5a  5b Phép chứng minh ho|n tất ta 2a 2b 2c    2a  5b  5c 2b  5a  5c 2c  5a  5b Thật vậy, theo bất đẳng thức Bunhiacopxki dạng ph}n thức ta 2a 2b 2c   2a  5b  5c 2b  5a  5c 2c  5a  5b  a  b  c  2a  2b  2c 2 a  b  c    10ab  10bc  10ca a  b  c  2  Vậy bất đẳng thức chứng minh xong Cách Bất đẳng thức cần chứng minh l| bất đẳng thức đồng bậc phép đổi biến x  ta sử dụng 3a 3b 3c Khi ta x  y  z  ; y ; z abc abc abc Bất đẳng thức cần chứng minh tương đương với 3 abc  a  b  c    ac ab  abc  bc abc Hay x yz  y zx  z xy   x y z  a b c   Kết hợp với điều kiện x  y  z  , bất đẳng thức trở th|nh x 3x Dễ d|ng chứng minh THCS.TOANMATH.com  y 3x t 3t  z  t 3x    x y z   t  1 với  t  TÀI LIỆU TOÁN HỌC 86 Áp dụng bất đẳng thức ta x 3x y  3y  z 3z    x y z   x  y  z  3   x y z  Vậy bất đẳng thức chứng minh xong Bài 44 Cho a, b, c l| c{c số thực dương thỏa mãn a  b2  c2  Chứng minh rằng: a b c    a  2b  b  2c  c  2a  2 Phân tích lời giải Dễ d|ng dự đo{n dấu đẳng thức xẩy a  b  c  Quan s{t bất đẳng thức ta liên tưởng đến đ{nh gi{ quen thuộc a2  2b   a   2b   2a  2b  Áp dụng tương tự ta a b c 1 a b c         a  2b  b  2c  c  2a   a  b  b  c  c  a   Như ta cần chứng minh a b c   1 a  b1 bc 1 c a 1 Để có c{c đ{nh gi{ hợp lý trước hết ta đổi chiều bất đẳng thức Thật vậy, bất đẳng thức tương đương với 1 a b c 1 1  1  a  b1 bc 1 c a 1 Hay b1 c 1 a 1   2 a  b1 bc 1 c a 1 Bất đẳng thức l|m ta liên tưởng đề bất đẳng thức Bunhiacopxki dạng ph}n thức  b  1  c  1  a  1 b1 c 1 a 1      a  b  b  c  c  a   b  1 a  b  1  c  1 b  c  1  a  1 c  a  1 2 a  b  c  3   a  1 a  c  1   b  1 b  a  1   c  1 c  b  1 Phép chứng minh ho|n tất ta a  b  c  3 2  a  1 a  c  1   b  1 b  a  1   c  1 c  b  1 Để ý đến giả thiết a  b2  c2  ta có THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 87  a  1 a  c  1   b  1 b  a  1   c  1 c  b  1  a  b  c  ab  bc  ca   a  b  c    2   2 a  b2  c  ab  bc  ca   a  b  c     a  b  c   2 a  b  c  3 a  b  c     a  1 a  c  1   b  1 b  a  1   c  1 c  b  1  a  b  c   Khi ta 2 2 Vậy bất đẳng thức chứng minh xong Bài 45 Cho a, b, c l| c{c số thực dương tùy ý Chứng minh a ab  b  b bc  c  a ca  a  Phân tích lời lời giải Quan s{t bất đẳng thức ta nhận thấy ý tưởng sử dụng bất đẳng thức Bunhiacopxki dạng ph}n thức để đ{nh biểu thức vế tr{i l| sử dụng bất đẳng thức Cauchy để đ{nh gi{ mẫu, trước hết để có đ{nh gi{ đảm bảo dấu đẳng thức ta dự đo{n dấu đẳng thức xẩy a  b  c Đầu tiên ta tiếp cận với bất đẳng thức Bunhiacopsxki dạng ph}n thức Để ý l| ta khơng nên sử dụng trực tiếp mẫu có c{c đại lượng mũ nên trội Do ta đ{nh gi{ sau a ab  b2  b bc  c  a ca  a  a  b  c  a ab  b2  b bc  c  c ca  a Như phép chứng minh ho|n tất ta a  b  c  a ab  b2  b bc  c  c