1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bai giang cap so cong

29 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 29
Dung lượng 565,75 KB

Nội dung

CHUYÊN ĐỀ BÀI GIẢNG CẤP SỐ CỘNG Mục tiêu  Kiến thức + Hiểu khái niệm cấp số cộng + Nắm công thức tổng quát, tổng n số hạng cấp số cộng + Biết số hạng đầu công sai cấp số cộng  Kĩ + Tìm yếu tố cịn lại biết yếu tố: số hạng đầu, số hạng thứ k, công sai, số số hạng, tổng n số hạng đầu cấp số cộng + Liên hệ kiến thức cấp số cộng để giải toán thực tế   Trang   I LÍ THUYẾT TRỌNG TÂM Định nghĩa Cấp số cộng dãy số (vô hạn hay hữu hạn) mà đó, kể từ số hạng thứ hai, số hạng tổng số hạng đứng trước với số d khơng đổi, nghĩa  un  cấp số cộng  n  2, un  un 1  d Số d gọi cơng sai cấp số cộng Định lí Nếu  un  cấp số cộng kể từ số hạng thứ hai, số hạng (trừ số hạng cuối cấp số cộng hữu hạn) trung bình cộng hai số hạng đứng kề dãy, tức uk  uk 1  uk 1 Hệ quả: Ba số a, b, c (theo thứ tự đó) lập thành cấp số cộng a + c = 2b Định lí Nếu cấp số cộng có số hạng đầu u1 cơng sai d số hạng tổng quát un xác định công thức sau: un  u1   n  1 d Định lí Giả sử  un  cấp số cộng có cơng sai d n Gọi S n   uk  u1  u2   un k 1 ( S n tổng n số hạng cấp số cộng) Ta có Sn  n  u1  un  n  2u1   n  1 d    SƠ ĐỒ HỆ THỐNG HÓA Nhận diện cấp số cộng số Số hạng tổng quát CẤP SỐ CỘNG un  un 1  d Số hạng thứ k Hệ Ba số a, b, c theo thứ tự lập thành cấp số cộng  n  2 Tổng n số hạng TOANMATH.com Trang   II CÁC DẠNG BÀI TẬP Dạng 1: Nhận dạng dãy số cấp số cộng Phương pháp giải Sử dụng định nghĩa  un  cấp số cộng un 1  un  d , với d số Để chứng minh dãy số  un  cấp số cộng, ta xét d  un 1  un  Nếu d số  un  cấp số cộng với công sai d  Nếu d phụ thuộc vào n  un  khơng cấp số cộng Ví dụ mẫu Ví dụ Chứng minh dãy số sau cấp số cộng a) Dãy số  un  với un  2020n  2021 b) Dãy số  un  với un  2n  Hướng dẫn giải a) Dãy số  un  với un  2020n  2021 Ta có un 1  un  2020  n  1  2021   2020n  2021  2020 Vậy  un  cấp số cộng với công sai d  2020 b) Dãy số  un  với un  2n  Ta có un 1  un  2  n  1    2n    2 Vậy  un  cấp số cộng với cơng sai d  2 Ví dụ Chứng minh dãy số sau cấp số cộng a) Dãy số  un  với un  n  n  b) Dãy số  un  với un   1  3n n Hướng dẫn giải a) Dãy số  un  với un  n  n  Ta có un 1  un   n  1   n  1    n  n  1  2n  phụ thuộc vào n Vậy  un  không cấp số cộng b) Dãy số  un  với un   1  3n n Ta có un 1  un   1 TOANMATH.com n 1 n n n n   n  1   1  3n     1    1    1 phụ thuộc vào n   Trang   Vậy  un  không cấp số cộng Bài tập tự luyện dạng Câu 1: Dãy số sau cấp số cộng? A 1; 3; 6; 9; 12 B 1; 4; 7; 10; 14 C 1; 2; 4; 8; 16 D 0; 4; 8; 12; 16 Câu 2: Trong dãy sau đây, dãy cấp số cộng? A un  3n B un   3 n 1 C un  3n  D un  5n  n 1 Câu 3: Một cấp số cộng  un  với u1   , d  có dạng khai triển sau đây? 2 1 A  ; 0; 1; ; 1; 2 C 1 B  ; 0; ; 0;  ; 2 ; 1; ; 2; ; 2 1 D  ; 0; ; 1; ; 2 Câu 4: Trong dãy số sau, dãy số cấp số cộng A 1; -2; -4; -6; -8 B 1; -3; -6; -9; -12 C 1; -3; -7; -11; -15 D 1; -3; -5; -7; -9 Câu 5: Trong dãy số sau dãy số cấp số cộng? A un  n  1, n  B un  2n  3, n  C un  n  1, n  D un   2  n 1 D un   3 n 1 , n  Câu 6: Trong dãy số sau đây, dãy số cấp số cộng? A un  3n  2020 B un  3n  2020 C un  3n Câu 7: Trong dãy số  un  sau đây, dãy số cấp số cộng? A un  3n  B un  2n  C un   n  1  n u1  D  un 1  un  1, n  Câu 8: Các dãy số sau có số dạng tổng quát un , dãy số cấp số cộng? A 1; 3; 5; 7; B 13; 17; 21; 25; 29 C un   3n D un   n  3  n Câu 9: Trong dãy số sau dãy số cấp số cộng? u1  1 A  un 1  2un  u1  1 B  un 1  un  C un  n D un   n  1 Câu 10: Dãy số cấp số cộng? A un  n  n ,  n  *  B un  3n  1,  n  *  C un  3n ,  n  *  D un  