Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 24 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
24
Dung lượng
189,12 KB
Nội dung
1
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC ĐÀ NẴNG
NGUYỄN THANH SƠN
BÀI TOÁNTÔMÀUĐỒTHỊVÀỨNGDỤNG
Chuyên ngành: Phương pháp Toán sơ cấp
Mã số: 60 46 40
TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC
Đà Nẵng - Năm 2011
2
Công trình ñược hoàn thành tại
ĐẠI HỌC ĐÀ NẴNG
Người hướng dẫn khoa học: PGS-TSKH Trần Quốc Chiến
Phản biện 1: TS. Cao Văn Nuôi
Phản biện 2: TS. Hoàng Quang Tuyến
Luận văn sẽ ñược bảo vệ trước Hội ñồng chấm Luận văn tốt nghiệp thạc
sĩ khoa học họp tại Đại học Đà Nẵng vào ngày 17 tháng 8 năm 2011
Có thể tìm hiểu luận văn tại:
- Trung tâm Thông tin-Học liệu, Đại học Đà Nẵng
- Th
ư viện trường Đại học Sư Phạm, Đại học Đà Nẵng
3
MỞ ĐẦU
1. Lí do chọn ñề tài:
Lý thuyết ñồ thị là một phần của ngành toán học hiện ñại, ñược
phát triển từ lâu nhưng lại có nhiều ứngdụng hiện ñại, nó khá “gần
gũi” với thực tế.
Trong chương trình THPT, sách giáo khoa trang bị cho học sinh
các kiến thức về tômàu ñồ thị còn ít, ñặc biệt là bài toántômàu ñồ thị
ñể phục vụ cho việc bồi dưỡng học sinh, hơn nữa các bài toán giải
bằng phương pháp tômàu ñồ thị rất gần với thực tế. Vì vậy, chuyên ñề
này chứa ñựng nhiều tiềm năng ñể khai thác bồi dưỡng cho học sinh.
Việc cung cấp một số phương pháp giải bài toán bằng phương
pháp tômàu ñồ thị là một nhu cầu cần thiết. Mặt khác, việc vận dụng
kết quả bài toántômàu ñồ thị vào giải toán giúp ta ñạt ñược mục tiêu:
giải ñược một số bài toán không mẫu mực, các bài toán thường gặp
trong thực tế và rải rác một số bài toán trong các kì thi tuyển Olympic
toán quốc tế.
Nghiên cứu khai thác một số yếu tố của bài toántômàu ñồ thịvà
ứng dụng này trong việc giải các bài toán ở phổ thông, cũng ñược một
số tác giả quan tâm, xuất phát từ những lý do trên tôi lựa chọn ñề tài:
“Bài toántômàu ñồ thịvàứngdụng ” ñể nghiên cứu.
2. Mục ñích nghiên cứu:
3. Đối tượng và phạm vi nghiên cứu:
4. Phương pháp nghiên cứu:
5. Ý nghĩa khoa học và thực tiễn của ñề tài:
6. Cấu trúc luận văn:
Lu
ận văn gồm 3 chương:
4
Chương 1. Các khái niệm cơ bản của lý thuyết ñồ thị:
Trình bày những kiến thức cơ bản của lý thuyết ñồ thị.
Chương 2. Bài toántômàu ñồ thị:
Nghiên cứu sâu các ñịnh lí về tômàu ñỉnh, tômàu cạnh, các
ñịnh lí về tômàu ñồ thị phẳng và các bài toántômàu ñỉnh, tômàu
cạnh.
Chương 3. Ứng dụng:
Trình bày các ứngdụng của bài toántômàu ñồ thị trong việc
giải các bài toán phổ thông và các vấn ñề thực tế.
5
CHƯƠNG 1
CÁC KHÁI NIỆM CƠ BẢN CỦA LÝ THUYẾT ĐỒ THỊ.
