Cong nghiip rirng DONG CUA TO TAI SAN X U A T LAP RAP VIET NAM KHI VAJV CHUYEN GO CO TINH DEN XOAN CUA KHUNG XE \JDAO Nguyen Hdng Quang', Nguyin Van B a n g \ Nguyin Nhat Chieu^ '•^Trucmg Dai hpc Ldm nghiep 'Tmcmg Dai hpc Giao thong Van tai TOM TAT to tai san xuat lap rap a Viet Nam da va dang diigfc sir dung de van chuyen go rimg Do chuyen dong tren duong lam nghiep chat lugmg khong cao, hay gap map mo, nen xe thuang bi dao dong lam giam em diu chuyen dong va lam cho khung xe bi xoan Bai bao trinh bay ket qua xay dung mo hinh toan hgc va khao sat dao dgng ciia xe tai cho go co tinh den sir xoan khung xe Tu khoa: Do em dju chuyen dgng, dutmg lam nghiep, mo hinh toan hoc, o to tai, van chuyen go rimg I DAT VAN DE Hien cd nhieu ca sd nude lien doanh vdi nude ngoai san xuat \ a lap rap cac loai xe tai nhd va trung binh Da cd nhieu cac cdng ty, hd san xuat kinh doanh rimg su dung loai xe vao viec van chuyen gd rimg trdng Su dung cac loai xe khdng ddi hdi vdn ldn cho viec mua sam xe ciing nhu khdng can thiet phai lam dudng rong den cac khu rimg trdng Do chuyen ddng tren dudng lam nghiep, hay gap nhirng map md, d ga, gay nen dao ddng cho xe, anh hudng den em diu chuyen ddng va lam cho khung xe bi xoan Bai bao trinh bay phuang phap va ket qua xay dung md hinh toan hgc va khao sat dao dgng cua xe tai chd gd klii chuyen dgng tten dudng lam nghiep, lam ca sd cho viec kiem tra ben khung xe va hoan thien them ket cau he thdng treo n N(31 DUNG, PHlTONG PHAP NGHIEN CUU Ddi tugng nghien cim la dao ddng cua d td tai dugc san xuat lap rap d Viet Nam Thaco 165 K chd gd, xe chuyen ddng tren nhinig doan dudng thang vdi van tdc khdng ddi De lap md hinh tinh toan dao dgng ciia xe trudng hgp nay, cdng nhan mgt sd gia thiet sau; (i) Tren xe chd day go va coi khoi go tren xe nliu mgt khoi dac da dugc bd chat; (ii) Khung xe bi xoan cac goc nghieng d dang trudc va sau khung khac nhau; (iii) Cac banii xe ludn bam dudng, bd qua anh hudng ciia su trugt ciia cac banh xe; (iv) Mat dudng coi nliu cimg tuyet ddi; (v) Khdi lugng cua xe va gd dugc lien ket cung vdi san thiing xe khdi lugng tdng hgp dugc dat tai trgng tam chung cua chiing; (vi) Bd qua anh hudng cua luc can khdng va ma sat d cac d true ciia cac banh xe; (vii) Dao dgng cua xe dugc xet la cac dich chuyen quanh vi tri can bang tinh; (viii) Ket cau cua xe va tai trgng phan bd ddi xiing qua mat phang thang dung dgc [ ] \'di cac gia thiet tren, xay dung md hinh nghien ciiu dao dgng ciia xe quanh vi tri can bang tinh klii di chuyen tren dudng lam nghiep Sii dung nguyen ly D'Alambert de thiet