• • BANG PHtfdNG PHAP Stf DUNG CAU HOI, BAI TAP O PGS TS, NGUYEN OlNH NHAM T R A N AI H U i '''' GV HS c6ng Icî m tra ddnh gia qua trinn tiiiet ki gia cdng cua GV va fill cong cua HS i Kien thue Sinh ho[.]
• • BANG PHtfdNG PHAP Stf DUNG CAU HOI, BAI TAP O PGS.TS, NGUYEN OlNH N H A M - ien thue Sinh hoe Id nhung tri tht/c rdt gdn gui vdi ddi sdng cua hoc sinh (HS), n^u gido vidn (GV) biet khai thde vdn hieu bidt cua HS hong tht/c te vd kien tht/c co sd eiJa HS thi qud trinh dqy hqe (DH) se dqt kd't qud cao hon De su dyng cdc vdn tri tht/c son ed ct/o HS qua hinh hinh thdnh tri tht/c mdi cd nhieu dudng khde nhou, vide su dijng cdu hdi (CH), bdi tdp (BT) de td cht/c nhdn thi/c Id mot nhung cdch ed hidu qud coo Cdch hoc ndy cd uu diem phdt huy dugc tri sdng too cuo HS, duo HS vdo qud trinh tt/ khdm hi tht/c Idm cho HS hieu sdu sdc vd vdn dtjng tdt hon vdo thi/c tien Co sd li ludn cua vide su d y n g C H , BT hong DH sinh hoc CH, BT Id nhi/ng bdi todn nhdn tht/c no ham chi/a nhi/ng dieu dd biet vd nhdng dieu fim tqo ndn nhung kich thich dOng ngudng ddi vdi ddi tugng HS thi bdi todn nhdn tht/c dd fro hnh hudng cd vdn de DH Id hoqt ddng cuo ed GV vd HS ndn hidu K quo cua hoqtdqng phy ijiuqe hoi phia Trong GV cd trdch nhidm td cht/c cho HS hoqt ddng iuong tde vdl ddl tugng de linh hdi dugc tri tht/c, kr ndng thdi Ngugc lqi, mudn cd hidu qud hoqt ddng hoc thi chinh ddi tugng HS phdi luon CO tinh tu gidc, chu ddng hoqt ddng tilp nhqn tri thuc Tri tht/c khdng phdi lOc ndo cung Id nhOng cdi huu hinh cd t h i tn/e quan, cdm nhqn duge md cd nd chi Id nhung md'l lidn he vo hinh glua cdc su vqt hien tugng khdeh quon mo mudn tiep nhqn dugc nd ddl hdi HS phdi tu giac hoqt dgng tuong tdc vdl ddl tugng mdi ed the CO dugc Nhung de nhCrng CH, BT ed vai trd TRAN AI H U i ' Sau HS duqc kich thich dung ngudng se Id ddng It/c thuc ddy hoqt ddng khdm pha Hoqt ddng ndy Id qua trinh bd sung nhqn tht/c nhd si/ trd ldi cdc CH, BT Qud trinh dugc bieu dqt bdng so sou: GV-HS c6ng Ici^m tra ddnh gia qua trinn tiiiet ki gia cdng cua GV va fill cong cua HS i HS h/ fhl hi6n, isd sung, (chFnh If, iioon len tri tfii/c tlile HSiTnh h6l duoc W ffiuc' moi Nhu vdy, vide si/ dtjng CH, BT ed vol trd quan trqng hoqt ddng DH vi: - CH, BT cd vai trd kich thich, djnh hudng hoqt dong nghidn ei/u tdi lieu gido khoa cua HS, qua dd giup HS hinh thdnh kT ndng dqc sdch, tham khdo tdi lieu, biet cdch tht/c fim, chon nhCrng ngudn kien tht/c quan trong; - CH, BT dugc thiet ke cho ludn dqt IHS vdo finh hudng ed vdn de, ldi cudn HS vdo vide gidi quy^t cdc mdu thudn, tieh ci/c chu dong tfnh hql tri tht/c ^^^^ ^^^ ^ ^ |^, ^ H , BT Nhu vdy, CH, BT dd thiet ke dqt ydu edu se cd vol trd quan trqng vide bien HS trd thdnh chu the ctja qud trinh nhdn thtjc, qua dd khdc phyc dugc finh trqng DH Idy GV Idm trung tdm; Tijy theo mt/c nhdn tht/c cua h/ng ddi tugng md CH, BT cd t h i cdu trtjc md de qua vide gidl cdc CH, BT thi se phdt huy duge ndng luc tu duy, sdng tqo, ndng li/c nghidn ct/u tdi lidu cho HS Ddy Id