1.1. CÁC KHÁI NIỆM VỀ ĐỒ THỊ:
1.1.1 Các ñịnh nghĩa:
Định nghĩa 1.1.1.1: Đồthị vô hướng G = (V,E) gồm một tập V
các ñỉnh và tập E các cạnh. Mỗi cạnh e
∈
E ñược liên kết với một cặp
ñỉnh (v, w) (không kể thứ tự)
Định nghĩa 1.1.1.2: Đồthị có hướng G = (V,E) gồm một tập V
các ñỉnh và tập E các cạnh có hướng gọi là cung. Mỗi cạnh e
∈
E
ñược liên kết với một cặp ñỉnh (v, w) (có thứ tự)
Ghi chú:
Cho ñồ thị có hướng G = (V,E). Nếu ta thay mỗi cung của G
bằng một cạnh, thì ñồ thị vô hướng nhận ñược gọi là ñồ thị lót của G.
Đồthị vô hướng có thể coi là ñồ thị có hướng trong ñó mỗi
cạnh e = (v,w) tương ứng với hai cung (v,w) và (w,v).
1.1.2 Các khái niệm:
1.1.3 Các loại ñồ thị:
Định nghĩa 1.1.3.1: Đồthị hữu hạn.
Định nghĩa 1.1.3.2: Đồthị ñơn.
Định nghĩa 1.1.3.3: Đồthị vô hướng ñủ.
Định nghĩa 1.1.3.4: Đồthị K
n
là ñơn ñồ thị vô hướng ñủ n
ñỉnh.
Định nghĩa 1.1.3.5: Đồthị có hướng ñủ.
Định nghĩa 1.1.3.6: Đồthị lưỡng phân G = (V,E),
Ký hiệu: G = ({V
1
, V
2
}, E).
Định nghĩa 1.1.3.7: Đồthị K
m,n
là ñồ thị lưỡng phân
({V
1
, V
2
}, E) với tập V
1
có m ñỉnh và tập V
2
có n ñỉnh và mỗi ñỉnh
của V
1
ñược nối với mỗi ñỉnh của V
2
bằng một cạnh duy nhất.
6
( ) 2. ar ( )
d v c d E
v V
=
∑
∈
( ) ( ) ar ( )
0 1
d v d v c d E
v V v V
= =
∑ ∑
∈ ∈
( 1)
2
n n
−
Định nghĩa 1.1.3.8: Đồthị G gọi là ñồ thị thuần nhất bậc a
(a
∈
N), nếu mỗi ñỉnh ñều có bậc a.
1.1.4 Biểu diễn ñồ thị bằng hình học:
a) Biểu diễn ñỉnh:
b) Biểu diễn cạnh:
c) Biểu diễn cung:
1.1.5 Bậc, nửa bậc vào, nửa bậc ra:
Cho ñồ thi G = (V, E).
Định nghĩa 1.1.5.1: Bậc của ñỉnh v
∈
V.
Định nghĩa 1.1.5.2: Đỉnh treo là ñỉnh có bậc bằng 1.
Định nghĩa 1.1.5.3: Cho G = (V,E) là ñồ thị có hướng, v
∈
V.
Nửa bậc ra của ñỉnh v, ký hiệu d
0
(v), là số cung ñi ra từ ñỉnh v
(v là ñỉnh ñầu).
Nửa bậc vào của ñỉnh v
∈
V, ký hiệu d
1
(v), là số cung ñi tới ñỉnh
v (v là ñỉnh cuối).
Định nghĩa 1.1.5.4: Đồthị K
n
là ñồ thị ñơn, ñủ n ñỉnh.
Bổ ñề 1.1.5.5: (Bổ ñề bắt tay- Hand Shaking Lemma)
Cho ñồ thị G = (V, E). Khi ñó:
i) Tổng bậc các ñỉnh của ñồ thị là số chẵn và
ii) Nếu G là ñồ thị có hướng thì:
Trong ñó card(E), kí hiệu số phần tử của tập X.
Hệ quả 1.1.5.6: Số ñỉnh bậc lẻ của ñồ thị vô hướng là số chẵn.
Mệnh ñề 1.1.5.7: Mỗi ñỉnh của ñồ thị K
n
có bậc n – 1 và K
n
có
cạnh.