lap phuang trinh \i phan dao dgng cua khdi lugng dugc tteo va khdng dugc treo cau trudc; sau thiet lap phuong trinh vi phan dao ddng cua klioi lugng dugc treo va khong dugc treo cau sau tuong tir nhu ddi voi cau trudc, vdi chu y ve dau ciia luc tuong tac giua khdi lugng dugc treo phan bd len cau trudc \a khdi lugng dugc treo phan bd len cau sau Cac he phuang trinh neu tren dugc giai bang phan mem Matlab - Simulink sau klii da xac dinh cac thdng so dau \'ao bang thuc nghiem 111 KET QUA NGHIEN CUtl Md hinh dao dgng khdng gian cua xe tai Thaco 165K co tinh den xoan kliung chiing tdi da xav duns duac cidi thieu d hinh 01 TAP CHI KHOA HOC vA CONG NGHE LAM NGHlEP SO 6-2016 193 Cong nghiep rirng Hinh 01 Mo hinh dao dong cua xe khong gian co ke den xoan khung Cac ky hieu tren hinh ve dugc giai thich nhu sau: dugc treo cau sau ddi vdi true ddi xiing dgc cua d td; + Zki, Pki - dich chuyen va gdc lac ciia khdi lugng dugc treo phan bd len cau trudc; -I- Kni, Cni - he sd can va ciing ciia he thdng treo tren mgt banh xe cau trudc; + Kn2, Cn2 - he SO Can va ciing cua he thdng treo tren mgt ben banh xe ciu sau; + Kl, Ci - he sd can va ciing cua banh xe ciu trudc; + K2, C2 - he sd can va ciing cua banh xe ciu sau; + Ct - Cling chdng lac ngang cua he thdng treo ciu trudc; -I- Cs - Cling chdng lac ngang ciia he thdng treo ciu sau; + Cx Cling xoan ciia khung xe theo phuang dgc; + qit, qip - chieu cao map md mat dudng tai vi tri banh xe trudc trai va trudc phai; + q2t, q2p - chieu cao map md mat dudng tai vi tri banh xe sau trai va sau phai; -I- bl , ci - khoang each giiia hai nhip cua he thdng treo cau trudc va sau; + b2 , e2- khoang each giua tam hai vdt banh xe cau trudc va cau sau + Zk2, Pk2 - dich chuyen va gdc lac cua khdi lugng dugc treo phan bd len cau sau; + zi, PJ - dich chuyen va gdc lac cua khdi lugng khdng dugc treo cau trudc; + Z2, P2 - dich chuyen va gdc lac ciia khdi lugng khdng dugc treo ciu sau; + mid, Iki - khdi lugng dugc treo phan bd len cau trudc, md men quan tinh cua khdi lugng dugc treo phan bd len cau trudc ddi vdi true ddi xiing dgc; + mia, Ik2 - khdi lugng dugc treo phan bo len cau sau, md men quan tinh ciia khdi lugng dugc treo phan bd len ciu sau ddi vdi true ddi ximg dgc; + mi, Il - khdi lugng khdng dugc treo ciu trudc, md men quan tinh ciia khdi lugng khdng dugc treo cau trudc ddi vdi true ddi xiing dgc; + m2, I2 - khdi lugng khdng dugc treo cau sau, md men quan tinh cua khdi lugng khdng 194 TAP CHi KHOA HQC vA CONG NGHE LAM NGHIEP SO 6-2016 Cong nghiep rieng Cac phuang trinh vi phan dao ddng da lap duac