1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING RKETING

46 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phân Tích Bộ Dữ Liệu Bank Marketing
Tác giả Lương Trương Quốc, Hoàng Võ Cao Sơn, Mai Thị Yến Nhi, Nguyễn Đức Thắng, Trần Nguyễn Trâm Yến, Nguyễn Thị Thúy Nga, Nguyễn Thị Minh Vương
Người hướng dẫn ThS. Trần Lê Phúc Thịnh
Trường học Đại học UEH
Chuyên ngành Khoa học dữ liệu
Thể loại tiểu luận
Năm xuất bản 2022
Thành phố Tp.HCM
Định dạng
Số trang 46
Dung lượng 5,1 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC UEH TRƯỜNG KINH TẾ, LUẬT VÀ QUẢN LÝ NHÀ NƯỚC UEH KHOA KINH TẾ TIỂU LUẬN Môn học: KHOA HỌC DỮ LIỆU Tp.HCM, tháng 11 năm 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC UEH TRƯỜNG KINH TẾ, LUẬT VÀ QUẢN LÝ NHÀ NƯỚC UEH KHOA KINH TẾ Đề tài: PHÂN TÍCH BỘ DỮ LIỆU BANK MARKETING Giảng viên hướng dẫn: ThS Trần Lê Phúc Thịnh Siinnh viiêên thhựực hiiệện Lưươơnng Trruunng Quuốốc Hoàng Võ Cao Sơn Mai Thị Yến Nhi Nguyễn Đức Thắng Trần Nguyễn Trâm Yến Nguyễn Thị Thúy Nga Nguyễn Thị Minh Vương Mã lớp học phần: 21C1MAR5030011 LỜI CẢM ƠN Để hoàn thành tiểu luận này, em xin gửi lời chân thành đến: Giảng viên môn Khoa học Dữ liệu - Trần Lê Phúc Thịnh giảng dạy tận tình, nhiệt tình chi tiết để chúng em có kiến thức vận dụng chúng vào tiểu luận Ban giám hiệu trường Đại học UEH tạo điều kiện sở vật chất với hệ thống thư viên đại, tài liệu thuận lợi cho việc tìm kiếm, ngun cứu thơng tin Do chưa có nhiều kinh nghiệm làm đề tài hạn chế kiến thức, tiểu luận chắn khơng tránh khỏi thiếu sót Rất mong nhận nhận xét, ý kiến đóng góp, phê bình từ phía thầy để tiểu luận hồn thiện Lời cuối cùng, em xin kính chúc thầy nhiều sức khỏe, thành công hạnh phúc “MỤC LỤC DANH MỤC HÌNH ẢNH LỜI CẢM ƠN LỜI MỞ ĐẦU CHƯƠNG 1: GIỚI THIỆU VỀ KHOA HỌC DỮ LIỆU VÀ GIỚI THIỆU ĐỀ TÀI 1.1 Giới thiệu Khoa học liệu 1.2 Giới thiệu đề tài “Phân tích dự đốn rời khách hàng lĩnh vực viễn thông” 1.2.1 Lý chhọọn đề tàài 1.2.2 Mục tiêiêu nghiêiên cứứu 1.2.3 Phương pháp thực 1.2.4 Ý ngghhĩĩa 10 CHƯƠNG 2: TỔNG QUAN VỀ CHƯƠNG TRÌNH SỬ DỤNG VÀ CÁC PHƯƠNG PHÁP SỬ DỤNG 10 2.1 Tổng quan phần mềm Orange 10 2.1.1 Mô tả sơ lược phần mềm Orange 10 2.1.2 Các tính 11 2.2 Tổng quan phương pháp sử dụng 18 2.2.1 Tiền xử lý liệu 18 2.2.2 Phân lớp liệu 19 2.2.3 Phân cụm liệu 21 CHƯƠNG 3: MƠ HÌNH NGHIÊN CỨU ĐỀ XUẤT 25 3.1 Bộ liệu Telecom Customer Churn 25 3.2 Giải thích thuộc tính liệu “Telecom Customer Churn” 25 CHƯƠNG 4: KẾT QUẢ THỰC HIỆN 31 4.1 Tiền xử lí liệu 31 4.1.1 Chọn số lượng khảo sát 32 4.1.2 Loại bỏ biếiến không phù hợp 32 4.2 Phân lớp liệu.(lưu ý thứ tự thực hiện) 36 4.2.1 Các phương pháp đánh giá 36 4.2.2 Dự bááoo: 42 4.3 Phân cụm liệu.(lưu ý thứ tự thực hiện) 43 4.3.1 Phương pháp Hierarchical lustering …………….… ……………44 4.3.2 Phương pháp K-means 45"" KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN 48 Kết luận 48 Hướng phát triển 49 TÀI LIỆU THAM KHẢO 50"" DANH MỤC HÌNH ẢNH Hình : Phần mềm orange 11 Hình : Chọn chức Datasets 20 Hình : Chọn liệu Banking Marketing từ Datasets 20 Hình : Liên kết Datasets vào Data Table 21 Hình : Kết liệu Banking Marketing Data Table 21 Hình : Quy trình tiền xử lý liệu 22 Hình : Các bước thực xử lý liệu Preprocess 22 Hình : Kết liệu Data_Tiền xử lý liệu với mẫu 4119 quan sát 23 Hình : Quy trình tạo File Training Data File