M
ệnh ñề 1.1.5.8: Cho ñồ thị lưỡng phân ñủ
7
K
m,n
= ({V
1
, V
2
}, E) với tập V
1
có m ñỉnh và tập V
2
có n ñỉnh. Khi ñó
mỗi ñỉnh trong V
1
có bậc là n, mỗi ñỉnh trong V
2
có bậc là m và K
m,n
có m.n cạnh.
1.2. ĐƯỜNG ĐI, CHU TRÌNH VÀ TÍNH LIÊN THÔNG:
1.2.1 Các ñịnh nghĩa:
Cho ñồ thị G = (V,E).
Định nghĩa 1.2.1.1: Dây
µ
từ ñỉnh v ñến ñỉnh w là dãy các
ñỉnh và cạnh nối tiếp nhau bắt ñầu từ ñỉnh v ñến kết thúc tại ñỉnh w.
Số cạnh trên dây
µ
gọi là ñộ dài của dây
µ
.
Dây
µ
từ ñỉnh v ñến ñỉnh w ñộ dài n ñược biểu diễn như sau:
µ
= (v, e
1
, v
1
, e
2,
v
2
, , v
n-1
, e
n
, w)
Trong ñó v
i
(i = 1, , n-1) là các ñỉnh trên dây và
e
i
(i = 1, ,n) là các cạnh trên dây liên thuộc ñỉnh kề trước và sau nó.
Các ñỉnh và cạnh trên dây có thể lặp lại.
Định nghĩa 1.2.1.2: Đường ñi từ ñỉnh v ñến ñỉnh w.
Định nghĩa 1.2.1.3: Đường ñi sơ cấp.
Định nghĩa 1.2.1.4: Vòng. Dây có hướng trong ñồ thị có hướng
Định nghĩa 1.2.1.5: Đường ñi có hướng trong ñồ thị có hướng.
Định nghĩa 1.2.1.6: Đường ñi có hướng sơ cấp.
Định nghĩa 1.2.1.7: Vòng có hướng.
Định nghĩa 1.2.1.8: Chu trình.
Định nghĩa 1.2.1.9: Chu trình sơ cấp.
Định nghĩa 1.2.1.10: Chu trình có hướng.
Định nghĩa 1.2.1.11: Chu trình có hướng sơ cấp.
Định nghĩa 1.2.1.12: Đồthị vô hướng gọi là liên thông, nếu
mọi cặp ñỉnh của nó ñều có ñường ñi nối chúng với nhau.
Định nghĩa 1.2.1.13: Đồthị có hướng gọi là liên thông mạnh,
nếu mọi cặp ñỉnh của nó ñều có ñường ñi có hướng nối chúng với
8
( )( 1)
2
n k n k
n k m
− − +
− ≤ ≤
( 1)( 2)
2
n n
− −
nhau.
Định nghĩa 1.2.1.14: Đồthị có hướng gọi là liên thông yếu,
nếu ñồ thị lót (vô hướng) của nó liên thông.
Định nghĩa 1.2.1.15: Đồthị có hướng gọi là bán liên thông,
nếu với mọi cặp ñỉnh (u, v) bao giờ cũng tồn tại ñường ñi có hướng
từ u ñến v hoặc từ v ñến u.
Định nghĩa 1.2.1.16: Cho ñồ thị G = (V, E). Đồthị G
’
= (V
’
,
E
’
) gọi là ñồ thị con của G nếu V
’
⊂
V và E
’
⊂
E
Định nghĩa 1.2.1.17: Đồthị con G
’
= (V
’
, E
’
) của ñồ thị (có
hướng) G = (V, E) gọi là thành phần liên thông (mạnh) của ñồ thị G,
nếu nó là ñồ thị con liên thông (mạnh) tối ñại của G, tức là không tồn
tại ñồ thị con liên thông (mạnh) G
’’
= (V
’’
, E
’’
)
≠
G
’
của G thỏa V
’
⊂
V
’’
, E
’
⊂
E
’’
.