nhu sau: mt^h, + KJ,, Phuong trinh dao ddng cua khdi lugng dugc treo ciu trudc: - IK J -h 2C„,Z„ - 2C„,Z, = hA,+2l^K,A-2l^-Kj, + 26rC„,Ai -2b;C„,jB, + C,(^„ -/?,)+ Q ( A , - A J = Phuang trinh dao dgng ciia khdi lugng khdng dugc treo ciu trudc: m,z, - IK J,, + IK J - 2C„,z„ + 2C„,z, + lK,z, + 2C,z, - K,ii,, -K,q,^- qg„ - C,q,^ = IA -2bXA> + 2Z.Xi A -2^rC„,Ai +2Z.rC„, - C,A, -p,)+lb\KA ~hK,q, + b,K,q,^ + + 2b^C,fi, - b,C,q„ + b,qq,^ = Viet lai cac he phucmg trinh tren dudi dang khac: Phuang trinh dao ddng ctia khdi lugng dugc treo ciu trudc: «.ii.i + 2^„,i„ - 2KJ + 2C„,z,, - 2C„,z, = Ij„ + 2&,^^„,Ai - 2bXA + {2bK, + C, )A, - (2/>,^Q, + C, )fi, + C, (/?„ - A,) = Phuang trinh dao ddng cda khdi lugng khdng dugc treo ciu trudc: "'A - 2KJ,, + {2K„, + 2K,)z, - 2C„,z„ + (2C„, + 2C, )z, - K,q, -K,q,^- C,q„ - C,q,^ = 7,4 - 2^^XiA, + {2bX„, + 2b;K, >, - (26rC„, + C, K , + {2&rC„, + 2i,^C, + C, )A - b,K,% + b,K,q,^ - b,C,q„ + bX,q,^ = Chuyen cac he phuang trinh tren sang dang ma tran: A^x^ -I- B^i^ -h C ^x^ -I- D^ = Tron a dd: ^k\ ^/ = A, ^1 = B,= C m„ 0 0 /,, 0 m 0 0 A 2K^ 0 b[ -2K„, IC, -2C, - 2K„, 0 i2K^.~2K,) b{K: (b- Q - C + C J ( 26; C- + C ) -2hrK„, 0 i2brK„, ^ 2b;K,' - 2C.,0 (2b'C„,+C + C.J (2Q,+2C| 0 ilhrC., ^ 2b: C + C T.AP CHi KHOA HOC VA CONG NGHE LAM NGHIEP SO 6-2016 195 Cong nghiep rung 0 Df- - K,% - K^q^p - C^q,, - C^q,^ - *2^]?i, + ^2-^1^1;, + bjQqu + hQq,^ Phuang trinh dao ddng ciia khdi lugng dugc treo ciu sau: '"t2^« + K„2h2 - 2^,2^2 + 2C„2Zj, - 2C„2Z, = h:Pn+2^Kj,,-2e^K„A+2^C„,P,,-2e^C„,P,+C^(fi,,-p,)+CXPn Phuang trinh dao ddng ciia khdi lugng '"222 - 2KJ,^ -A2) = khdng dugc treo cau sau: + lK„,z^ - 2C„3Z,, -H 2C„2Zj -l- IK^z^ + Q z , - K,q^, - K^q,^ - C^q^, - C,q^^ = Ij, - 2elK„An + ^ X ^ - 2e,'C„,A2 + ^^C„, - C^^a " A ) + ^^KJ, - e,K,q^, + e,K,q,^ + + 2e\C^li^ - e^C,q^, + efi^q^^ = Viet lai cac he phuang trinh tren dudi dang: Phuang trinh dao ddng ciia khdi lugng dugc treo ciu sau: rntiiu + 2K„,z,, - 2K„^z^ -h 2C„,z„ - 2C„,z, = hA, + 2elK„An - ^ X ^ + (2e,^C„, + Cj;ff„ -(2e,^C„, + c)p, + Q ( A , -/3,,)=0 Phuang trinh dao ddng ciia khdi lugng khdng dugc treo ciu sau: m,z, - 2K„,z,, + {2K„, + 2K,)z, -2C„,z„ + (2C„, + Q ) Z , - K,q„ - K,q,^ - C,q„ - C,q,^ = IA, - 2eXA2 + {2^K„, + le\K, )p, - {2e^C„, + C, K2 + (26,^C„, + 2ejQ + Q ) A - «2'*^292, + ^2^292, - S j Q ^ i , + e2C2?2p = Chuyin cac phuang trinh tren vd dang ma tran: A,x,+BX+C,x^+D,=0 Trong dd: A: mn A 0 0 0 ra, 0 7, -2^„2 ef 0 e^K„2 2^„2 196 /„ 0 -2K„, 0 -2^X2 {2K„,+2K,) 0 (2^X2+ e X ; TAP CHi KHOA HOC vA CONG NGHE LAM NGHIEP SO 6-2016 Cong nghiep rirng C = 2C., -2C„2 0 {^C„, + C,+CJ (2e,^C„2+C, + C J -2C„, (2C„2 + 2C2) 0 (2efC„,-HCJ (2e,^C„2 + 2e2'C2 + Q ; - 0 A = -•^292,-^292,-Q?2, - 62.