3n  ,  n  *  n2 Câu 11: Khẳng định sau sai? A Dãy số 0,1; 0,01; 0,001; 0,0001;… cấp số cộng  u1   1 B Dãy số  ;0; ;1; ; cấp số cộng với  2 d   TOANMATH.com Trang    u  1  C Dãy số ; ; ; cấp số cộng có ba số hạng  2 d   u  2 D Dãy số -2; -2; -2; -2;… cấp số cộng  d  Câu 12: Cho dãy số có số hạng đầu 8; 15; 22; 29; 36;… Viết công thức số hạng tổng quát? A un  7n  B un  7n C Không viết dạng công thức D un  n  Câu 13: Cho cấp số cộng hữu hạn 4; 7; 10; 13; 16;… 1; 6; 11; 16; 21;…; cấp số cộng có 100 số hạng Hỏi có tất số có mặt hai cấp số trên? A 21 B 20 C 18 D 19 Câu 14: Trong dãy số đây, dãy số cấp số cộng? A Dãy số  an  , với an   2n    4n , n  * B Dãy số  bn  , với b1  1, bn 1  3bn  4, n  * C Dãy số  cn  , với cn  2019 n , n  * D Dãy số  d n  , với d1  1, d n 1  2020 , n  * dn  Dạng 2: Tìm số hạng đầu tiên, công sai cấp số cộng, tìm số hạng thứ k cấp số cộng, tính tổng k số hạng Phương pháp giải Ta lập hệ phương trình gồm hai ẩn u1 d Sau giải hệ phương trình tìm u1 d Muốn tìm số hạng thứ k , trước tiên ta phải tìm u1 d Sau áp dụng cơng thức uk  u1   k  1 d Muốn tính tổng k số hạng đầu tiên, ta phải tìm u1 d Sau áp dụng cơng thức Sk  k  u1  uk  k  2u1   k  1 d   2 Ví dụ mẫu u1  u2  u3  Ví dụ Tìm số hạng đầu cơng sai cấp số cộng  2 u1  u2  u3  35 Hướng dẫn giải u1  u2  u3  u1  u1  d  u1  2d   Cách Ta có  2 2 u1  u2  u3  35 u1   u1  d    u1  2d   35 u1   d u1   d u   d     2 2 d  2 d    d      d   35 Với d   u1  Áp dụng công thức un  u1   n  1 d lập hệ phương trình gồm hai ẩn u1 d Với d  2  u1  Cách Đặt u1  x  d ; x2  x; u3  x  d TOANMATH.com Trang   u1  u2  u3   x  d  x  x  d  Ta có   2 2 u1  u2  u3  35  x  d   x   x  d   35 x  x   x      2 2 d  2   d      d   35 d  Với d   u1  Với d  2  u1  Ví dụ Tìm bốn số hạng liên tiếp cấp số cộng biết tổng chúng - Nếu số số hạng cấp số 20 tổng bình phương chúng 120 cộng lẻ gọi cơng sai Hướng dẫn giải Giả sử bốn số hạng a  3x; a  x; a  x; a  3x lập thành cấp số cộng với công d  x, chẵn gọi cơng sai d  x viết số hạng dạng đối xứng sai d  x  a  3x    a  x    a  x    a  3x   20 Khi ta có  2 2  a  3x    a  x    a  x    a  3x   120 4a  20 a     4a  20 x  120  x  1 Vậy bốn số cần tìm 2; 4; 6; - Nếu cấp số cộng  an  thỏa mãn a1  a2   an  p  2 2 a1  a2   an  s a1  n  n  1  1 d  p n  d  12  ns  p  n  n  1 Ví dụ Tìm số hạng đầu tiên, công sai, số hạng thứ 50 tổng 20 số u5  19 hạng cấp số cộng un , biết  u9  35 Áp dụng công thức un  u1   n  1 d Lập hệ phương trình Hướng dẫn giải Áp dụng công thức un  u1   n  1 d , u5  19 u  4d  19 u1    ta có  u9  35 u1  8d  35 d  Vậy số hạng u1  3, công sai d  gồm hai ẩn u1 d Để tính tổng k số hạng đầu tiên, ta áp dụng công thức Sk  k  2u1   k  1 d  Số hạng thứ 50 u50  u1  49d   49.4  199 Tổng 20 số hạng S50  50  2u1  49d   25  2.3  49.4   5050 Ví dụ Tìm số hạng đầu công sai cấp số cộng TOANMATH.com Trang    S4  20  b)  1 1 25  u  u  u  u  24   S12  34 a)   S18  45 Hướng dẫn giải 12  2u1  11d  31  u1   34   u  d  33 17  S12  34      a) Ta có  2u1  17d   S18  45 18  2u1  17d  d    45     2u1  3d   20  S4  20   b)  1 1 25   1 1 25  u  u  u  u  24        u1 u2 u3 u4 24  u1   d  1 25       3 3 24   d  d  d  d  2d  d  3d  2 2  *     1        d  1d  5 d 5 d   5 5 2   2  Đặt Áp dụng công thức k  2u1   k  1 d  Sk   Biểu diễn S4 theo hai ẩn u1 d Áp dụng công thức  * un  u1   n  1 d Lập hệ phương trình gồm hai ẩn u1 d   25 10 10 25     2 9d d 24  24 25  25   4 d2  t ; t  0, ta  25  t    25  9t  10 10 25     25  9t 25  t 24 24  25  9t  25  t   100  20t   24  20  4t    25  9t  25  t   25  9t  25  t  24  145 t  9t  154t  145     t  Nếu t  145 145 145  d2  d  9  Với d   Với d   145 145  u1   