1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài 2 mặt cầu môn toán lớp 12 đầy đủ chi tiết nhất

20 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 249,49 KB

Nội dung

Tiết 17 §2 MẶT CẦU I Mục tiêu: 1.Về kiến thức: - Học sinh cần nắm giao mặt cầu đường thẳng, tiếp tuyến mặt cầu Nắm cơng thức tính diện tích mặt cầu , cơng thức tích thể tích khối cầu - Nắm khái niệm tiếp tuyến, đồng thời so sánh tiếp tuyến đường tròn 2.Về kĩ năng: - Xác định giao mặt cầu với đường thẳng.Biết cách tính diện tích mặt cầu ,thể tích khối cầu 3.Về tư duy,thái độ - Biết quy lạ quen, liên hệ kiến thức vào thực tế sống Rèn luyện tư lơgíc trí tưởng tượng phong phú - Giáo dục cho HS ý thức học tập nghiêm túc, biết giải vấn đề nhiều phương pháp, đồng thời nêu cao tinh thần tự giác học tập tinh thần hợp tác theo nhóm - Chủ động , tích cực xây dựng bài, chiếm lĩnh tri thức dẫn dắt Gv, động, sáng tạo suy nghĩ làm toán Định hướng phát triển lực: - Năng lực tạo nhóm tự học sáng tạo để giải vấn đề: Cùng trao đổi đưa phán đốn q trình tìm hiểu tốn tượng toán thực tế - Năng lực hợp tác giao tiếp: Tạo kỹ làm việc nhóm đánh giá lẫn - Năng lực quan sát, phát giải vấn đề: Cùng kết hợp, hợp tác để phát giải vấn đề, nội dung bào toán đưa - Năng lực tính tốn: - Năng lực vận dụng kiến thức: Phân biệt khối đa diện khối đa diện… II Chuẩn bị giáo viên học sinh Giáo viên: - Các hình ảnh minh họa khối cầu - Bảng phụ trình bày kết hoạt động nhóm, máy tính, máy chiếu… Học sinh: - Nghiên cứu trước nhà học - Ôn tập kiến thức quan hệ vng góc, quan hệ song song - Tìm kiếm thơng tin hình ảnh liên quan đến chủ đề III Chuỗi hoạt động học Giới thiệu Nội dung học: HĐ1 Bài cũ Câu hỏi : Nêu điều kiện để mặt phẳng (P) mặt phẳng tiếp diện mặt cầu S(O;R) Đáp án: Mặt phẳng (P) mặt phẳng tiếp diện mặt cầu S(O;R) - Mặt phẳng (P) tiếp xúc với mặt cầu (S) điểm - Khoảng cách từ tâm mặt cầu đến (P) R - (P) vng góc với bán kính OH điểm H ĐVĐ: Khi cho mặt phẳng (P) mặt cầu S(O;R) ta xét vị trí tương đối nó, cho đường thẳng (  ) mặt cầu S(O;R) có khả xảy ra? HĐ2 Bài mới: III GIAO CỦA MẶT CẦU VỚI ĐƯỜNG THẲNG, TIẾP TUYẾN CỦA MẶT CẦU Hoạt động 1: HÌNH THÀNH VỊ TRÍ TƯƠNG ĐỐI CỦA MẶT CẦU VỚI ĐƯỜNG THẲNG Hoạt động GV Hoạt động HS -TB:Cho mặt cầu S(O; r) đường thẳng (  ) Gọi H hình chiếu O lên đường thẳng (  ) Khi d = OH khoảng cách từ O tới đường thẳng (  ) - Tư qua thực tế quan sát hình vẽ nêu trường hợp xảy Nội dung - So sánh rút kết luận - Có điểm H hình chiếu vng góc điểm O lên mp(P)? - YC so sánh d R Hoạt động 2: XÉT TRƯỜNG HỢP h > r Hoạt động GV -Cho điểm M thuộc đường thẳng (  ) so sánh OM OH? Giải thích Theo giả thuyết OH>r.Từ kết luận OM & OH, nêu kết Hoạt động HS Quan sát lắng nghe trả lời câu hỏi OM > OH Nội dung ( S )  ()   kuận OM r OM > r - Nêu vị trí tương đối điểm M thuộc đường thẳng (  ) mặt cầu S(O; r) - M nằm mặt cầu (S) O M H => đường thẳng (  ) khơng có điểm chung với mặt cầu S (O;r) Hoạt động 3: XÉT TRƯỜNG HỢP h = r Hoạt động GV Hoạt động HS -Cho điểm M khác điểm H Quan sát lắng nghe trả thuộc đường thẳng (  ) so lời câu hỏi sánh OM OH? Giải OH < OM thích - Theo giả thuyết OH=r.Từ kết luận OM & OH, nêu kết kuận OM r.Từ nêu số diểm chung (S) (  ) Nội dung O H OM >r Tức (S) (  ) có điểm chung - H điểm chung mặt cầu S(O; r) đường thẳng (  ) Điểm H gọi tiếp điểm - Thế đường thẳng -Thảo luận trả lời câu hỏi mặt cầu S(O; r) đường ( tiếp tuyến của mặt cầu? Đường thẳng tiếp tuyến  ) (  ) tiếp tuyến (s) H mặt cầu đường thẳng vng góc với bán kính mặt cầu đầu bán kính có diểm chung với mặt cầu cách tâm mặt cầu khoảng bán kính Hoạt động 4: XÉT TRƯỜNG HỢP h < r Hoạt động GV - Xác định số giao điểm đưpừng thẳng mặt cầu Khi d = thìAB ? Hoạt động HS Nội dung Quan sát lắng nghe trả lời câu hỏi (S) I (Δ)= A;B AB =2r -Từ khái niệm TT đường trịn dự đốn TT mặt cầu ? -Dự đoán -TB - Tiếp thu Hr’ O - Dùng hình vẽ trực quan để biểu diễn số - Ghi nhận so sánh TT mặt cầu với HH phẳng điểm A mặt cầu , ngồi mặt cầu IV DIỆN TÍCH MẶT CẦU, THỂ TÍCH KHỐI CẦU Hoạt động GV -TB Hoạt động HS -Ghi nhận Nội dung S = 4πr π.r V=3 Với r bán kính mặt cầu Củng cố học: 1, Nêu điều kiện để đường thẳng tiếp tuyến mặt cầu? 2, So sánh diện tích mặt cầu (S) diện tích đường trịn lớn? Hướng dẫn học : - Biểu diễn tiếp tuyến mặt cầu điểm A mặt cầu - Nêu cách xác định vị trí tương đối đường thẳng với mặt cầu Chuẩn bị tập ,5 ,6 SGK - Tiết 18 : §2 MẶT CẦU I Mục tiêu: 1.Về kiến thức: - Học sinh cần nắm dạng tập tìm tâm bán kính mặt cầu - Củng cố số kiến thức hình học phẳng 2.Về kĩ năng: - Học sinh nắm vững dạng tập phương pháp giải dạng tập tương đối thành thạo 3.Về tư duy,thái độ - Biết quy lạ quen, liên hệ kiến thức vào thực tế sống Rèn luyện tư lơgíc trí tưởng tượng phong phú - Giáo dục cho HS ý thức học tập nghiêm túc, biết giải vấn đề nhiều phương pháp, đồng thời nêu cao tinh thần tự giác học tập tinh thần hợp tác theo nhóm - Chủ động , tích cực xây dựng bài, chiếm lĩnh tri thức dẫn dắt Gv, động, sáng tạo suy nghĩ làm toán II Chuẩn bị: GV: - Giáo án, phấn, bảng, - Bảng phụ, phiếu trắc nghiệm HS: - SGK, bút…, bảng phụ - Đọc trước III Tiến trình học: 1.Kiểm tra cũ: Câu hỏi : Nêu định nghĩa mặt cầu ? Mặt cầu xác định nào? Đáp án: +/ S(O,r) TH điểm M không gian cách điểm O cố định khoảng r +/ Mặt cầu hoàn toàn XĐ biết tâm bán kính biết đường kính ĐVĐ: Ta nghiên cứu mặt cầu ta củng cố lại lý thuyết qua tập sau Bài mới: Hoạt động 1: BÀI TẬP Hoạt động GV Hoạt động HS -Yêu cầu HS tóm tắt đầu - vẽ hình - Vẽ hình tóm tắt đầu hình vẽ Hướng dẫn +/ Gọi I tâm mặt cầu cần tìm ta có