Testing Data 23 Hình 10 : Data Sampler File Training Data 24 Hình 11 : Data Sampler File Testing Data 24 Hình 12 : Dữ liệu đầu vào 25 Hình 13 : Lựa chọn chức 26 Hình 14 : Kết phân cụm 26 Hình 15 : Kết phân cụm theo số Silhouette 27 Hình 16 : Chỉ số Silhouette cao cụm 28 Hình 17 : Phân cụm với phương pháp Hierarchical clustering .28 Hình 18 : Dữ liệu đầu vào 29 Hình 19 : Phân Cụm với chứng K-means 29 Hình 20 : Bảng kết phân cụm 30 Hình 21 : Bảng kết phân cụm 31 Hình 22 : Bảng kết phân cụm 31 Hình 23 : Bảng số Silhouette Scores cao cụm 32 Hình 24 : Mơ hình phân cụm phương pháp K-means 32 Hình 25 : Mơ hình phân cụm liệu Bank Marketing 33 Hình 26 : Insert File Training Data vào hộp chức File 33 Hình 27 : Mơ hình phân lớp liệu 34 Hình 28 : Kết chi mẫu liệu thành phần 35 Hình 29 : Kết chia mẫu liệu thành 10 phần 35 Hình 30 : Kết chia mẫu liệu với tỷ lệ 10% - 60% 36 Hình 31 : Kết chia mẫu liệu với tỷ lệ 20% - 70% 36 Hình 32 : Kết ma trận nhầm lẫn phương pháp Logistic Regression 37 Hình 33 : Kết ma trận nhầm lẫn phương pháp Decision Tree 38 Hình 34 : Kết ma trận nhầm lẫn phương pháp SVM .38 Hình 35 : Kết ROC Analysis 39 Hình 36 : Testing Data 40 Hình 37 : Dự báo Prediction với phương pháp Logistic Regression 40 Hình 38 : Kết dự báo Logistic Regression 100 mẫu liệu 41 CHƯƠNG 1: GIỚI THIỆU VỀ KHOA HỌC DỮ LIỆU VÀ GIỚI THIỆU ĐỀ TÀI 1.1 Giới thiệu khoa học liệu Khoa học liệu lĩnh vực áp dụng kỹ thuật phân tích tiên tiến nguyên tắc khoa học để trích xuất thơng tin có giá trị từ liệu cho việc định kinh doanh, lập kế hoạch chiến lược mục đích sử dụng khác Nó ngày quan trọng doanh nghiệp: Những hiểu biết sâu sắc mà khoa học liệu tạo giúp tổ chức tăng hiệu hoạt động, xác định hội kinh doanh cải thiện chương trình tiếp thị bán hàng, với lợi ích khác Cuối cùng, chúng dẫn đến lợi cạnh tranh so với đối thủ kinh doanh Khoa học liệu kết hợp nhiều lĩnh vực khác - ví dụ, kỹ thuật liệu, chuẩn bị liệu, khai thác liệu , phân tích dự đốn, học máy trực quan hóa liệu, thống kê, tốn học lập trình phần mềm Khoa học liệu đóng vai trị quan trọng tất khía cạnh hoạt động chiến lược kinh doanh Ví dụ, cung cấp thông tin khách hàng giúp công ty tạo chiến dịch tiếp thị mạnh mẽ quảng cáo nhắm mục tiêu để tăng doanh số bán sản phẩm Nó hỗ trợ việc quản lý rủi ro tài chính, phát giao dịch gian lận ngăn ngừa cố thiết bị nhà máy sản xuất sở công nghiệp khác Nó giúp chặn cơng mạng mối đe dọa bảo mật khác hệ thống CNTT Khoa học liệu quan trọng lĩnh vực ngồi hoạt động kinh doanh thơng thường Trong chăm sóc sức khỏe, ứng dụng bao gồm chẩn đốn tình trạng y tế, phân tích hình ảnh, lập kế hoạch điều trị nghiên cứu y tế Các tổ chức học thuật sử dụng khoa học liệu để theo dõi kết hoạt động sinh viên cải thiện hoạt động tiếp thị họ tới sinh viên tương lai Các đội thể thao phân tích hiệu suất người chơi lập kế hoạch chiến lược trị chơi thơng qua khoa học liệu Các quan phủ tổ chức sách cơng người sử dụng lớn Vòng đời khoa học liệu bao gồm sáu bước sau: Xác định giả thuyết liên quan đến kinh doanh để kiểm tra Thu thập liệu chuẩn bị để phân tích Thử nghiệm với mơ hình phân tích khác Ta thấy với số cụm số Silhouette Scores có số cao nên ta chọn số cụm phân cụm B4: Xuất kết phân cụm thành bảng Hình 20: Bảng kết phân cụm Hình 21: Bảng kết phân cụm Hình 22: Bảng kết phân cụm Hình 23: Bảng số