145 145  u1   Nếu t   d   d  1  Với d   u1   TOANMATH.com  2 Trang    Với d  1  u1   13  2 Ví dụ Biết u4  u8  u12  u16  224 Tính S19 Hướng dẫn giải Ta có u4  u8  u12  u16  224  u1  3d  u1  7d  u1  11d  u1  15d  224  4u1  36d  224  u1  9d  56 Ta có S19  19  2u1  18d   19  u1  9d   19.56  1064 Ví dụ Cho cấp số cộng  un  biết un   5n Tìm S100 Hướng dẫn giải Ta có un 1  un  9   n  1     5n   5, n  * Suy d  5, u1  Vậy S100  n  2u1   n  1 d   100  2.4  99  5    24350 Bài tập tự luyện dạng Câu 1: Số hạng đầu u1 công sai d cấp số cộng  un  có u2  7; u3  A u1  1; d  B u1  10; d  3 C u1  4; d  3 D u1  4; d  3 Câu 2: Cho cấp số cộng  un  với số hạng đầu u1  15 công sai d  2 Số hạng thứ cấp số cộng A u8  B u8  1 C u8  103 D u8  64 Câu 3: Cho cấp số cộng  un  có u1  1; d  2; Sn  483 Giá trị n A n  20 B n  21 C n  22 D n  23 u1  2 Số 70 số hạng thứ cấp số Câu 4: Cho cấp số cộng  un  xác định  un 1  un  cộng? A 15 B 23 C 25 D 205 Câu 5: Cho cấp số cộng  un  có u1  tổng 50 số hạng đầu 5150 Công thức số hạng tổng quát un A un   4n B un  5n C un   2n D un   3n Câu 6: Cho cấp số cộng  un  có un  2n  Biết Sn  320, giá trị n A n  16 n  20 B n  15 C n  20 D n  16 Câu 7: Cho dãy số  un  biết un  2n  Chọn khẳng định A  un  cấp số cộng với công sai d  B  un  cấp số cộng với công sai d  2 C  un  cấp số cộng với công sai d  D  un  cấp số cộng với công sai d  5 TOANMATH.com Trang   Câu 8: Cho cấp số cộng  un  biết u1  d  Lựa chọn kết kết sau A u15  u3  46 B u29  u22  28 C u17  u13  18 D u1000  u100  350 Câu 9: Cho dãy số  un  cấp số cộng có cơng sai d  Chọn khẳng định khẳng định sau A Dãy số u10 ; u20 ; u30 ; ; u10 n , n  theo thứ tự lập thành cấp số cộng với công sai 10 B Dãy số u10 ; u20 ; u30 ; ; u10 n , n  theo thứ tự lập thành cấp số cộng với công sai 20 C Dãy số u10 ; u20 ; u30 ; ; u10 n , n  theo thứ tự lập thành cấp số cộng với công sai 30 D Dãy số u10 ; u20 ; u30 ; ; u10 n , n  theo thứ tự lập thành cấp số cộng với công sai 15 Câu 10: Cho cấp số cộng  un  có cơng sai d Gọi Sn tổng n số hạng Hãy hệ thức sai hệ thức sau A u3  u8  u5  u6 B u5  u9  2u7 C u4 u9  u62 D S3  S5  2S4  d u1  2u5  Câu 11: Cho cấp số cộng  un  , biết  Số hạng đầu u1 công sai d  S4  14 A u1  8; d  3 B u1  8; d  C u1  8; d  3 D u1  8; d  u1  u5  u3  10 Câu 12: Số hạng đầu u1 công sai d cấp số cộng  un  có  u1  u6  A u1  33; d  12 B u1  36; d  13 C u1  35; d  13 D u1  34; d  13 Câu 13: Cấp số cộng  un  có S6  18, S10  110 tổng 20 số hạng A 620 B 280 C 360 D 153 Câu 14: Cho cấp số cộng un  5n  Biết Sn  16040, số số hạng cấp số cộng A 79 B 3024 C 80 D 100 Câu 15: Chọn khẳng định khẳng định sau Nếu số a, b, c khác lập thành cấp số cộng A nghịch đảo chúng lập thành cấp số cộng B bình phương chúng lập thành cấp số cộng C c, b, a theo thứ tự lập thành cấp số cộng D Tất khẳng định sai Câu 16: Cho cấp số cộng có S10  85, S15  240, S 20 A -325 B -170 C -395 D -470 Câu 17: Tổng tất số tự nhiên chẵn nhỏ 555 A 77145 B 77284 C 76450 D 77006 1 Câu 18: Cho cấp số cộng có u1  , d   Chọn khẳng định khẳng định sau đây? 4 A S5  TOANMATH.com B S5  5 C S5   4 D S5   Trang   Câu 19: Cho cấp số cộng  un  , với u1  2, d  3 Kết sau đúng? A u3  1 B u3  7 C u4  7 D u6  Câu 20: Cho cấp số cộng có u2  u22  60 Tổng 23 số hạng đầu A 690 B 680 C 600 D 500 Câu 21: Công sai d cấp số cộng hữu hạn có số hạng đầu u1  10 số hạng cuối u21  50 A d  B d  C d  D d  2 Câu 22: Tổng 10 số hạng đầu cấp số cộng có u1  8, u10  62 A S10  175 B S10  350 C S10  700 D S10  1400 Câu 23: Cho cấp số cộng có u1  1, d  2, Sn  483 Số số hạng cấp số cộng A n  20 B n  21 C n  22 D n  23 Câu 24: Cho cấp số cộng có tổng số hạng 22, tổng bình phương