1.2.2 Các ñịnh lí:
Định lí 1.2.2.1:
i) Trong ñồ thị vô hướng mỗi dãy từ ñỉnh v ñến w chứa ñường
ñi sơ cấp từ v ñến w.
ii) Trong ñồ thị có hướng mỗi dãy có hướng ñi từ ñỉnh v ñến w
chứa ñường ñi có hướng sơ cấp từ ñỉnh v ñến w.
Định lí 1.2.2.2: Đồthị G lưỡng phân khi và chỉ khi G không
chứa chu trình ñộ dài lẻ.
Định lí 1.2.2.3: Cho G = (V, E) với n ñỉnh, và k thành phần liên
thông. Khi ñó số cạnh m của ñồ thị thỏa bất ñẳng thức:
Hệ quả 1.2.2.4: Mọi ñơn ñồ thị n ñỉnh với số cạnh
là liên thông.
1.3. ĐỒTHỊ PHẲNG:
1.3.1 Các ñịnh nghĩa:
9
Định nghĩa 1.3.1.1: Một ñồ thị gọi là ñồ thị hình học phẳng nếu
nó ñược biểu diễn trên mặt phẳng sao cho các cạnh không cắt nhau.
Định nghĩa 1.3.1.2: Một ñồ thị gọi là phẳng nếu nó ñẳng cấu
với ñồ thị hình học phẳng.
Định nghĩa 1.3.1.3: Hai ñồ thị G
1
= (V
1
, E
1
) và
G
2
= (V
2
, E
2
) gọi là ñẳng cấu với nhau nếu tồn tại song ánh
f: V
1
→
V
2
và g: E
1
→
E
2
thỏa mãn
: ( ,w) ( ) ( ( ), (w))
1
e E e v g e f v f∀ ∈ = ⇔ =
cặp hàm f và g gọi là một ñẳng cấu từ G
1
ñến G
2
.
Định nghĩa 1.3.1.4: Đồthị G gọi là ñồ thị tuyến tính phẳng,
nếu G là ñồ thị hình học phẳng có các cạnh là ñoạn thẳng.
Định nghĩa 1.3.1.5: Hai ñồ thị G
1
và G
2
gọi là ñồng phôi, nếu
G
1
và G
2
có thể rút gọn thành những ñồ thị ñẳng cấu qua một số phép
rút gọn.
Định nghĩa 1.3.1.6: Cho ñồ thị G có ñỉnh v bậc 2 với các cạnh
(v, v
1
) và (v, v
2
). Nếu ta bỏ hai cạnh (v, v
1
) và (v, v
2
) và thay bằng
cạnh (v
1
, v
2
), thì ta nói rằng ta ñã thực hiện phép rút gọn nối tiếp. Đồ
thị G
’
thu ñược gọi là ñồ thị rút gọn từ G.
1.3.2 Các ñịnh lí:
Mệnh ñề 1.3.2.1: Hai ñơn ñồ thị G
1
= (V
1
, E
1
) và
G
2
= (V
2
, E
2
) gọi là ñẳng cấu với nhau nếu tồn tại song ánh f: V
1
→
V
2
thỏa mãn
,w :
1
v G
∀ ∈ v kề w
⇔
f(v) kề f(w). Trong trường
hợp này, hàm f gọi là một ñẳng cấu từ G
1
ñến G
2
.
Ghi chú: Với một ñồ thị hình học phẳng liên thông, mặt phẳng
ñược chia làm các miền con gọi là mặt. Mỗi mặt giới hạn bởi chu
trình gọi là biên của mặt. Số cạnh trên biên của mặt f ñược gọi là bậc
c
ủa mặt, kí hiệu deg(f). Bậc nhỏ nhất gọi là ñai của ñồ thị.
Mệnh ñề 1.3.2.2: Mọi chu trình ñồ thị phẳng có ñộ dài chẵn khi
10
( 2)
2
g
e v
g
≤ −
−
và chỉ khi mọi mặt của ñồ thị có bậc chẵn.