Silhouette Scores cao cụm Hình 24: Mơ hình phân cụm phương pháp K-means Hình 25: Mơ hình phân cụm liệu Bank Marketing 3.3 Phân lớp liệu Đầu tiên, lấy File Training chọn biến y target để tiến hành phân lớp Hình 26: Insert File Training Data vào hộp chức File 3.3.1 Các phương pháp đánh giá 3.3.1.1 Test and Score Sử dụng Test and Score để so sánh đánh giá phương pháp (Logistic Regression, Tree SVM), để lựa chọn phương pháp tốt nhất, xác phục vụ cho việc dự báo Hình 27: Mơ hình phân lớp liệu Tại bảng Test and Score, chọn tỷ lệ khác Cross validation Random Sampling để có kết tốt Cross validation với Number of folds (chia mẫu liệu thành phần): Hình 28: Kết chi mẫu liệu thành phần Hình 29: Kết chia mẫu liệu thành 10 phần Random sampling với tỷ lệ 10% - 66%: Hình 30: Kết chia mẫu liệu với tỷ lệ 10% - 60% Random sampling với tỷ lệ 20% - 70%: Hình 31: Kết chia mẫu liệu với tỷ lệ 20% - 70% - Đánh giá: Mục Evaluation Results thể kết định lượng mơ hình Logistic Regression, Tree SVM Khi xem xét số, ta thấy phương pháp Logistic Regression trường hợp chia lấy mẫu liệu với tỷ lệ 20% - 70% tốt với số liệu: + Diện tích đường cong AUC: 92,2% - số liệu tốt so với phương án khác + Độ phủ (Recall): 91,3% + Tính xác (CA): 91,3% + Giá trị trung bình điều hịa (F1): 90,4% + Độ xác (Precision): 90,2% 3.3.1.2 Ma trận nhầm lẫn – Confusion Matrix Hình 32: Kết ma trận nhầm lẫn phương pháp Logistic Regression Hình 33: Kết ma trận nhầm lẫn phương pháp Decision Tree Hình 34: Kết ma trận nhầm lẫn phương pháp SVM - Đánh giá: Trong Confusion Matrix, số liệu cần ý Sai lầm loại Sai lầm loại (mơ hình tốt xác mơ hình có tỷ lệ hai sai lầm thấp nhất) Ta thấy, phương pháp Logistic Regression có tỷ lệ Sai lầm loại Sai lầm loại thấp (lần lượt 6,9% 32,6%) Vì vậy, phương pháp pháp Logistic Regression phù hợp 3.3.1.3 ROC Analysis Hình 35: Kết ROC Analysis - Đánh giá: Một mơ hình hiệu có FP Rate thấp TP Rate cao, hay nói cách khác phương pháp có đường cong ROC tiệm cận với điểm (0;1), phương pháp tốt xác Logistic regression có đường cong ROC tiệm cận với điểm (0;1) nên phương pháp tốt Kết luận: Từ Test and Score, Confusion Matrix ROC Analysis Logistic Regression phương pháp tốt để lựa chọn 3.3.2 Dự báo Sau đánh giá mơ hình phân lớp lựa chọn mơ hình tốt Logistic Regression, ta lấy phương pháp để dự báo cho 100 mẫu Sử dụng Testing Data để tiến hành dự báo: Hình 36: Testing Data Hình 37: Dự báo Prediction với phương pháp Logistic Regression Hình 38: Kết dự báo Logistic Regression 100 mẫu liệu Lưu kết dự báo thành file excel có tên Du Bao CHƯƠNG 4: KẾT LUẬN VÀ ĐỀ XUẤT Kếết lluuậận Về phân cụm, kết cho thấy với liệu ban đầu cho thấy tỷ lệ phân cụm sát với thực tế, mơ hình phân cụm hoàn toàn phù hợp Về phân lớp, qua đánh giá kết thấy Logistic Regression phương pháp phù hợp cho liệu Nội dung nghiên cứu đề tài, nhóm chúng tơi đưa phân tích phân cụm liệu phần mềm Orange tiến hành khai thác xử lý chúng để đưa liệu cần thiết Các liệu lại tối ưu hoá đem vào sử dụng cách hiệu sở liệu lưu trữ phần mềm Excel Đề tài sâu vào tính ứng dụng đưa cách thức xử lý liệu cách phù hợp linh hoạt Thực phân tích liệu mang lại nhiều lợi ích khác chẳng hạn đoán liệu khách hàng có đăng ký khoản tiền gửi có kỳ hạn hay khơng dựa hồ sơ khách hàng có thuộc tính: tuổi, cơng việc, tình trạng nhân, học vấn,… Mục đích