chúng 166 Bốn số hạng cấp số cộng A 1; 4; 7; 10 B 1; 4; 5; 10 C 2; 3; 5; 10 D 2; 3; 4; u2  u5  42 Tổng 346 số hạng đầu Câu 25: Cho cấp số cộng  un  thỏa mãn  u3  u10  66 A 242546 B 242000 C 241000 D 240000 Câu 26: Cho cấp số cộng  un  có u5  18 4Sn  S2 n Số hạng u1 công sai d cấp số cộng A u1  2; d  B u1  2; d  C u1  2; d  D u1  3; d  Câu 27: Cho cấp số cộng gồm số hạng 1, a,7, b Giá trị a, b A a  3, b  11 B a  2, b  C a  4, b  12 D a  7, b  1 Câu 28: Cho dãy số  an  có tổng n số hạng S n  2n  3n Khi A  an  cấp số cộng với công sai B  an  cấp số cộng với công sai C  an  cấp số cộng với công sai D  an  cấp số cộng với công sai Câu 29: Cho cấp số cộng  un  với số hạng đầu u1  6 công sai d  Tổng 14 số hạng cấp số cộng A 280 B 308 C 644 D 46 Câu 30: Cho cấp số cộng  un  gồm số hạng 2, a, 6, b Tích a.b A 12 B 32 C 40 D 22 Câu 31: Cho cấp số cộng có tổng n số hạng đầu S n  3n  4n, n  * Giá trị số hạng thứ 10 cấp số cộng A u10  55 TOANMATH.com B u10  67 C u10  61 D u10  59 Trang 10   Suy m  m  5 (thỏa mãn (*)) Vậy giá trị m cần tìm m  5; 7 Ví dụ Chứng minh rằng: Nếu phương trình x3 - ax  bx - c  có ba nghiệm lập thành cấp số cộng 9ab  2a3  27c Hướng dẫn giải Giả sử phương trình có ba nghiệm x1 , x2 , x3 lập thành cấp số cộng Suy x1  x3  x2 1 Mặt khác x - ax  bx  c   x  x1  x  x2  x  x3   x   x1  x2  x3  x   x1 x2  x2 x3  x3 x1  x  x1 x2 x3 Suy x1  x2  x3  a   a Từ (1) (2), suy 3x2  a hay x2  3 a a a a Phương trình cho có nghiệm x2  , tức    a    b    c  3 3 3  2a ba   c   9ab  2a  27c (điều phải chứng minh) 27 Ví dụ Cho x ; ; y theo thứ tự lập thành cấp số cộng Tìm giá trị lớn giá trị nhỏ biểu thức P  xy  y Hướng dẫn giải Ta có x ; ; y theo thứ tự lập thành cấp số cộng nên x  y  Đặt x  sin  , y  cos  Ta có P  xy  y  sin  cos   cos    cos 2 sin 2  2  P   sin 2  cos 2 Phương trình P   sin 2  cos 2 theo biến  có nghiệm   P  1   3  12    P  2 Vậy max P  Đẳng thức sin 2  cos 2      sin  2        k  k    6  TOANMATH.com Trang 15   MinP   Đẳng thức sin 2  cos 2  2     sin  2    1      k  k    6  Bài tập tự luyện dạng Câu 1: Cho tổng   11  16   x  970 Giá trị x A 96 B 69 C 97 D Câu 2: Biết  x  1   x     x      x  28   155 Giá trị x A x  B x  1 C x  D x  3 Câu 3: Với giá trị x  x; x  5;1  x lập thành cấp số cộng? A x  B x  1 C x   D x   Câu 4: Chu vi đa giác 158 cm, số đo cạnh lập thành cấp số cộng với công sai d  cm Biết cạnh lớn 44 cm Số cạnh đa giác A B C D Câu 5: Phương trình x  10 x  m  có nghiệm phân biệt lập thành cấp số cộng Khi m thuộc khoảng sau đây? A m   0;5  B m   5;15  C m   25;  D m  15; 25  Câu 6: Cho tam giác ABC có ba góc A, B, C theo thứ tự lập thành cấp số cộng 𝐶 5𝐴 Số đo góc A, B, C A 10,120,50 B 15,105, 60 C 5, 60, 25 D 20, 60,100 Câu 7: Một công ty thực việc trả lương cho kĩ sư theo phương thức sau: Mức lương quý làm việc cho công ty 15 triệu đồng/quý kể từ quý làm việc thứ hai mức lương tăng thêm 1,5 triệu đồng quý Tổng số tiền lương kĩ sư nhận sau năm làm việc cho công ty A 495 triệu đồng B 279 triệu đồng C 384 triệu đồng D 558 triệu đồng Câu 8: Cho tam giác vuông có độ dài ba cạnh lập thành cấp số cộng với cơng sai d  Bán kính đường trịn ngoại tiếp R tam giác A R  B R  C R  1 D R  Câu 9: Độ dài ba cạnh tam giác vuông lập thành cấp số cộng Nếu cạnh trung bình cơng sai cấp số cộng A 7,5 B 4,5 C 0,5 D 1,5 Câu 10: Giá trị a, b để phương trình x3  ax  b  có ba nghiệm phân biệt lập thành cấp số cộng A b  0, a  B b  0, a  C b  0, a  D b  0, a  Câu 11: Một em học sinh dùng que diêm để xếp thành hình tháp có quy luật thể hình TOANMATH.com Trang 16   Số que diêm để xếp thành hình tháp 10 tầng A 69 que B 39 que C 420 que D 210 que Câu 12: Tam giác ABC có ba cạnh a, b, c thỏa mãn a , b , c theo thứ tự lập thành cấp số cộng Chọn khẳng định khẳng định sau A tan A, tan B, tan C theo thứ tự lập thành cấp số cộng B cot A, cot B, cot C theo thứ tự lập thành cấp số cộng C cos A, cos B, cos C theo thứ tự lập thành cấp số cộng D sin A,sin B,sin C theo thứ tự lập thành cấp số cộng Câu 13: Số đo góc tứ giác lồi lập thành cấp số cộng góc lớn gấp lần góc nhỏ Số đo góc nhỏ A 25 B 30 C 45 D 35 Câu 14: Người ta trồng 3420 theo hình tam giác sau: hàng thứ trồng cây, kể từ hàng thứ trở số trồng hàng nhiều so với hàng liền trước Hỏi có tất hàng cây? A 81 B 82 C 80 D 79 Câu 15: Chu vi đa giác 158 cm, cạnh đa giác lập thành cấp số cộng với công sai d  3cm Biết cạnh lớn có độ dài 44 cm, độ dài cạnh nhỏ đa giác A 32 cm B 33 cm n n C 38 cm D 35 cm n Câu 16: Giá trị n để C , C , C theo thứ tự lập thành cấp số cộng A n  B n  C n  D n  Câu 17: Giá trị x để 2;2 x  1;5 theo thứ tự lập thành cấp số cộng A x   B x   C x  D x  Câu 18: Cho A, B, C , D bốn số thực dương lập thành cấp số cộng Giá trị biểu thức A B C D  A2 C  B2 D -1 Câu 19: Cho x1 , x2 nghiệm phương trình x  3x  a  y1 , y2 nghiệm phương trình x  11x  b  Nếu x1 , x2 , y1 , y2 theo thứ tự lập thành cấp số cộng tích ab có giá trị A ab  1 TOANMATH.com B ab   585 C ab  585 D ab  54 Trang 17   Câu 20: Tìm m để phương trình x   2m  1 x  x  có ba nghiệm phân biệt lập thành cấp số cộng, ta m  a a , với a, b  , phân số tối giản Giá trị biểu thức P  a  b2 b b A P  13 B P  20 C P  D P  10 Câu 21: Cho tam giác A1B1C1 có độ dài cạnh Trung điểm cạnh tam giác A1B1C1 tạo thành tam giác A2 B2C2 , trung điểm cạnh tam giác A2 B2C2 tạo thành tam giác A3 B3C3 , Gọi P1 , P2 , P3 , chu vi tam giác A1 B1C1 , A2 B2C2 , A3 B3C3 , Giá trị biểu thức P  P1  P2  P3  A P  B P  24 C P  D P  18 Câu 22: Cửa hàng xếp 1089 hộp sơn theo số lượng 1; 3; 5; … (hộp) từ xuống (số hộp sơn hàng xếp từ xuống số lẻ liên tiếp hình bên dưới) Hàng cuối có hộp sơn? A 63 B 65 C 67 D 69 Câu 23: Một đội công nhân trồng xanh từ kilômet số đến kilômet số Cứ 20m trồng Hỏi có trồng? A 100 B 200 C 250 D 101 Câu 24: An từ thành phố quê thăm ông bà quãng đường 54 km Biết An 15km sau An trước 1km Thời gian An từ nhà quê A 27 B C D 15 Câu 25: Ngày thứ cửa hàng bán 10 cốc nước mía, ngày sau bán nhiều ngày hơm trước cốc nước mía Hỏi ngày thứ 10 cửa hàng bán cốc nước mía? A 15 cốc B 17 cốc C 19 cốc D 21 cốc Câu 26: Một nhóm gồm 3003 người xếp thành hình tam giác sau: hàng thứ có người, hàng thứ hai có người, hàng thứ ba có người,… Hỏi có hàng? A 75 B 76 C 77 D 78 Câu 27: Tổng tất giá trị m để phương trình x   m  1 x  2m   có bốn nghiệm phân biệt lập thành cấp số cộng A  40 B 40 C  32 D 32 ĐÁP ÁN Dạng Nhận dạng dãy số cấp số cộng TOANMATH.com Trang 18   1-D 2-C 3-D 4-C 11 - C 12 - D 13 - B 14 - A 5-B 6-B 7-B 8-C 9-B 10 - B HƯỚNG DẪN GIẢI CHI TIẾT Câu Dãy số 0; 4; 8; 12; 16 cấp số cộng có số hạng đầu u1  cơng sai d  Câu Ta có un  3n  cấp số cộng un 1  un  3  n  1  1   3n  1  Câu 1 Ta có u1   , u2  0, u3  , u4  1, u5  , 2 Câu Dãy số  un  có tính chất un 1  un  d gọi cấp số cộng Ta thấy dãy số 1; -3; -7; -11; -15 cấp số cộng có số hạng đầu cơng sai -4 Câu Ta có un 1  un   n  1   2n   2, n  Do dãy số đáp án B cấp số cộng theo định nghĩa Câu Ta có un 1  un   n  1  2020   3n  2020    un 1  un  Vậy dãy số cấp số cộng có cơng sai d  Câu Ta có un  n  khơng cấp số cộng un 1  un  2n 1  n Câu Xét dãy số un   3n , suy un 1   3n 1 Ta có un 1  un  2.3n , n  * Do un   3n khơng phải cấp số cộng Câu u1  1 Ta có  cấp số cộng un 1  un  u1  1  un 1  un   un 1  un  Câu 10 Ta có un  3n  1 n  *  cấp số cộng un 1  un   n  1   3n   