^:2^2, -1- 62^:2^2;, + e2C29 , + ^ ^ ; , Phuang trinh lien he ke tdi ciing xoan ciia khung xe nhu sau: Md men Mang tie giiia khdi lugng dugc treo phin bd len ciu trudc va khdi lugng dugc treo phin bd len ciu sau ke tdi cung I,A, xoan ciia khung xe: M^ -CXPk\~ Pti) Phuong trinh chuyen ddng lie ngang ciia kh^j , y ^ g j ^ ^ j treo phin bd len ciu trudc: + 26X„iA -2ftX„,A + (2fti'C„, + C , K , -(2Z>,=C„, + C,)^, + C,{j3,, Phuang trinh chuyen ddng lac ngang cua -/3j=0 khdi lugng dugc treo phin bd len ciu sau: 7,2^2+2^X2^2 - ^ X ^ + ( ^ X + c , K -(2^1 c „ + C J A - c , ( A , - ^ ) = Chuang trinh khao sat dao ddng d td di qua mip md dom bang phin mem Matlab - Simulink cd ke den xoan khung nhu sau (hinh 02) BO HUHCO ^ E l B I ' l i HDOIGtQCVIG ^ ^ I C U ' l R U I G x E e^ •Dtttittuna >* I b HhMit Ih^e T K C aiOsj Hmh 02 Chuong trinh khao sat dao dong to TAP CHi KHOA HOC vA CONG NGHE L A M NGHIEP SO 6-2016 197 Cong nghiep rirng Cdc IcSt qud khao sdt dao dpng cda xe: * Truong hpp banh xe truac trdi di tren mat ducmg CO dang buac nhdy, cdc banh xe cdn lai chuyin dpng tren mat phdng ' Q15 E Trong cac thi, chi so la trudng hgp ke den ciing cua xoin ciia khung xe, chi sd la trudng hgp khdng ki &in dg ciing xoan cua khung xe (coi khung xe ciing tuyet ddi) — -«l : 0-1 ; ; QCB Hinh 04 D|ch chuyen than xe cua tam o to Hinh.03 Bien dang m^t duong tai banh trirdc trai V p*>i QCB // // *—^; Qce Hmh 05 Gdc lac ngang cua tr^ng tam to Hinh 06 Djch chuyin ciia khoi luwng khong dugc treo cau trudc QCB — N;^^^ pBUl [Bte2, QQE ace Hmh 07 Dich chuyen cua khoi luong khong dugc treo cau sau : ' ^ : 1- SS Q5 1.5 25 Hinh 08 Goc lac ngang cua khoi luong khong dvgrc treo cau trudc Q1 Qoe QQ6 : ^—.;-y- /'' \' \ Hinh 09 Goc lac ngang ciia khoi Ivgng khong dugc treo cau sau 198 Qce y Hinh 10 Goc xoan ciia khung xe TAP CHI KHOA HOC VA CONG NGHE LAM NGHIEP SO 6-2016 Cong nghiep rirng * Trucmg hcrp banh xe truac trdi vd banh xe sau phdi di tren mat ducmg co dang buac nhdy, cdc banh xe cdn lai chuyen dpng tren mat duang phdng 41tf>-| Hinh 11 Bien dang mat dvong ciia hanh xe trvdc trai va sau phai Hinh 13 Gdc lie ngang cua trgng tam to Hinh 12 Djch chuyen than xe tai trgng tam d to Hinhl4 Dich chuyen ciia khoi lugng khong dugc treo cau trvdc Qoe 004 QOZ ; Hinh 15 Dich chuyen cua khoi Ivgng khong dvgrc treo cau sau Hinh 16 Goc lac ngang ciia khoi Ivgng khong dvgc treo cau trvuc pas»2 -QGQ -QOt -006 -ao6 ^-'~~-~—^— y' Hmh 