1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Lời giải chi tiết 86 đề thi thử THPT 2021 677

1 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 228,11 KB

Nội dung

y = 3t + • Với x = −1, ta có hệ y = 4t − Suy (3t + 1) = 4t − ⇔ 9t + · 3t − 4t + = Đặt f (t) = 9t + · 3t − 4t + Khi đó: Với t ≥ ⇒ 9t ≥ 4t ⇒ f (t) > Với t < ⇒ 4t < ⇒ f (t) > Vậy phương trình (∗) vơ nghiệm ® (∗) Kết luận: x ∈ {0; 1} Chọn đáp án B Câu 48 Cho hàm số y = f (x) Hàm số y = f (x) có đồ thị hình vẽ bên Biết diện tích hình phẳng giới hạn trục Ox đồ thị hàm số y = f (x) đoạn [−2; 1] [1; 4] 12 Cho f (1) = Giá trị biểu thức f (−2) + f (4) A 21 B C D y y = f (x) −2 ✍ Lời giải x O |f (x)| dx = Theo giả thiết ta có −2 |f (x)| dx = 12 Dựa vào đồ thị ta có 1 |f (x)| dx = − −2 f (x) dx = −f (x) −2 = −f (−1) + f (−2) ⇒ −f (1) + f (−2) = −2 Tương tự ta có −f (4) + f (1) = 12 Như [−f (1) + f (−2)] − [−f (4) + f (1)] = −3 ⇔ f (−2) + f (4) − 2f (1) = −3 ⇔ f (−2) + f (4) − = −3 ⇔ f (−2) + f (4) = Chọn đáp án C √ z+2−i Câu 49 Cho số phức z thỏa mãn điều kiện = Tìm giá trị lớn |z| z+1−i √ √ √ √ A + 10 B −3 − 10 C −3 + 10 D − 10 ✍ Lời giải Giả sử z = x + yi (x, y ∈ R) Ta có √ √ z+2−i = ⇔ |z + − i| = · |z + − i| z+1−i ⇔ (x + 2)2 + (y − 1)2 = (x + 1)2 + (y + 1)2 ⇔ x2 + (y + 3)2 = 10 (∗) 2 ⇔ x + y = − 6y ⇔ |z| = − 6y ĐỀ SỐ 45 - Trang 13

Ngày đăng: 27/10/2022, 11:18