điều gì? - Thảo luận đua : IA=IB=IC=ID=IS +/ Từ IA=IB=IC=ID nhận xét vị trs điểm I Nội dung - I nằm trục đường tròn ngoại tiếp đáy tức I nằm SO -Gọi O tâm hình vng ABCD, Giả sử mặt cầu ngoại tiếp hình chóp S.ABCD có tâm I IA=IB=IC=ID nên I nằm SO -Hướng dẫn XĐ điểm I - CM tam giác SAC,SBD vng S -Ta có SA=SB=SC=SD =a AC =BD = AB  a XĐhình dạng tam giác SAC,SBD nên tam giác SAC,SBD vng S OA=OB=OC=OD=OS OA=OB=OC=OD=OS mà I tâm mặt cầu nên - Nhận xét OA,OB,OC,OD,OS IA=IB=IC=ID =IS Vậy I trùng O tức mặt cáu cần tìm có tâm O ,bán kính -XĐ tâm bán kính AB a  2 R=OA = Hoạt động 2: BÀI TẬP trang 49 Hoạt động GV Hoạt động HS -Yêu cầu HS tóm tắt đầu - vẽ hình - Vẽ hình tóm tắt đầu hình vẽ Hướng dẫn +/ Gọi I tâm mặt cầu cần tìm ta có điều gì? -Thảo luận trả lời +/ Từ IA’=IB’=IC’ nhận xét vị trí điểm I khoảng cách từ I đến cạnh tam giác -I nằm đường thẳng vng góc với mặt phẳng (ABC) giao điểm đường phân giác -Hoàn chỉnh Nội dung O CH C’ A I A’ B’ B Hoạt động 3: BÀI TẬP trang 49 Hoạt động GV Hoạt động HS -Yêu cầu HS tóm tắt đầu - vẽ hình - Vẽ hình tóm tắt đầu hình vẽ Nội dung Hướng dẫn +/ Gọi I IA=IB=IC=ID=IA’=IB’=IC’= tâm mặt cầu cần tìm ta ID’ có điều gì? +/ Từ IA=IB=IC=ID= ’ ’ ’ -Dự đốn vị trí điểm I ’ =IA =IB =IC =ID nhận xét vị trí điểm I -Hướng dẫn -Hồn chỉnh Củng cố học: 1, Nêu cách xác định tâm mặt cầu ngoại tiếp hình chóp , lăng trụ ? 2, Nêu PP CM n điểm nằm mặt cầu Hướng dẫn học : - Hướng dẫn HS xác định tâm mặt cầu PP tập hợp điểm nhìn điếm - Nêu cách xác định tâm mặt cầu ngoại tiếp hình chóp , lăng trụ Chuẩn bị tập 5,6 trang 49- SGK Hoạt động 4: Hướng dẫn chữa tập trang 49 Hoạt động GV Hoạt động HS Nội dung -Yêu cầu HS tóm tắt đầu - vẽ hình - Vẽ hình tóm tắt đầu hình vẽ - Dựa vào biểu thức cần CM giống biểu thức hình học phẳng - Thảo luận trả lời : Giống biểu thức cát tuyến đường tròn -Đưa toán toán HH phẳng -Đưa toán toán HH phẳng hướng dẫn GV - Xác định giao (P) mặt cầu a,Gọi (P) mặt phẳng qua AB CD (P) giao với mặt cầu (S) đường tròn qua điểm A,B,C,D Trong mặt phẳng (P) ta có MA.MB = MC.MD ∙ hay MA.MB = MC.MD b, -Từ MA.MB quan hệ với đường OM tronh HH phẳng Gọi (Q) mặt phẳng qua - Nhớ lại kiến thức MAB điểm O (Q) cắt HH phẳng mặt cầu (S) theo giao tuyến đường tròn lớn tâm O bán MA.MB = OM2 –r2 với kính r nên (Q) ta có MAB cát tuyếncủa MA.MB = OM2 – r2 đường tròn tâm O bán kính r = d2 –r2 -Đưa tốn toán HH phẳng -Thảo luận trả lời */ Nêu phương pháp giải toán dạng toán Hoạt động 5: Hướng dẫn chữa tập trang 49 Hoạt động GV Hoạt động HS -Yêu cầu HS tóm tắt đầu - vẽ hình - Vẽ hình tóm tắt đầu hình vẽ Nêu PP CM AMB = AIB -Thảo luận trả lời để CM góc ta chứng minh tam giác chứa góc - XĐ tam giác cần chứng minh chứng minh AMB AIB Nội dung O M I P A B Ta có BM BI tiếp tuyến mặt cầu kẻ từ B nên