vol trd cd y nghTa to Idn ddl vdl DH j^^^g gj^j ^^^ ^jg^ ^^y Q ^ ^ ^-^^ ^oot dong f ^ ^ g ^^^ ^^ ^g ^^^^ c H , BT cdn giup HS biet hd jj^^^g kien tht/c theo nhung cdch khde nhau, tidn • vide siJ dyng • ung dyng vdo cho nd qud trinh tht/c su huu hidu hoqt dgng nhdn thi/e thi cudc sdng sou ndy thid't ke cdn phdi ddm bdo nhung nguydn tde M d t sd nguydn tde xdy d u n g C H , BT: CO bdn nhdt djnh CH, BT dugc thilt k l duo vdo 1) CH, BT phdi ed tdc dyng ndu vdn de, ddng thdi siJdyng phdi Id nhdn td kich thich chO dqo, khoi day tinh tu gide hoqt dgng nhqn tht/c ctja HS * Tnfdng D^i hpe Vinh Tap chi Glao due s6 (kia-6/2011) vdn de dd phdi cht/a dyng mdu thudn nhdn thue ludn budc HS d trqng thdi ed nhu cdu gidl quylt; 2) CH, BT thilt ke phdi ed tinh he thdng phu hgp vdl cdu true etia chuong, bdi d l sou trd ldi HS thu dugc mdt kiln tht/c mdi, hd thdng; 3) CH, BT duge thilt ke phdi ed ndi dung ydu cdu ngdn gqn rd rdng, chinh xdc Ydu edu ctjo CH, BT phdi ed quon hd vdi ngudn tri thi/c, tdi lifu tro ct/u qud trinh fim ldi gidl; 4) Trang mSl bdi hoc CH, BT dua ro phdi ddm bdo nguydn tde tu de din khd, cd tde dyng hdp dan, kich thich HS dam md nghidn cuu fim tdi ldi gidi; 5) CH cdc bdi todn nhdn thuc thilt k l phdi cd tinh k l tht/o, cho trd ldi mdt CH, BT sd cho thdm mdt gid thilt, giup cho vide gidl quylt cdc vd'n de lidn quan dd'n bdi todn dugc dS ddng hon; d) CH, BT phdi ed khd ndng huy ddng tinh tu luc ehu ddng sdng tqo ciio nhilu dd'l tugng HS NghTa Id CH, BT dugc xdy di/ng phdi vt>a sue, khdng khd qud, khdng d l qud, phu hgp vdl ndng lye nhqn tht/c cuo HS; 7) CH, BT khdng ndn ydu cau don thudn Id trinh bdy kiln tht/c tdi lieu gido khoo md phdi ed nhung ydu edu phdn tich, gidl thich, hay chung minh eho nhung kiln thuc md HS fTnh hdi tt/ tdi lidu gido khoa hay cdc tdi lidu tham khdo khde Su dyng CH, BT DH kiln thuc phdn Di truyen qudn t h i (QT) Vidy vi dgy phdn: Sy cdn bdng thdnh phdn kliu gen QT giao phdi GV ndu vi dy: QT d trqng thdi cdn bdng di truyen, QT khdng d trqng thdi cdn bdng di truyln ey thi nhu sou: QTl cd cdu true dl truyln d thi hd xudt phdt Id: 0,49AA : 0,42Aa : 0,09aa QT2 ed cd'u trOc dl truyen d thi hf xud't phdt Id: 0,4AA : 0,4Aa : 0,2aa Sou dd ydu cdu HS trd ldi cdc CH sou: 1) Xde djnh tdn so tuong dd'i (TSTD) ciJo cdc alen A, o ojo hai QT trdn d thi he xudt phdt; 2) Nd'u ngdu phdi xdy thi cdu true dl truyln ciJa hoi QT trdn se nhu thi ndo thi hd filp theo? HS se tinh duge Id: QTl: TSTD A = 0,7; TSTD a = 0,3; QT2: TSTD A = 0,d; TSTD a = 0,4 - Cdu true dl truyln d thi hd filp theo Id: QTl: 0,49AA : 0,42Aa : 0,09aa; QT2: 0,36AA : 0,48Aa : 0,1 dao Tllp tyc GV ndu CH: Cdc em ed nhdn xet gi vi cd'u true di truyin cua QT trin a thi hi xudt phdt vd thi hi tlip theo? , HS: Cqu true di truyen cua QT khdng thoy ddi vd vdn Id: 0,49AA: 0,42Aa : 0,09aa; Cdu true di truyen cuo QT thay ddi h>: 0,4AA : 0,4Aa : 0,2aa -> 0,36AA : 0,48Aa : 0,1 doa Din ddy GV thdng bdo cho HS bilt QTl dang d trqng thdi edn bdng di truyen cdn QT2 khdng d trqng thdi