số Câu 11 Xét đáp án C 1 1 1     nên dãy số ; ; ; không cấp số cộng 2 2 2 Câu 12 TOANMATH.com Trang 19   u   công thức tổng quát un  n  Dãy số 8; 15; 22; 29; 36; … cấp số cộng với  d  Câu 13 Gọi cấp số cộng thứ  un  cấp số cộng thứ hai   Ta có un  u1   n  1 d    n  1  un  3n  1; vk  v1   k  1 d    k  1  vk  5k  Với k , n  ,1  n  100,1  k  100 Ta có un  vk  3n   5k   3n   k  1 Mà hai số nguyên tố nên n chia hết cho Đặt n  5t , t    k  3t  Do  n  100,1  k  100 nên t  1; 2;3; ; 20 Câu 14 Ta có an   2n    4n , n  *  an  20n  25, n  * Do an 1  an  20, n  * nên  an  cấp số cộng với công sai d  20 Dạng Tìm số hạng đầu tiên, cơng sai cấp số cộng, tìm số hạng thứ k cấp số cộng, tính tổng k số hạng 1–B 2–A 3–D 4–C 5–A 6–D 7–A 8–B 9–C 10 – C 11 – A 12 – B 13 – A 14 – C 15 – C 16 – C 17 – D 18 – C 19 – C 20 – A 21 – C 22 – B 23 – D 24 – A 25 – A 26 – A 27 – A 28 – A 29 – A 30 – B 31 – C 32 – D 33 – C 34 – D 35 – A HƯỚNG DẪN GIẢI CHI TIẾT Câu Ta có u2  7; u3  suy d  3 từ u1   (3)  10 Câu Ta có un  u1   n  1 d  u8  u1  d  15  7.( 2)  Câu n  2u1   n  1 d   n  23  2.483  n     n  1   n  2n  483    Ta có Sn    n  21 Do n  * nên n  23 Câu u1  2  u1  2; d  Suy un  2   n  1  3n  Ta có  un 1  un  TOANMATH.com Trang 20   Từ 70  3n   n  25 Câu Ta có S50  50  2u1  49d   5150  d  Số hạng tổng quát cấp số cộng un  u1   n  1 d   n Câu Ta có u1  suy S n  n   2n  3  n  4n Câu u  3 un  n     d  u2  u1  u2  1 Câu u15  u3  u1  14d   u1  2d   12d  48  loại A; u29  u22  u1  28d   u1  21d   d  28 chọn B; u17  u13  u1  16d   u1  12d   4d  16  18 loại C; u1000  u100  900d  350 loại D Câu Gọi  an  cấp số cộng theo thứ tự u10 ; u20 ; u30 ; ; u10 n , n  1, lúc ta có a1  u10  u1  9d  d '  a2  a1  10d  30  a2  u20  u1  19d Câu 10 Ta có u4 u9   u1  3d  u1  8d   u12  24d  11u1d u62   u1  5d   u12  25d  10u1d Suy u4 u9  u62 Câu 11 u1   u1  4d   u  2u5  3u1  8d  u  Ta có     d  3  2u1  3d   S  14 2  2u1  3d   14 Câu 12 u1  u5  u3  10 u1  2d  10 u  36 u1   u1  4d    u1  2d   10    Ta có  d  13 2u1  5d  u1  u6  u1   u1  5d   Câu 13  S6  18 2u  5d  u  7 3  2u1  5d   18    Ta có  d  2u1  9d  22  S10  110 5  2u1  9d   110 TOANMATH.com Trang 21   Từ mà S 20  10  2u1  19d   10   7   19.4   620 Câu 14 Ta có cấp số cộng: un  5n  nên u1  3, u2  8,  d  n n  2u1   n  1 d   16040   2.3   n  1 5  16040 2  n  80  5n  n  32080     n  80  n   401 (loai)  S n  16040  Câu 15 Không tổng quát giả sử a  b  c  c  b  b  a  d với d công sai Khi b 1 1 d 1 d nên loại A        a b a a  d a  a  d  b c  a  d  a  2d   a  2ad  d    c  b  2ad  3d  nên loại B Nếu a, b, c lập thành cấp số cộng với công sai d c, b, a lập thành cấp số cộng với công sai –d Câu 16  S10  S1  9d  85  S  194   S20  S1  19d  395   S15  S1  14d  240 d  31 Câu 17 Theo giả thiết    552  554  278.554  77006 Câu 18  1 Theo giả thiết S5  5u1  10d   10      4  4 Câu 19 Ta có u4  u1  3d    3   7, u6  u1  5d    3   13 Câu 20 u2  u22  60  2u1  22d  60  S23  23 23.60  690  2u1  22d   2 Câu 21 u1  10 u  10 u  10   Ta có  u21  50 u1  20d  50 d  Câu 22 u1  u  u    Ta có  u1  9d  62 d  u10  62 Suy S10   2u1  9d    2.8  9.6   350 TOANMATH.com Trang 22   Câu 23 n n 2u1   n  1 d   483    1   n  1   483  2  n  23  n  2n  483     n  23  n  21(loai ) S n  483  Câu 24 u1  u2  u3  u4  22  4u1  6d  22 u  10 u      2 2 d  3 d   4u1  12u1d  14d  166 u1  u2  u3  u4  166 Câu 25 u2  u5  42 2u  5d  42 u  11 346    S346   2.11  345.4   242546  u3  u10  66 2u1  11d  66 d  Câu 26 Ta có u5  18  u1  4d  18 1  n  n  1 d   2n  2n  1 d  S n  S n   nu1     2nu1   2      4u1  2nd  2d  2u1  2nd  d  2u1  d   2 Từ (1) (2) suy u1  2; d  Câu 27 Ta có a    a  a  3;7  a  b   b  14   11 