cuối thu hút khách hàng quay lại Nó mang lại tính ổn định tạo khách hàng trung thành mang lại giá trị cho ngân hàng dài hạn tạo doanh thu lợi nhuận lớn Dự đoán mẫu thường xuyên từ tập liệu xác định cách sử dụng khai thác quy tắc kết hợp sử dụng thuật toán apriori Hướng phát triểiển Từ toán phân tích ta thấy nay, với phát triển công nghệ thông tin xu hướng bùng nổ mạng xã hội đời sống dẫn đến hoạt động marketing phải thay đổi theo hướng thích nghi với sống, Bank Marketing đưa nỗ lực ngân hàng nhằm thỏa mãn nhu cầu khách hàng thực mục tiêu lợi nhuận +Tận dụng tối đa lợi ích liệu Các marketer ngân hàng chắn thiếu thông tin liệu từ khách hàng tầm tay – từ lịch sử mua hàng nhân học nhiều – điều quan trọng marketer ngân hàng phải sử dụng liệu để tạo phân khúc có ý nghĩa xây dựng nên chiến lược nhắm mục tiêu tốt để tăng trải nghiệm phục vụ khách hàng phát triển doanh thu Chính điều tạo thúc đẩy cho hành trình phát triển dài lâu ngân hàng + Chú trọng vào việc tương tác với khách hàng Nhấn mạnh tương tác với khách hàng lĩnh vực ngân hàng, khách hàng có mức độ tương tác cao khách hàng có độ trung thành cao; trung thành khách hàng doanh thu tăng lên theo thời gian Trong nghiên cứu tương lai, muốn sử dụng loại liệu khác để thử nghiệm, chẳng hạn ngành tài giáo dục ngành… Thị trường tiêu dùng động châu Á địi hỏi cơng ty dịch vụ tài phải hiểu rõ học cách tiếp cận thay đổi - mặt xã hội, nhân học công nghệ Thập kỷ mang đến vô số hội cho nhà cung cấp tìm giải pháp phù hợp để tiếp cận cung cấp dịch vụ cho người tiêu dùng châu Á TÀI LIỆU THAM KHẢO https://www.simplilearn.com/tutorials/data-science-tutorial/whatis-data-science https://www.oracle.com/what-is-data-science/ https://www.techtarget.com/searchenterpriseai/definition/datascience https://archive.ics.uci.edu/ml/datasets/bank+marketing ... sổ phân tích , đánh giá độ hiệu đề xuất số hướng phát triển dành cho ??? Đó lý chọn đề tài: ? ?Phân tích liệu Bank Marketing qua thuật toán Orange” 1.2.2 Mục tiêu nghiên cứu Xử lý liệu Bank Makerting... NGHIÊN CỨU ĐỀ XUẤT VÀ KẾT QUẢ THỰC HIỆN 3.1 Tiền xử lí liệu Đầu tiên, ta nạp liệu Banking Marketing vào Datasets Các bước thực sau: Ta mở Datasets, tim liệu có tên Banking Marketing, sau chọn liệu. .. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC UEH TRƯỜNG KINH TẾ, LUẬT VÀ QUẢN LÝ NHÀ NƯỚC UEH KHOA KINH TẾ Đề tài: PHÂN TÍCH BỘ DỮ LIỆU BANK MARKETING Giảng viên hướng dẫn: ThS

Ngày đăng: 05/12/2022, 06:30

HÌNH ẢNH LIÊN QUAN

Hình 1: Phần mềm orange. 2.2 Tổng quan về các phương pháp sử dụng. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 1 Phần mềm orange. 2.2 Tổng quan về các phương pháp sử dụng (Trang 13)
CHƯƠNG 3: MƠ HÌNH NGHIÊN CỨU ĐỀ XUẤT VÀ KẾT QUẢ THỰC HIỆN. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
3 MƠ HÌNH NGHIÊN CỨU ĐỀ XUẤT VÀ KẾT QUẢ THỰC HIỆN (Trang 22)
Hình 4: Liên kết Datasets vào Data Table - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 4 Liên kết Datasets vào Data Table (Trang 23)
Hình 6: Quy trình tiền xử lý dữ liệu * Loại bỏ các biến không phù hợp - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 6 Quy trình tiền xử lý dữ liệu * Loại bỏ các biến không phù hợp (Trang 24)
Hình 8: Kết quả dữ liệu Data_Tiền xử lý dữ liệu với mẫu 4119 quan sát.. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 8 Kết quả dữ liệu Data_Tiền xử lý dữ liệu với mẫu 4119 quan sát (Trang 25)