cdn bdng di truyln vd ddt CH: Mot QT cd ddc dlim gl thi cdu true di truyin dang a trgng thdi edn bdng? HS se rut ro dugc Id: «Mgt QT dugc xem Id dang cdn bdng dl truyen cdu true di truyin khdng thay ddl qua cdc thi hi" Day chinh Id cdch thu nhdt d l HS Idm BT dqng ndy Vi dy: Trong cdc QT sou, QT ndo ^ n g d trqng thdi cdn bdng dl truyln?: 1) 0,35AA : 0,45Aa : 0,2aa; 2) 0,01 A A : 0,18Aa : 0,81aa; 3) 0,25AA ; 0,45Aa : 0,3aa; 4) 0,6AA : 0,2Aa : 0,2aa fheo trinh tu trdn HS Idn luot thuc hidn cdc budc sou ddy: Budc / Xdc dinh TSTD cuo cdc a|en A, o mdi QT d thi hd xud't phdt; Buoc 2: Xac dinh cdu true dl truyln cuo cdc QT trdn d thi hd tilp theo; Budc 3: So sdnh cdu true di truyen ctio moi QT d thi he xuot phdt vd thi hd filp theo:- Nlu cdu true dl truyen cuo QT ndo khdng doi thi QT dd dang cdn bdng DT; - N l u cdu true dl truyen cuo QT ndo thoy ddl thi QT dd khdng ^ thdi bdng DT Sou thuc hien cdc buoc trdn ddy HS se rOt dugc ddp dn Id: 0,01 AA : 0,18Aa : 0,81cia Tuy nhidn, thi trde nghidm ngodi vide HS Idm dugc bdi thi thdi gion Id mot vd'n de hit sue quon trgng, ddi hdi cdc em vuo Idm diing vi>a Idm nhonh Nd'u thuc hidn theo cdch trdn thi mdt rd't nhilu thdi gian Vi vqy, cdn giup cdc em ed dugc mot cdng thuc tdng qudt chi cdn mgt phep tinh Id HS dd Hm ro dugc ddp dn Trong mgt so' tdi lieu thom khdo cung cd duo ro cdng thuc tdng qudt v l dqng BT ndy nhu cua tde gid: VO Due Luu; Nguyen Vdn Song; Nguyin Thdo Nguydn; Trdn Thi Van Tuy nhidn, d l chung minh vi soo Iqi cd cdng thuc dd thi hidn khdng cd tdi lieu ndo de cap Trong trudng hgp HS qudn cong thuc thi se khdng Idm dugc bdi Trong qud trinh DH, chOng tdi cho HS thye hidn cdc budc de tu fim ro cdng thuc ey thd* nhu sau: Budc 1: Cho mdt QT glao phdi cd cdu true di truyen d thi hd xud't phdt Id: DAA : Hao : Roo (*) ( DK: < D, H, R < vd D + H -i- R = 1) - Tap chi Giao due s6 (ki 6/2011) Sou dd GV ndu CH: Hdy tinh tdn sd tuong ddi cua cdc alen A, a eua QT tren vd xdc dinh edu true di truyin cua QT trin d thi hi tlip theo? HS se tinh duoc: l.TSTDA= D+ y ; TSTDa=/? + y Cdu true di truyen d the he tilp theo Id: (D^^?AA:2(D^^)(R + ^}Aa:{R + ^yaa Bude 2: GV ndu CH: Cdc em hdy tim mdi lien he giua D, H, R di QT (*} dang d trgng thdi edn bang di truyen? Ddl vdi HS Idp chgn ed nhung em se fim duge N l u HS khdng fim dugc, GV ggi y bdng coc CH sou: CH 1: Qudn thi(*) dang cdn bang di truyin idii ndo? HS: Khi cdu true di truyen cua nd khdng thoy ddi qua cdc t h i he GV ggi y: Cdu true DT ctJo QTl d t h i he xudt phdt Id gi? Cdu trijc DT cuo QTl d t h i he tilp theo Id gi? HS: Cdu hue di truyen d fhl he xudt phdt: DAA: Hao: Raa Cdu trtjc di truyen d f h l he tilp theo Id: ^D+fLy•AA: 2(D+j}(R+j}Aa : {R+^faa CH 2: Vdy diiu kien diQT DAA: Haa: Raa dang a trgng thdi edn bang di truyin Id gl? HS: (D=(D+^y H= THPT cho thdy, mdi khdi niem sinh hoc ehuong trinh phd thdng ed the dqy bdng nhieu cdch khde nhau, DH bdng cdch st/ dung CH, BT Id mqt cdch dqy hieu qud vi thong qua cdch dqy ndy se phdt t r i l n dugc ndng luc tu cho ngudi hoc, HS se h i l u sdu sdc bdn chdt etja khdi niem Ddng thdi nd Id ed sd de HS vdn dyng tdt nhung tri thue vua hge dugc vdo thue fien • 2(D.