1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi chọn HSG cấp tỉnh toán 12 năm 2018 – 2019 sở GD và đt bình thuận (vòng 2)

3 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 251 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH THUẬN ĐỀ CHÍNH THỨC (Đề có 01 trang) KÌ THI THÀNH LẬP ĐỘI TUYỂN HỌC SINH GIỎI LỚP 12 THPT DỰ THI QUỐC GIA NĂM HỌC 2018 – 2019 Ngày thi: 19/10/2018 Mơn: Tốn Thời gian làm bài: 180 phút (khơng kể thời gian giao đề) Bài (5 điểm) 3 2 2 Giải phương trình nghiệm nguyên: x + y + x y + xy = ( x + xy + y ) + Bài (5 điểm)  π Cho x, y ∈  0; ÷ Chứng minh rằng:  2 1 + + ≤ sin x sin y + sin x cos y + cos x + ( sin x sin y + sin x sin y + sin x cos y ) Bài (5 điểm) Cho tam giác ABC có AB < AC nội tiếp đường tròn ( O ) Phân giác góc · cắt ( O ) điểm D khác A , lấy E đối xứng B qua AD , đường thẳng BE cắt ( O ) BAC F khác B Lấy điểm G di chuyển cạnh AC ( G khác A, C ), đường thẳng BG cắt ( O ) H khác B Đường thẳng qua C song song AH cắt FD I Đường tròn ngoại tiếp tam giác BCG cắt EI hai điểm phân biệt K , L Chứng minh đường trung trực đoạn thẳng KL qua điểm cố định Bài (5 điểm) Cho 2018 tập hợp mà tập chứa 45 phần tử Biết hai tập tùy ý tập có phần tử chung Chứng minh tồn phần tử thuộc tất 2018 tập hợp cho HẾT (Cán coi thi khơng giải thích thêm.) Họ tên thí sinh: Số báo danh: ĐÁP ÁN KỲ THI THÀNH LẬP ĐỘI TUYỂN HSG LỚP 12 THPT DỰ THI QUỐC GIA – Năm học 2018 – 2019 LỜI GIẢI TÓM TẮT ĐIỂM Bài (5 điểm) 3 2 2 Giải phương trình nghiệm nguyên: x + y + x y + xy = ( x + xy + y ) + Nhận xét: x ≠ y ⇒ 2( x + y ) > xy + x + y + x y + xy = ( x + xy + y ) + ⇔ ( x + y ) ( x + y − ) = xy + ⇒ xy + = ( x + y ) ( x + y − ) > xy + x + y − 3 2 2 2 2 ⇒ > x + y − ⇒ x + y = 3;4;5 x + y = không thỏa x + y = không thỏa x + y = tìm x = 1; y = x = 4; y = Bài (5 điểm) 0,5 0,5 0,5 1,5 0,5 0,5 0,5 0,5  π Cho x, y ∈  0; ÷ Chứng minh rằng:  2 1 + + ≤ 2 2 sin x sin y + sin x cos y + cos x + ( sin x sin y + sin x sin y + sin x cos y ) Đặt a = sin x sin y, b = sin x cos y, c = cos x a, b, c > a + b + c = 1 1 Ta cần chứng minh a + + b + + c + ≤ ab + ac + bc ( ) 1 1 1 Thật vậy, a + + b + + c2 + ≤ a + b a + c + b + c b + a + c + a c + b ( )( ) ( )( ) ( )( ) = 1,0 0,5 1,0 2( a + b + c) ( a + b) ( a + c) ( b + c) Mà ( a + b ) ( a + c ) ( b + c ) = ( a + b + c ) ( ab + ac + bc ) − abc 1,0 ≥ ( a + b + c ) ( ab + ac + bc ) − ( a + b + c ) ( ab + ac + bc ) = ( a + b + c ) ( ab + ac + bc ) 9 1 1,0 Nên a + + b + + c2 + ≤ ab + ac + bc ( ) Đẳng thức xảy 1 π a=b=c= ⇔ a=b=c= ⇔ x = arccos ,y= 3 Bài (5 điểm) 0,5 Cho tam giác ABC có AB < AC nội tiếp đường tròn ( O ) Phân giác góc · cắt ( O ) điểm D khác A , lấy E đối xứng B qua AD , đường thẳng BE BAC cắt ( O ) F khác B Lấy điểm G di chuyển cạnh AC (G khác A, C ), đường thẳng BG cắt ( O ) H khác B Đường thẳng qua C song song AH cắt FD I Đường tròn ngoại tiếp tam giác BCG cắt EI hai điểm phân biệt K , L Chứng minh đường trung trực đoạn thẳng KL qua điểm cố định Gọi giao điểm đường thẳng EI BC J DF trục đối xứng EC · · · · nên tứ giác BGEJ nội tiếp CEJ = ECI = HAC = HBC k =CE CG =CJ CB Phép nghịch đảo N C biến đường tròn ( BCG ) thành đường thẳng EJ nên biến K , L thành chính Do CK = CL2 = k hay đường trung trực đoạn thẳng KL qua điểm C cố định Bài (5 điểm) 0,5 1,0 1,5 1,0 1,0 Cho 2018 tập hợp mà tập chứa 45 phần tử Biết hai tập tùy ý tập có phần tử chung Chứng minh tồn phần tử thuộc tất 2018 tập hợp cho Lấy tập A tùy ý, A có phần tử a thuộc ít 45 tập hợp khác Nếu không, số tập hợp không 45x44 + = 1981 Suy a thuộc 46 tập A, A1 , , A45 Với tập B bất kì, a khơng thuộc B với tập Ai ( ≤ i ≤ 45 ) có phần tử chung với B mà ≠ a Thành B khơng có phần tử chung với A, có phần tử chung phải thuộc tập Ai ( ≤ i ≤ 45 ) nên A Ai ( ≤ i ≤ 45 ) có phần tử chung (Vơ lí) Nên a thuộc B, a thuộc 2018 tập cho 1,0 1,0 1,0 1,0 1,0 ...ĐÁP ÁN KỲ THI THÀNH LẬP ĐỘI TUYỂN HSG LỚP 12 THPT DỰ THI QUỐC GIA – Năm học 2018 – 2019 LỜI GIẢI TÓM TẮT ĐIỂM Bài (5 điểm) 3 2 2 Giải phương trình... định Bài (5 điểm) 0,5 1,0 1,5 1,0 1,0 Cho 2018 tập hợp mà tập chứa 45 phần tử Biết hai tập tùy ý tập có phần tử chung Chứng minh tồn phần tử thuộc tất 2018 tập hợp cho Lấy tập A tùy ý, A có phần... thuộc tập Ai ( ≤ i ≤ 45 ) nên A Ai ( ≤ i ≤ 45 ) có phần tử chung (Vơ lí) Nên a thuộc B, a thuộc 2018 tập cho 1,0 1,0 1,0 1,0 1,0

Ngày đăng: 20/10/2022, 21:13

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w