ca  a  2 Để dễ d|ng ta ý đên đ{nh gi{ mẫu trước Chú ý đến dấu đẳng thức xẩy ta có 2b  a  b Do {p dụng bất đẳng thức Cauchy ta có 2b  a  b   2b   a  b   a  3b Ho|n to|n tương tự ta a ab  b2  b bc  c  c ca  a  THCS.TOANMATH.com a  3ab 2  b2  3bc 2  c  3ca 2 TÀI LIỆU TỐN HỌC 88 Khi ta a  b  c  a  b  c  a ab  b2  b bc  c  c ca  a  a  3ab  2 a  b  c  V| ta cần phải chứng minh a  b  c  b2  3bc  2 c  3ca 2 a  3ab  b  3bc  c  3ca 2  Hay   ab  bc  ca  , đ{nh gi{ n|y l| đ{nh gi{ đúng, bất đẳng thức chứng minh B}y ta thử tiếp cận với bất đẳng thức Cauchy với đ{nh gi{ c{c mẫu xem Để ý a  ab  a  a  b  , tích n|y l|m ta liên tưởng đến bất đẳng thức Cauchy dạng quen thuộc xy  x  y Chú ý đến dấu đẳng thức xẩy ta 2b  a  b   Áp dụng tương tự ta a ab  b2  2b   a  b  b bc  c 2  a  3b a  ca  a  2a 2b 2c   a  3b b  3c c  3a Phép chứng minh ho|n tất ta 2a 2b 2c a b c hay       a  3b b  3c c  3a a  3b b  3c c  3a Áp dụng bất đẳng thức Bunhiacopxki dạng ph}m thức ta a  b  c  a b c    a  3b b  3c c  3a a  b2  c  3ab  3bc  3ca Ta cần phải chứng minh Hay a  b  c  a  b  c  3ab  3bc  3ca 2   4  a  b  c   a  b2  c  3ab  3bc  3ca  Khai triển v| thu gọn ta a  b2  c2  ab  bc  ca , đ}y l| đ{nh gi{ Vậy b|i to{n chứng minh Nhận xét Trong tốn hai ý tưởng tiếp cận nhau, khác chỗ dùng cơng cụ trước thơi Ngồi ta dùng phương pháp đổi biến để chứng minh bất đẳng thức a b c    a  3b b  3c c  3a THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 89 Đặt x  a  3b; y  b  3c; z  c  3a Từ suy a x  3y  9z y  3z  9x z  3x  9y ;b  ;c  28 28 28  x y z y z x Bất đẳng thức viết lại thành           Các bạn thử chứng y z x x y z minh tiếp xem sao? Bài 46 Cho a, b, c l| c{c số thực dương tùy ý Chứng minh rằng: a     b2  c    a  b  c  1 Phân tích lời giải Trước hết ta dự đo{n dấu đẳng thức xẩy a  b  c  , quan s{t bất đẳng thức ta thấy dấu hiệu sử dụng bất đẳng thức Bunhiacopxki Cách Để ý l| a2   a    , Do {p dụng bất đẳng thức Bunhiacopxki ta có    b  c 2  b  c 2    bc bc   1   1.a  a    1     1.1    a  b  c  1      2       2  b  c      a  b  c  1 Hay a          2  b  c    B|i to{n quy chứng minh b  c           2  Mặt kh{c, {p dụng bất đẳng thức Cauchy ta lại có b        c   3b2  3c  b2 c   2b2  2c  b  c  b c     b  c 2   2b  2c  2bc  2bc    b  c      2     2   b  c 2    a    a  b  c  1 Như ta a  b  c              Vậy bất đẳng thức chứng minh Đẳng thức xảy v| a  b  c  Cách Ngo|i ta {p dụng bất đẳng thức Bunhiacopxki sau THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 90    b  c  2  b  c  2  b  c  2  a    1         3           b  c 1 b  c 1 b  c 1   1.a     3     b  c  1     a  b  c  1 Hay a           Ta cần chứng minh   b  c  1   b  c   1        Thật vậy, biến đổi tương đương