BM =BI Hướng dẫn: Quan hệ BMvà IM ; AM AI TT AM =AI Xét AMB AIB có BM =BI ; AM = AI ; AB chung nên tam giác -Hoàn chỉnh Vậy AMB = AIB Hoạt động 6: Hướng dẫn chữa tập Hoạt động GV - Chiếu ND 7- SGK Hoạt động HS Nội dung Cho hình hộp chữ nhật ABCDA ' B ' C ' D ' a) Xác định tâm bán kính mặt cầu qua đỉnh hình hơp chữ nhật - Nghe hiểu câu hỏi tập b) Tính bán kính đường tròn giao tuyến mặt phẳng (ABCD) với mặt cầu Theo gsử điều gì? Lời giải: - Trả lời Giả sử hình hộp chữ nhật ' ABCDA ' B C ' D ' có AA ' = a; AB= b; AD = c Ta biết: Các đường chéo hình hộp chữ nhật có độ dài cắt trung điểm I đường Hướng dẫn HS cách vẽ hình B Thực C b A J c B’ I a D C’ a) Ta có: IA = IB = IC = ID = IA ' = IB ' = IC ' = ID ' IA = - Từ hình vẽ em có nhận xét từ trung điểm I đền đỉnh hình hộp chữ nhật? - Ngồi ta cịn suy điều gì? Vậy r = ? - HDẫn HS tính bán kính đường trịn giao tuyến mặt phẳng (ABCD) AC , 2 2 Mặt khác AC ' = a + b + c Bằng Các độ dài a2 + b2 + c2 a + b2 + c2 Tính bán kính a + b2 + c2 Nên r = AI = b) Giao tuyến (ABCD) với mặt cầu đường ngoại tiếp hình chữ nhật ABCD Do đường trịn giao tuyến (ABCD)với mặt cầu có tâm trung điểm J ' BD bán kính: r Củng cố học: Nắm vững dạng tốn sử dụng tính chất cát tuyến , tiếp tuyến đường tròn đưa sang mặt cầu Hướng dẫn học : = b + c2 - Xem lại dạng toán - Ôn phần vị trí tương đối mặt cầu mặt phẳng , đường thẳng cơng thức tính diện tích mặt cầu thể tích khối cầu HD chuẩn bị tập 8,10 trang 49 - - Tiết 19: §2 MẶT CẦU I Mục tiêu: 1.Về kiến thức: - Học sinh cần nắm dạng tập chứng minh tính tốn - Củng cố số kiến thức hình học phẳng 2.Về kĩ năng: - Học sinh nắm vững dạng tập phương pháp giải dạng tập tương đối thành thạo 3.Về tư duy,thái độ - Biết quy lạ quen, liên hệ kiến thức vào thực tế sống - Chủ động , tích cực xây dựng - Rèn luyện tính cẩn thận ,kỹ biểu diễn hình khơng gian , kỹ giải tập hình khơng gian II Chuẩn bị: 1.GV: - Giáo án, phấn, bảng, - Bảng phụ, phiếu trắc nghiệm HS: - SGK, bút…, bảng phụ - Đọc trước III Tiến trình học: Kiểm tra cũ: (Trong giảng) ĐVĐ: Ta nghiên cứu mặt cầu ta củng cố lại lý thuyết qua tập sau Bài mới: Hoạt động 1: Hướng dẫn chữa tập Hoạt động GV Treo ND tập - SGK CMR có mặt cầu tiếp xúc với cạnh hinh tứ diện tổng độ dài cặp cạnh đối diện tứ diện Hướng dẫn HS hiểu ND cách vẽ hình Hoạt động HS Nội dung Xem ND tập bảng phụ Đọc hiểu ND tập yêu cầu ntn? Lời giải: Giả sử tứ diện ABCD có cạnh AB, AC, AD, CB, CD, BD l ần lượt tiếp xúc với mặt cầu M, N, P, Q, R, S Khi ta có: AM = AN = AP = a BM = BQ = BS = b; CQ = CN = CR = c DP = DR = DS =d Như vậy: AB + CD = a + b + c + d AC + BD = a + c + b + d AD + BC = a + d + b + c Yêu cầu HS nhận xét từ hình vẽ bên - Nhận xét cách hiểu - Nhận xét ý kiến - Phát biểu cách Do đó, cặp đối diện tứ diện thoả mãn