^)(R+^} [R=(R+^r CH 3: Hdy tim mdi lien hi gida D, H, R dehe phuong trinh tren ludn dung? HS se fim dugc Id: D x R = (^f GVchdt Igi: Mdt QT gioo phdi cd edu frije di truyen d t h i hd xudt phdt Id: DAA: Haa: Raa (1) ( D K : < b , H, R < vd D-H H-i-R = 1)' M Con bang di truyen khi: D x R = (^f M3) ,H,i Khong cdn bdng di truyen khi: D x R ^t (-T)\ GV: N l u ggi p Id tdn sd tuong ddi eija alen A, q Id tdn so tuong ddl ctja alen a (0 < p, q < H „ H vo p -I- q = 1) Dgt p = D + — va q = « + y ^1 QT (*) dugc dua ve dqng p^AA: IpqAa: q^aa hay p^AA + IpqAa + q^aa = Kd't ludn Thuc fien DH Sinh hge d trudng Tap chi Giao due so (ki2 6/201 n Tdi lieu tliam Idiao Dinii Quang B^o Nguygn Diic Tli^nh Li Iu§n day lipc Sinli hpe (Plidn dai cuong) NXB Gido due, H.1996 A.Danliilov -M.N Skatlcin Li luSn day Iioc d truvng phd thdng NXB Gido due H 1980 Tr&n B^ Hohnli Ap dung day vk hoc tich cue mdn Sinh hpe NXB Dgi hge suphgm, H.2003 Trdn Van KiSn Vdn dung tiip cdn gidi quyet vd'n di dgy hoc di truyin hge a truong trung hoc phd thdng Luan an tie'n sT giao due iioc 2006 ht Tlianli Oai Su dung cdu hdi, bdi tdp ditich cue hda hogt ddng nhdn thiic ciia hoc sinh dgy hoc sinh thdi lap JI Luan an tie'n si Giao due hoc 2003 Mgt so bien phap sir dung (Tiip theo trang 47} cdc PPDH khdc nhdm phdt huy tdi da finh tieh ct/c eija HS Ndm vCing he thdng ydu edu ndy, GV se thue hien tdt cdc bidn phdp si/ dtjng BDGK LS theo hudng phdt huy tinh tich cue cua HS, gdp phdn ndng coo hidu qud bdi hoe Q Tai lieu tham khao NguySn Ttii Cdi Kenh hinh day hpe Uch sir d truong trung hpe phd thong, tap NXB Dgi hoc su phgm, H 2000 Nguyin Tlii C6i (cliii bien) Cac duung, bien phap nang cao hieu qua day hpe lich sur or truong phd thdng NXB Dgi hoe suphgm, H 2006 Lam Quang Ddc Ban dd giao khoa (diing ciio sinii vien Iclioa Ijcli sii^) NXB Dgi hge qudc gia, H 1997 HOi Giao dtac licli su Viet Nam Ddi mdi viec day, hpe lich sulSfy hpe sinh lam trung tam NXB Dgi hoc qudc gia, H 1996 Plian Ngoc Lien (chu bien) Ddi mdi hdi dung va phumig phap day hpe lich sir a trudng phd thdng NXB Dgi hge suphgm, H 2008 Phan Ngoc Lien (chu bien) Phmmg phap day hpe lich su-, tap NXB Dgi hge suphgm, H 2009 7.1.F.Kharlamop Phat huy tinh tich cue hpe tdp cua hpe sinh nhuthe nao? NXB Gido due, H 1978 ... vi soo Iqi cd cdng thuc dd thi hidn khdng cd tdi lieu ndo de cap Trong trudng hgp HS qudn cong thuc thi se khdng Idm dugc bdi Trong qud trinh DH, chOng tdi cho HS thye hidn cdc budc de tu fim... 2006 ht Tlianli Oai Su dung cdu hdi, bdi tdp ditich cue hda hogt ddng nhdn thiic ciia hoc sinh dgy hoc sinh thdi lap JI Luan an tie''n si Giao due hoc 2003 Mgt so bien phap sir dung (Tiip theo... truyin khdng thay ddl qua cdc thi hi" Day chinh Id cdch thu nhdt d l HS Idm BT dqng ndy Vi dy: Trong cdc QT sou, QT ndo ^ n g d trqng thdi cdn bdng dl truyln?: 1) 0,35AA : 0,45Aa : 0,2aa; 2)