ta    b  c  1    3b c  b  c   b  c   8bc  11  b  c   1            b  c     b  c    bc  1  2 Bất đẳng thức cuối ln đúng, ta có    b  c 2  a  b  c   4   a    a  b  c  1          Vậy bất đẳng thức chứng minh Đẳng thức xảy v| a  b  c  Bài 47 Cho a, b, c l| c{c số thực dương thỏa mãn a  b  c  Chứng minh rằng: a  b3 b3  c c  a   9 ab  bc  ca  Phân tích lời giải Quan s{t bất đẳng thức ta nhận thấy tử c{c ph}n thức chứa c{c đại lượng a  b3 , b3  c3 ,c  a Chú ý đến chiều bất đẳng thức, c{c đại lượng l|m ta liên   tưởng đến bất đẳng thức x3  y   x  y  , ngo|i ý đến tích ab đ{nh gi{  a  b  B}y ta thử xem c{c ph}n tích giả b|i to{n không?   Cách Sử dụng bất đẳng thức quen thuộc x3  y   x  y  ta có   3 a  b a  b3 a  b   ab  4ab  36 4ab  36 THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 91 Mặt kh{c, theo bất đẳng thức Cauchy ta có 4ab   a  b   a  b   36  12  a  b  2 Do ta   3  a  b   a  b  36  a  b   a  b  36 a  b   a  b  a  b3 a  b   ab  4ab  36  a  b 2  36 12  a  b   a  b   36 Áp dụng tương tự ta có b3  c c3  a3  b  c  3;  ca3 bc  ca  Cộng vế theo vế ba bất đẳng thức trên, ta a  b3 b3  c c  a    a  b  c    ab  bc  ca  Vậy bất đẳng thức chứng minh Đẳng thức xảy v| a  b  c    Cách Sử dụng bất đẳng thức quen thuộc x3  y   x  y  ta có 3   a  b 3 4ab   ab a  b3  a  b       3   ab  4ab  36  4ab  36 24    Áp dụng bất đẳng thức Cauchy ta a  b  a  b   4ab    a  b 4ab     33 3 4ab  36 24 4ab  36 24 Do ta Tương tự ta có 3 a  b3  a  b  ab    bc  b3  c 3  b  c  bc c  a 3  c  a  ca    ;    bc  ca  Cộng vế theo vế ba bất đẳng thức v| kết hợp với đ{nh gi{ quen thuộc , ta  a  b  c   27  a  b3 b3  c c  a ab  bc  ca 27    a  b  c     a  b  c   ab  bc  ca  18 2 Vậy bất đẳng thức chứng minh Đẳng thức xảy v| a  b  c  Bài 48 Cho a, b, c l| c{c số thực dương thỏa mãn 1 a  b   abc 1    Chứng minh rằng: a b c 1 b  c   abc 1 c  a    abc Phân tích lời giải THCS.TOANMATH.com TÀI LIỆU TỐN HỌC 92 Dễ d|ng dự đo{n đẳng thức xẩy a  b  c  Quan s{t bất đẳng thức ta nhận thấy phức tạp b|i to{n Để chứng minh bất đẳng thức ta cần phải đơn giản hóa c{c thức c{c mẫu số, đồng thời khai th{c thật khéo léo c{c giả thiết b|i to{n Quan s{t kỹ giả thiết v| bất đẳng thức cần chứng minh ta nhận thấy ta đ{nh gi{ vế tr{i đại lượng Dễ thấy từ giả thiết ta suy 1 ; ; xem b|i to{n giải a b c 1    3; abc  B}y ta tìm c{ch đ{nh a b c gi{ c{c mẫu Cách Áp dụng bất đẳng thức Cauchy v|o giả thiết ta 3 1  2 2  abc  2 a b c a bc a  b   a  b Do 1  a  b   abc  a  b  1  Để ý l| a  b  1  a  b   1   a  b    a  b   , {p dụng bất đẳng thức   Cauchy ta có a  b a  b Suy Do ta a  b   2 1  a  b   1   a  b    a  b   a  b    1 2 1 a  b  abc hay   abc 1 b  c a  b   1  a  b a  b  Ta cần chứng minh 1  a  b  