điều kiện toán có tổng Tức là: AB + CD = AC + BD = AD + BC -Hiểu - Như ta suy điều gì? AB + CD = AC + BD = AD + BC Hoạt động 2: Hướng dẫn chữa tập Hoạt động GV Trình chiếu ND tập (SGK – tr.49) Cho điểm A cố định đường thẳng a cố định không qua A Gọi O môt điểm thay đổi a CMR mặt Hoạt động HS Xem hiểu ND tập (SGK – tr.49) Nội dung Bài (SGK – tr.49) Lời gải: Gọi ( a ) mặt phẳng qua A vng góc với đường thẳng a I Khi mặt cầu tâm O bán kính OA cắt mặt phẳng ( a ) theo đường trịn tâm I bán kính tâm O, bán kính r = OA ln ln qua đường trịn cố định IA khơng đổi Ghi đề Hdẫn HS giải HS thực a Vậy mặt cầu tâm O bán kính r = OA ln ln qua đường trịn cố định tâm I bán kính r ' = IA khơng đổi Vẽ hình Vẽ hình Hoạt động 3: Hướng dẫn chữa tập 10 trang 49 Hoạt động GV -Yêu cầu HS tóm tắt đầu - vẽ hình Hoạt động HS Nội dung - Phân tích SA  SB SA  (SBC) -Phân tích đầu SA  SC SC  SB nên  SBC vuông M I I S - Vẽ hình tóm tắt đầu hình vẽ -Từ công thức nên yếu tố Ta thấy  SBC vng S phải tìm bán kính mặt cầu - Nêu cơng thức tính S V Xác định yếu tố phải tìm - Thảo luận trả lời : Tâm đường tròn điểm O ( O trung điểm cạnh BC ) - Xác định tâm đường trịn đáy -HD tìm tâm mặt cầu Từ O dựng đường thẳng l vng góc với (SBC) Gọi (P) mặt phẳng trung trực cạnh SA - Bán kính mặt cầu IA=IB=IC= SI -Tính IB - Xác định đoạn thẳng bán kính mặt cầu tính độ dài bán kính nên tâm  SBC trung điểm O cạnh BC Gọi I giao (P) l I tâm mặt cầu cần tìm ( I  l nên SI =IB=IC ; I  (P) nên SI =IA ) Ta có SA =a nên SA a  SM = IO = 2 Từ  SBC vuông S có BC= SB2  SC  b  c mà OB = BC  b  c2 2 -Từ  IOB vuông O có - Thảo luận ,tư tìm câu trả lời IB = = - Tính S = OI  OB a2  b  c2 4   1  4 R  4  a  b2  c  2  - Nêu cách XĐ tâm mặt cầu ngoại tiếp hình chóp =   a  b2  c  a  b2  c2 = - Tính V = Tổng quát kết luận  a2  b2  c2   a2  b2  c2 - YC HS áp dụng cơng tính S V Củng cố học: - Nêu cách xác định tâm mặt cầu ngoại tiếp hình chóp? - Một hình chóp có mặt cầu ngoại tiếp nào? - Hưóng dẫn tập - Hướng dẫn học : - Xem lại dạng toán Chuẩn bị tập : Hình chóp tam giác S.ABC có SA = SB = SC = a có chiều cao h Xác định tâm bán kính mặt cầu ngoại tiếp hình chóp Tính diện tích mặt cầu ... OB a2  b  c2 4   1  4 R  4  a  b2  c  ? ?2  - Nêu cách XĐ tâm mặt cầu ngoại tiếp hình chóp =   a  b2  c  a  b2  c2 = - Tính V = Tổng quát kết luận  a2  b2  c2   a2  b2... tròn giao tuyến mặt phẳng (ABCD) AC , 2 2 Mặt khác AC ' = a + b + c Bằng Các độ dài a2 + b2 + c2 a + b2 + c2 Tính bán kính a + b2 + c2 Nên r = AI = b) Giao tuyến (ABCD) với mặt cầu đường ngoại... học: HĐ1 Bài cũ Câu hỏi : Nêu điều kiện để mặt phẳng (P) mặt phẳng tiếp diện mặt cầu S(O;R) Đáp án: Mặt phẳng (P) mặt phẳng tiếp diện mặt cầu S(O;R) - Mặt phẳng (P) tiếp xúc với mặt cầu (S) điểm

Ngày đăng: 18/10/2022, 17:51

w