Hình 11: Data Sampler của File Testing Data - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 11 Data Sampler của File Testing Data (Trang 26)
Hình 10: Data Sampler của File Training Data - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 10 Data Sampler của File Training Data (Trang 26)
Hình 12: Dữ liệu đầu vào. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 12 Dữ liệu đầu vào (Trang 27)
Hình 13: Lựa chọn chức năng. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 13 Lựa chọn chức năng (Trang 28)
Hình 14: Kết quả phân cụm. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 14 Kết quả phân cụm (Trang 28)
Hình 15: Kết quả phân cụm theo chỉ số Silhouette. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 15 Kết quả phân cụm theo chỉ số Silhouette (Trang 29)
Hình 16: Chỉ số Silhouette cao nhất của 2 cụm. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 16 Chỉ số Silhouette cao nhất của 2 cụm (Trang 30)
Hình 18: Dữ liệu đầu vào. B2: Phân cụm dữ liệu với chứng năng K-means - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 18 Dữ liệu đầu vào. B2: Phân cụm dữ liệu với chứng năng K-means (Trang 31)
B4: Xuất kết quả phân cụm ra thành từng bảng. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
4 Xuất kết quả phân cụm ra thành từng bảng (Trang 32)
Hình 21: Bảng kết quả phân cụm 1. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 21 Bảng kết quả phân cụm 1 (Trang 33)
Hình 23: Bảng chỉ số Silhouette Scores cao nhất của 2 cụm. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 23 Bảng chỉ số Silhouette Scores cao nhất của 2 cụm (Trang 34)
Hình 25: Mơ hình phân cụm dữ liệu Bank Marketing. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 25 Mơ hình phân cụm dữ liệu Bank Marketing (Trang 35)
Hình 27: Mơ hình phân lớp dữ liệu - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 27 Mơ hình phân lớp dữ liệu (Trang 36)
Hình 28: Kết quả chi mẫu dữ liệu thành 5 phần - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 28 Kết quả chi mẫu dữ liệu thành 5 phần (Trang 37)
Hình 30: Kết quả chia mẫu dữ liệu với tỷ lệ 10% - 60% - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 30 Kết quả chia mẫu dữ liệu với tỷ lệ 10% - 60% (Trang 38)
Hình 32: Kết quả ma trận nhầm lẫn của phương pháp Logistic Regression - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 32 Kết quả ma trận nhầm lẫn của phương pháp Logistic Regression (Trang 39)
Hình 33: Kết quả ma trận nhầm lẫn của phương pháp Decision Tree - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 33 Kết quả ma trận nhầm lẫn của phương pháp Decision Tree (Trang 40)
Hình 35: Kết quả ROC Analysis - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 35 Kết quả ROC Analysis (Trang 41)
Hình 36: Testing Data - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 36 Testing Data (Trang 42)
Hình 38: Kết quả dự báo bằng Logistic Regression của 100 mẫu dữ liệu Lưu kết quả dự báo thành file excel có tên là Du Bao. - TIỂU LUẬN đề tài PHÂN TÍCH bộ dữ LIỆU BANK MA  đề tài PHÂN TÍCH bộ dữ LIỆU BANK MARKETING  RKETING
Hình 38 Kết quả dự báo bằng Logistic Regression của 100 mẫu dữ liệu Lưu kết quả dự báo thành file excel có tên là Du Bao (Trang 43)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w