Định lí 1.3.2.3: Mỗi ñơn ñồ thị phẳng ñẳng cấu với ñồ thị
tuyến tính phẳng.
Định lí 1.3.2.4 (Công thức Euler): Cho G là ñồ thị liên thông
phẳng có e cạnh, v ñỉnh và f mặt. Khi ñó, ta có:
f = e – v + 2.
Định lí 1.3.2.5(Bất ñẳng thức cạnh-ñỉnh): Cho G là ñơn ñồ thị
phẳng liên thông với e cạnh, v ñỉnh và ñai g (
3
g
≥
), không có ñỉnh
treo. Khi ñó, ta có:
Hệ quả 1.3.2.6: Cho G là ñơn ñồ thị phẳng liên thông với e
cạnh và v ñỉnh
(
)
3
v
≥
không có ñỉnh treo. Khi ñó, ta có:
3 6
e v
≤ −
Hệ quả 1.3.2.7: Đồthị K
5
là không phẳng.
Hệ quả 1.3.2.8: Cho G là ñơn ñồ thị phẳng liên thông với e
cạnh và v ñỉnh
(
)
3
v
≥
. Không có ñỉnh treo và không có chu trình ñộ
dài 3. Khi ñó, ta có:
2 4
e v
≤ −
Hệ quả 1.3.2.9 : Đồthị K
3,3
là không phẳng.
[...]...11 CHƯƠNG 2 BÀI TOÁNTÔMÀU Đ TH 2.1 TÔMÀU Đ NH: 2.1.1 Tômàu b n ñ : Nh ng bài toán liên quan ñ n tômàu b n ñ ñã d n ñ n r t nhi u k t qu trong lý thuy t ñ th Khi tômàu b n ñ , ta thư ng tô 2 mi n có chung ñư ng biên gi i b ng 2 màu khác nhau M t bài toán ñ t ra là xác ñ nh s màu t i thi u c n s d ng ñ tômàu các mi n b n ñ sao cho các mi n k nhau không ñư c tô cùng màu 2.1.2 Đ th ñ i ng... 1 (ii) Tômàu i cho ñ nh ñ u tiên trong danh sách Duy t l n lư t các ñ nh ti p theo vàtômàu i cho ñ nh không k ñ nh ñã tômàu i (iii) N u t t c các ñ nh ñã ñư c tômàuthì k t thúc: ñ th ñã ñư c tômàu b ng i màu Ngư c l i sang bư c (iv) 13 (iv) Lo i kh i E’ các ñ nh ñã ñư c tô màu, ñ t i := i + 1 và quay l i bư c (ii) + Ghi chú: (i) M i ñ nh v ∈ G ñư c tô b ng màu có s hi u th p nh t chưa tô cho... nh v i các c nh ñư c tô b ng n màu luôn luôn có chu trình tam giác cùng màu Đ nh lý 2.3.2.8: Cho dãy s nguyên b2 = 3, b3 = 6, , bn+1 = (bn − 1) n + 2 khi ñó ñ th ñ v i bn+1 − 1 ñ nh và các c nh ñư c tô b ng n màu sao cho không có chu trình tam giác cùng màuthì trong ñ th có hình 5 c nh v i các c nh 16 cùng màuvà các ñư ng chéo ñư c tô các màu khác 2.3.3 Bài toántômàu c nh: Bài toán 1 Có 5 thành ph... ng k t qu c a bài toántômàu ñ th 4 Hư ng phát tri n c a ñ tài: Ti p t c nghiên c u v n d ng lý lu n và k t qu c a lý thuy t tômàu ñ th và vi c b i dư ng h c sinh - Lu n văn này ñư c vi t v i mong mu n nghiên c u sâu nh ng ñ nh lý và ng d ng c a bài toántômàu ñ th , ñ t ñó xây d ng m t h th ng các bài toán sơ c p có th gi i ñư c b ng cách v n d ng nh ng k t qu c a bài toántômàu ñ th ... giao thông, và cho phép ñ ng th i lưu thông nh ng tuy n không xung kh c Ta mô hình hóa bài toán b ng ñ th và ñưa v bài toántômàu ñ th như sau: Các ñ nh c a ñ th là các tuy n ñư ng, và hai tuy