Câu 28 Ta có số hạng thứ n dãy an  S n  S n 1  2n  3n   n  1   n  1  4n  Suy an 1  4n  Khi an 1  an     an  cấp số cộng với công sai Câu 29 Ta có S14  n  2u1   n  1 d   280 2 Câu 30 Ta có a    a  a  4;6  a  b   b   a.b  32 Câu 31 Từ giả thiết ta có S1  u1  3.12  4.1  Ta có S n  3n  4n  n   6n  n   6n  1   un  6n   u10  61 2 Cách khác un  S n  S n 1  u10  S10  S9  3.102  4.10   3.92  4.9   61 Câu 32 TOANMATH.com Trang 23   Xen hai số 24 thêm số để cấp số cộng có số hạng S8   u1  u8     24   108 2 Câu 33 Ta có d   25  4 Do u50  u1  49d  25  49.4  171 Câu 34 Gọi d công sai cấp số cho Ta có S100  50  2u1  99d   24850  d   5S  497  2u1 5 99 5    u1u2 u2u3 u49u50  u u u2  u1 u3  u2    50 49 u1u2 u u3 u49u50  1 1 1 1         u1 u2 u2 u3 u48 u49 u49 u50  1 1 245 49     S 246 u1 u50 u1 u1  49d 246 Câu 35 u5  3u3  u2  21 u1  4d   u1  2d    u1  d   21 3u1  9d  21 u1     Ta có   d  3 u1  12d  34 3u7  2u4  34 3  u1  6d    u1  3d   34 S  u4  u5   u30  S30  S3  30 2.2  29  3    2.2  2.3  1242  2 Dạng Dựa vào tính chất cấp số cộng: chứng minh đẳng thức, giải phương trình tốn thực tế 1–A 2–A 3–D 4–D 5–B 6–D 7–B 8–D 9–D 10 – C 11 – D 12 – D 13 – B 14 – C 15 – D 16 – D 17 – C 18 – C 19 – B 20 – C 21 – B 22 – B 23 – D 24 – B 25 – D 26 – C 27 - D HƯỚNG DẪN GIẢI CHI TIẾT Câu Giả sử x  un Khi cấp số cộng có cơng sai d  Do   11   x  2u1   n  1 d   n  1 n  n  970 2  n  20  5n  3n  1940    Ta có x  u20  u1  19d   19.5  96  n   97  Câu TOANMATH.com Trang 24   Ta có  x  1   x     x      x  28   155 Do x   x  28 10  155  x  29  31  x  Câu Để số  3x; x  5;1  x lập thành cấp số cộng  x    1  x   1  x   x  x   (phương trình vơ nghiệm)  Khơng tìm x thỏa u cầu Câu Ta có 158  44  41  38  35 nên đa giác có cạnh Câu x  10 x  m  1 Đặt t  x , t  0, phương trình (1) trở thành t  10t  m   2 Phương trình (1) có nghiệm số hạng liên tiếp cấp số cộng phương trình (2) có nghiệm dương phân biệt thỏa mãn t2  9t1  *  ,  t2  t1   '  25  m     m  25 Điều kiện phương trình (2) có nghiệm dương phân biệt  P  m   S  10       t2  t1  10  Theo định lý Vi-ét  t2 t1  m Từ     suy t * ** ** ***  1, t2  vào   ta m  (nhận) *** Câu ABC có ba góc A, B, C theo thứ tự lập thành cấp số cộng  𝐴 𝐴 Ta có 𝐵 𝐶 180  𝐴 𝐶 2𝐵 𝐶 5𝐴 𝐴 𝐵 𝐶 𝐶 2𝐵 20 60 100 Câu Gọi un (triệu đồng)  n  N *  mức lương kỹ sư quý làm việc thứ n Ta có u1  15; d  1,5 Đến quý thứ 12 mức lương kỹ sư u12  u1  11d  31,5 (triệu đồng) Vậy tổng số tiền nhận kỹ sư sau năm S12  u1  u2   u12  12 15  31,   279 (triệu đồng) Câu Gọi độ dài cạnh tam giác cần tìm a, a  2, a   a   TOANMATH.com Trang 25   a  2 Theo ra, ta có a   a     a    a - 4a -12     a  -2 Suy độ dài cạnh huyền   10 Vậy R  Câu Theo giả thiết  - d   62    d   36 -12d  12d  d  2 36  24 Câu 10 Giả sử phương trình cho có ba nghiệm phân biệt x1 , x2 , x3 theo thứ tự lập thành cấp số cộng Suy x2  x1  x3 Mặt khác  x - x1  x - x2  x - x3    x -  x1  x2  x3  x   x1 x2  x2 x3  x3 x1  x - x1 x2 x3  Đồng với phương trình x3  ax  b  Suy x1  x2  x3   x2  Thay x2  vào phương trình cho, ta b  x  Phương trình cho trở thành x  ax    x  a  1 Để phương trình cho có nghiệm phân biệt phương trình (1) có hai nghiệm phân biệt  a  Vậy b  0,a  Câu 11 Ta có số que diêm để xếp tầng đế tháp cấp số cộng với u1  3; d  Suy số que diêm để xếp tầng đế tháp 10 u10  u1  9d  39 Từ số que diêm để xếp hình tháp 10 tầng S10  u1  u2   u10  10   39   210 que Câu 12 Áp dụng định lý sin tam giác ABC ta có a  R sin A, b  R sin B, c  R sin C Theo giả thiết a , b , c theo thứ tự lập thành cấp số cộng nên a  c  2b2  R sin A  4R sin C  2.4R sin B  sin A  sin C  2.sin B Vậy sin A,sin B,sin C theo thứ tự lập thành cấp số cộng Câu 13 Gọi