1   a  b   a  b  1  a  b 1 1  1 Ho|n to|n tương tự ta a  b   abc 1 1         c  a   abc  a  b b  c c  a  1 1    a b bc ca Thật vậy, theo đ{nh gi{ quen thuộc kết hợp với giả thiết ta THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC 93 1 1 1 1        a b bc ca a b c  Bất đẳng thức chứng minh Đẳng thức xảy v| a  b  c  Cách Để ý thấy có số mẫu nên để dễ đ{nh mẫu ta {p dụng bất đẳng thức Bunhiacopxki dạng ph}n thức để t{ch số khỏi mẫu số Chú ý đến dấu đẳng thức xẩy ta 1     a  b   abc 16   1     1  a  b   abc 16  a  b      abc  Để ý lại thấy mẫu số có chứa đại lượng abc nên ta đ{nh gi{ a  b a  b ab đặt nh}n tử chung Áp dụng bất đẳng thức Cauchy ta có  4ab , ta a  b   a  b  4ab  abc  abc  ab  4a  4b  c  B}y gờ để triệt tiêu bậc hai ta để ý đến bất đẳng thức Cauchy dạng xy  x  y Chú ý l| cần bảo to|n dấu đẳng thức nên ta có ab  4a  4b  c   2 1      9ab  4a  4b  c   9ab 4a  4b  c  Mặt kh{c lại theo bất đẳng thức Bunhiacopxki dạng ph}n thức ta có 1    1  4 1        4a  4b  c 81 4a  4b  c 81  a b c  Do ta a  b 1   abc  4 1       16 32ab 96  a b c  Áp dụng tương tự ta 1 a  b   abc 1 b  c  THCS.TOANMATH.com   abc 1 c  a   abc 3  1   1 1          16 32  ab bc ca  96  a b c  TÀI LIỆU TOÁN HỌC 94 Ta cần chứng minh 3  1   1 1           16 32  ab bc ca  96  a b c  Thật vậy, Áp dụng hai bất đẳng thức quen thuộc ta 1  1 1 1 1 1         3;      3 a b c ab bc ca a b c  b c a 3  1   1  27              16 32  ab bc ca  96  a b c  16 32 96 Từ suy Bất đẳng thức chứng minh xong Bài 49 Cho a, b, c l| c{c số thực dương thỏa mãn a  b  c  Chứng minh rằng: a  b2  b2  c  c  a     12 a  b  ab b  c  bc c  a  ca Phân tích lời giải Cách Quan s{t bất đẳng thức ta nhận thấy c{c mẫu số không đồng bậc, ý đến giả thiết b|i to{n ta viết lại a  b2  a  b2    a  b  a  b  c   ab a2  b2  ab  bc  ca Để ý l| a  b2  2  ab  bc  ca 1  2 a  b  ab  bc  ca a  b2  ab  bc  ca Khi {p dụng tương tự ta bất đẳng thức cần chứng minh trở th|nh  ab  bc  ca  ab  bc  ca  ab  bc  ca  2  9 a  b  ab  bc  ca b  c  ab  bc  ca c  a  ab  bc  ca Bất đẳng thức có c{c tử giống nên {p dụng đ{nh gi{ quen thuộc ta  ab  bc  ca  ab  bc  ca  ab  bc  ca  2  2 a  b  ab  bc  ca b  c  ab  bc  ca c  a  ab  bc  ca   ab  bc  ca   2 a  b2  c   ab  bc  ca    Phép chứng minh ho|n tất ta   ab  bc  ca  a  b  c   ab  bc  ca  2 1 Để để triệt tiêu c{c đại lượng }m tử số ta ý đến  a  b  c   , ta có   ab  bc  ca  a  b2  c   ab  bc  ca  THCS.TOANMATH.com  a  b  c   ab  bc  ca    a  b  c   ab  bc  ca  1 TÀI LIỆU TOÁN HỌC 95 Vậy bất đẳng thức chứng minh Đẳng thức xảy a  b  c  Cách Kết hợp với giả thiết ta có biến đổi sau a  b  ab   a  b  a  b  c   ab  a  b2  ab  bc  ca a  b2  a  b2  a2  b2     Do ta có a  b  ab a  b2  ab  