n k nhau khi và ch khi chúng xung kh c Ta tômàu các ñ nh ñ th sao cho các ñ nh k nhau không cùng màu Ta coi m i màu ñ i di n cho m t pha ñi u khi n ñèn báo: các tuy n cùng màu ñó lưu thông Như v y bài toán ban... ph ng Bài toántômàu các mi n c a b n ñ tương ñương v i bài toántômàu các ñ nh ñ th ñ i ng u sao cho các ñ nh k nhau có màu khác nhau 2.1.3 Các ñ nh nghĩa: Đ nh nghĩa 2.1.3.1: Tômàu ñ nh c a m t ñơn ñ th là s gán màu cho các ñ nh c a nó m t màu c th sao cho không có 2 ñ nh 12 k nhau ñư c gán cùng màu Đ nh nghĩa 2.1.3.2: S c s c a m t ñ th G (Chromatic number) ( kí hi u χ (G ) ), là s màu t i thi... t c t H i b ng cách ñó có th tômàu ñư c t t c các ô vuông c a b ng ñã cho hay không? 24 K T LU N - Qua quá trình nghiên c u ñ tài tôi ñã nh n ñư c m t s k t qu sau: 1 V i b n thân ñã h th ng ñư c m t s ki n th c cơ b n v Lý Thuy t tômàutô th và hi u sâu hơn v các ñ nh lí và các bài toántômàu ñ th 2 Đưa ra ñư c các phương án v n d ng 3 Xây d ng ñư c h th ng các bài toán sơ c p gi i ñư c b ng cách... th ng ñư c tômàu xanh ho c màu ñ ho c không tômàu Tìm giá tr nh nh t c a n sao cho v i 23 m i cách tômàu n ño n th ng luôn t n t i m t tam giác có c nh cùng màu Bài toán 8 Cho ñ th ñ y ñ có k ñ nh; các c nh ñư c tômàu xanh, ñ ho c tr ng Tìm giá tr nh nh t c a n sao cho v i m i cách tômàu n c nh c a ñ th luôn tìm ñư c m t tam giác có c nh cùng màu Bài toán 9 Ch ng minh r ng trong sáu ngư i b t kì... và s ñ nh k v không vư t quá ∆ (G ) + 1 (ii) Có th hi u ch nh E’ bư c (iv) như sau: ’ Lo i kh i E các ñ nh ñã tômàu S p x p l i các ñ nh trong E’ theo th t b c gi m d n các ñ nh trong ñ th con c a G, có ñư c b ng cách lo i b các ñ nh ñã tômàuvà các c nh liên thu c chúng 2.1.6 Bài toántômàu ñ nh: Bài toán 1: M t ngư i nuôi các lo i con v t sau: A, B, C, D, E, F Vì m i quan h gi a v t ăn th t và. .. c tô b ng m t trong 3 màu Ch ng minh r ng có m t ñ th con liên thông, ch a không ít hơn màu n 2 ñ nh, có các c nh ñư c tô cùng m t (Câu b: ñ thi sinh viên gi i, khoa Toán lý, trư ng ñ i h c t ng h p Lomonossov, 1982) Bài toán 7 Cho 9 ñi m trong không gian trong ñó không có 4 ñi m nào ñ ng ph ng T t c nh ng ñi m này ñư c n i v i nhau t ng c p b ng các ño n th ng M i ño n th ng ñư c tômàu xanh ho c màu . thị.
Chương 2. Bài toán tô màu ñồ thị:
Nghiên cứu sâu các ñịnh lí về tô màu ñỉnh, tô màu cạnh, các
ñịnh lí về tô màu ñồ thị phẳng và các bài toán tô. toán tô màu ñỉnh, tô màu
cạnh.
Chương 3. Ứng dụng:
Trình bày các ứng dụng của bài toán tô màu ñồ thị trong việc
giải các bài toán phổ thông và các