góc nhỏ x, ta có bốn góc x, x  d , x  2d , x  3d (với d công sai)  x   x  d    x  2d    x  3d   360 Ta có hệ   x  3d  x TOANMATH.com Trang 26   Giải hệ ta tìm x  30 Câu 14 Giả sử trồng n hàng  n  1, n    Số hàng lập thành cấp số cộng có u1  công sai d  Theo giả thiết S n  3240   n  80 n  2u1   n  1 d   3240  n  n  1  6480  n  n  6480     n  81 Kết hợp với điều kiện, ta n  80 Vậy có tất 80 hàng Câu 15 Giả sử đa giác có n cạnh; độ dài cạnh thứ tự lập thành cấp số cộng với công sai d  3cm u1 ; u2 ; ; un Từ giả thiết ta có un  44 u1  47  3n un  44 u  35  u1  3n  47    u1  un  n      158 n  u1  44   316 n   S n  158  3n  91n  316   Câu 16 Ta có Cn1  Cn3  2Cn2  n    n  n! n! n!    n2  9n  14    n7  n  1! 3!  n  3! 2!  n  ! n   n  3 Câu 17 Ta có 2;2 x  1;5 theo thứ tự lập thành cấp số cộng nên x    2     x  1  x  Câu 18 Ta có B  A  d , C  A  2d , D  A  3d A  3d   A2  D  A2 Ad  9d    C  B  A  2d 2   A  d 2 Ad  3d 2 Khi Câu 19 Phương trình x  3x  a  (có nghiệm a  )  x1  x2  Theo định lý Vi-ét, ta có   x1.x2  a Phương trình x2  11x  b  (có nghiệm b  TOANMATH.com 121 ) Trang 27    y1  y2  11 Theo định lý Vi-ét, ta có   y1 y2  b Theo x1 , x2 , y1 , y2 theo thứ tự lập thành cấp số cộng với công sai d nên   x1  d   x1     x1  5d  11  d   13 585 Suy a.b     2 Câu 20 x  Ta có x   2m  1 x  x  1    x   2m  1 x     Phương trình (2) ln có hai nghiệm trái dấu x1 , x2 ac   9   9  Do phương trình (1) ln có ba nghiệm phân biệt x1   x2 Để ba nghiệm lập thành cấp số cộng x1  x2  2.0  2m    m   Vậy P  Câu 21 Ta có P2  1 1 1 P1 ; P3  P2  P1 ; P4  P3  P1 ; Pn  n 1 P1 2 1 P Vậy P  P1  P2  P3   P1  P1  P1  P1    P1  24 1 Câu 22 Giả sử 1089 xếp thành n hàng Từ giả thiết ta có số hộp sơn hàng số hạng cấp số cộng  un  với số hạng đầu u1  cơng sai d  Do S n  1089  n  n  n  1  1089  n  33 Vậy số hộp sơn hàng cuối u33   32.2  65 (hộp sơn) Câu 23 Khoảng cách từ đến mốc ki-lô-mét tạo thành cấp số cộng có cơng sai d  20 m TOANMATH.com Trang 28   Ta có un  u1   n  1 d  6000   n  1 20 Cây cuối vị trí ki-lơ-mét nên ta có 8000  6000   n  1 20  n  101 Câu 24 Quãng đường An cấp số cộng Ta có S n  n  n n  2u1   n  1 d   54  30   n  1  1   n  31n  108    2  n  27 Với n  27 u27  u1   27  1 d  11 nên vô lý Vậy An từ nhà quê hết Câu 25 Số cốc nước bán ngày lập thành cấp số cộng với công sai d  Số cốc nước bán ngày thứ 10 u10  u1  9d  10  9.1  19 Câu 26 Gọi n số hàng cần tìm, ta có     n  3003  n  n  1  n  77  3003    n  77  n  78 Câu 27 Đặt t  x , t  0, ta thu phương trình t   m  1 t  2m    2 Điều kiện để phương trình ban đầu có bốn nghiệm phân biệt phương trình (2) có hai nghiệm dương m   t1 , t2  t1  t  hay  m   Khi bốn nghiệm  t2 ,  t1 , t1 , t2 Điều kiện để bốn nghiệm lập thành cấp số cộng t2  t1  t1 hay t2  9t1 Kết hợp định lý Vi-ét tìm m  4, m   Từ tổng giá trị m TOANMATH.com 32 Trang 29 ... ta trồng 3420 theo hình tam giác sau: hàng thứ trồng cây, kể từ hàng thứ trở số trồng hàng nhiều so với hàng liền trước Hỏi có tất hàng cây? A 81 B 82 C 80 D 79 Câu 15: Chu vi đa giác 158 cm, cạnh

Ngày đăng: 04/12/2022, 15:14

HÌNH ẢNH LIÊN QUAN

Câu 11: Một em học sinh dùng các que diêm để xếp thành hình tháp có quy luật được thể hiện như trong - bai giang cap so cong
u 11: Một em học sinh dùng các que diêm để xếp thành hình tháp có quy luật được thể hiện như trong (Trang 16)
Câu 14: Người ta trồng 3420 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng - bai giang cap so cong
u 14: Người ta trồng 3420 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng (Trang 17)
A. 69 que. B. 39 que. C. 420 que. D. 210 que. - bai giang cap so cong
69 que. B. 39 que. C. 420 que. D. 210 que (Trang 17)