17 Goc lac ngang ciia khdi Ivgrng khong dugc treo can sau TV KET LUAN Tren ca sd nghien cuu ket ciu xe tai Thaco 2,5 tin chd gd rimg trdng da xay dung dugc md hmh dao ddng khdng gian cd tinh dSn su xoan khung xe Bang viec ling dung nguyen ly Hinh 18 Goc xoan ciia khung xe D'ALambert da thiet lap dugc he phuang trinh vi phin dao ddng ciia d td tai Thaco chd gd rimg trdng cd ke den su xoan khung xe Bang viec ling dung phan mem Matlab Simulink da giai he PTVP, md phdng dao ddng TAP CHi KHOA HOC VA CONG NGHE L A M NGHIEP SO 6-2016 199 Cong nghiep riimg cua d td xe gap cac map md don, tii xac dao dpng to van tdi nhiiu cdu Luan an tien SI ky djnh duoc gdc xoin khung xe thuat Ha Npi \ , TAI LIEU THAM KHAO Nguyen Van Khang (2001) Dao dpng l^ thuat Nha xuat ban Khoa hpc va ky thuat Ha Npi Vo Van Huong (2004) Thiit lap mo hinh khao sdt Nguyen Van Himg (2016) A^gAien cuu dao (fpng ^ ^ „ ^ ^ „ ^ ^ ^ ^.^^„^^,^^^^^^^ ,^,- j/;^,Afam Luan ^ ngn ^i ky thuat Hoc vi|n Ky thuat Quan sir,Ha Noi .„„ ^x„„ FLUCTUATION OF TRUCK PRODUCED AND ASSEMBLED IN VIETNAM IN PROCESS OF WOOD TRANSPORTATION TAKING TWISTED CHASSIS INTO ACCOUNT Nguyen Hong Quang', Nguyen Van Bang^, Nguyen Nhat Chieu^ '•^Vietnam National University ofForestry ^University of Transport and Communications SUMMARY The trucks produced and assembled in Vietnam have been used to transport plantation timber Because of transportation on low quality forest roads, the trucks often experience large oscillations that reduces mellow motion and causes chassis twist This paper presents the results of mathematical modeling and oscillatioii surveys of trucks for timber transportation taking the twisted chassis into account Keywords: Forestry roads, mathematical model, plantation timber transportation, the mellow motion truck 200 Ngirori phan bien PGS.TS Duong Van Tai Ngay nhin bai 16/10/2016 Ngay phan bien 25/10/2016 Ngay quyet dinh dang 02/11/2016 TAP CHi KHOA HOC vA CONG NGHE LAM NGHIEP SO 6-2016 ... banh xe cdn lai chuyin dpng tren mat phdng '' Q15 E Trong cac thi, chi so la trudng hgp ke den ciing cua xoin ciia khung xe, chi sd la trudng hgp khdng ki &in dg ciing xoan cua khung xe (coi khung. .. cuu ket ciu xe tai Thaco 2,5 tin chd gd rimg trdng da xay dung dugc md hmh dao ddng khdng gian cd tinh dSn su xoan khung xe Bang viec ling dung nguyen ly Hinh 18 Goc xoan ciia khung xe D''ALambert... xoan ciia khung xe TAP CHI KHOA HOC VA CONG NGHE LAM NGHIEP SO 6-2016 Cong nghiep rirng * Trucmg hcrp banh xe truac trdi vd banh xe sau phdi di tren mat ducmg co dang buac nhdy, cdc banh xe cdn