bc  ca a  b2  ab  bc  ca a  b2  ab  bc  ca Áp dụng tương tự ta b2  c  b2  c2   2  2 b  c  bc b  c  ab  bc  ca b  c  ab  bc  ca c  ba  c2  a2    c  a  ca c  a  ab  bc  ca c  a  ab  bc  ca Mặt kh{c theo bất đẳng thức Cauchy ta a2  a2   a  b2  ab  bc  ca c  a  ab  bc  ca a2  a2    4 2a  b2  c   ab  bc  ca  a   a  b  c 2     Áp dụng tương tự ta b2  b2   4 b2  c  ab  bc  ca b  a  ab  bc  ca c2  c2   4 b2  c  ab  bc  ca c  a  ab  bc  ca Cộng theo vế c{c kết ta a  b2  b2  c  c  ba     12 a  b  ab b  c  bc c  a  ca Vậy bất đẳng thức chứng minh Đẳng thức xảy a  b  c  Bài 50 Cho c{c số thực thỏa mãn a, b,c   0;1 abc  1  a 1  b 1  c  Chứng minh rằng: a  b4 b2  c c  a 15    b c a Phân tích lời giải THCS.TOANMATH.com TÀI LIỆU TỐN HỌC 96 Quan s{t bất đẳng thức ta nhận thấy cần phải đổi biến để l|m c{c dấu trừ bên vế phải, tự nhiên ta nghĩ đến phép đổi biến x  a  b; y  b  1; z  c  , nhiên quan s{t kỹ giả thiết ta biến đổi abc  1  a 1  b 1  c   Đến đ}y ta đặt x  1  a 1  b 1  c   abc 1a 1 b 1 c ;y  ;z  a b c Khi ta có xyz  a  1 ;b  ;c  1 x 1 y 1 z Do xyz  nên c{c số x, y, z có hai số nằm phía so với 1, giả sử hai số  x  1 y  1   x  y   xy  z z l| x v| y Khi ta có Áp dụng bất đẳng thức Bunhiacopxki ta 1  x   1  1  y  1  xy    x  1  xy    y  x y   y x z     1  xy  x  y  1  xy  x  y   xy  z  Từ ta a b c  2 1   1  x  1  y  1  z  2 z   z    2z  1 z 3       2  z 1  z  1  z  4 1  z  2 a b2 c 15    a  b3  c  Bất đẳng thức viết lại th|nh b c a Áp dụng bất đẳng thức Bunhiacopxki ta   a  b2  c a b2 c a b4 c4       b c a a b b c c a a b  b c  c 2a M| theo bất đẳng thức Bunhiacopxki dạng ph}n thức ta a b  b c  c 2a  a a b2 c Từ suy    b c a THCS.TOANMATH.com    a   b2  c   2 a  b2  c a  b2  c   a  b2  c a  b2  c  b  c a b  b c  c 2a     a  b2  c   TÀI LIỆU TOÁN HỌC 97    Mặt kh{c ta lại có a  b3  c  a  b  c   a  b2  c  2 Từ c{c kết ta a b2 c 3 15    a  b3  c    b c a 8 Vậy bất đẳng thức chứng minh Đẳng thức xẩy v| a  b  c  THCS.TOANMATH.com 3     a  b3  c  4    a  b2  c   b2  c  a  b  c  Do ta a  b3  c   ; a TÀI LIỆU TOÁN HỌC ...  a  c  a  b  2abc Đến đ}y ta biến đổi bất đẳng thức c{ch nh}n hai vế với tích abc ta THCS.TOANMATH.com TÀI LIỆU TỐN HỌC bc ca ab    ab  ca bc  ab ca  bc Bất đẳng thức cuối l| bất đẳng...  b2 c  bc  c 2a  ca  a  b3  c 3  Hay a  b3  c  a b  ab2  b2c  bc  c 2a  ca THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC Dễ thấy a  b3  ab  a  b  ; b3  c  bc  b  c  ; c  a  ca... c{c số thực dương thỏa mãn a  b  c  Chứng minh rằng: 1 1     30 2 a  b  c ab bc ca THCS.TOANMATH.com TÀI LIỆU TOÁN HỌC Phân tích lời giải Trước hết ta dự đo{n đẳng thức xẩy a  b  c 

Ngày đăng: 12/12/2022, 21:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w