1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BÀI GIẢNG: GIẢI TOÁN TÍCH PHÂN BẰNG NHIỀU CÁCH

60 1,4K 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 811,04 KB

Nội dung

(MỘT PHƯƠNG PHÁP NHẰM PHÁT TRIỂN TƯ DUY CHO HỌC SINH) Bỉm sơn. 14.02.2014 02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 1 GIẢI TOÁN TÍCH PHÂN BẰNG NHIỀU CÁCH (Một phương pháp nhằm phát triển tư duy) I. TÍCH PHÂN HÀM HỮU TỶ Bài tập giải mẫu: Bài 1: Tính tích phân sau: 3 3 2 0 1 x I dx x    Giải: Cách 1: Phương pháp biến đối số Đặt   2 tan 1 tan x t dx t dt     Đổi cận 3 3 0 0 t x x t                 Khi đó     3 3 3 3 3 2 2 0 0 0 0 tan tan tan 1 1 tan tan 1 tan I tdt t t dt t t dt tdt                    23 3 0 0 cos tan 3 tan tan ln cos ln2 3 cos 2 2 0 d t t td t t t                 Nhận xét: Đối với tích phân dạng     2 2 , , I R u u a du u u x       thì ta có thể đặt tan u a t  Cách 2: Phương pháp tích phân từng phần Đặt   2 2 2 2 ln 1 1 2 du xdx u x x xdx dv v x                 Khi đó         3 3 2 2 2 2 2 0 0 1 13 ln 1 ln 1 3ln2 ln 1 1 2 2 0 J I x x x x dx x d x            Tính     3 2 2 0 ln 1 1 J x d x     Đặt       2 2 2 2 2 1 ln 1 1 1 1 d x u x du x dv d x v x                     Khi đó       3 2 2 2 0 1 33 3ln2 1 ln 1 1 ln 2 2 2 0 I x x d x                  Chú ý: Sở dĩ ta sử dụng được phương pháp này là vì Khi tính tích phân hàm phân thức mà ta phân tích được về dạng           ' n n P x f x Q x I dx dx Q x Q x     thì 02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 2 Đặt       ' n u f x du Q x v dv dx Q x            Cách 3: Kĩ thuật tách thành tích kết hợp phương pháp đổi biến số Nhận xét: Ta có 3 2 . x x x  và   ' 2 1 2 x x   từ đó ta định hướng giải như sau Phân tích 3 3 3 2 2 2 0 0 1 1 x x x I dx dx x x       Đặt 2 2 1 1 2 x t t x dt xdx            Đổi cận 4 3 1 0 t x t x              Khi đó     4 4 1 1 1 4 1 1 1 1 3 1 ln ln 2 1 2 2 2 2 t I dt dt t t t t                 Cách 4: Phân tích và đưa vào vi phân               2 3 3 3 2 2 2 2 2 2 2 0 0 0 2 3 3 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 33 3 1 ln 1 2ln 2 2 2 2 1 0 0 x x I d x d x d x x x x d x x d x x x                                   Cách 5: Chia đa thức để tách thành tổng hai tích phân đơn giản hơn     2 3 3 3 3 2 2 2 2 2 0 0 0 1 1 3 1 33 3 ln 1 ln 2 2 2 2 2 2 1 1 1 0 0 d x x x x I dx x dx x x x x                        Nhận xét: Đây là tích phân hàm phân thức mà có bậc của tử lớn hơn bậc của mẫu chính vì thế ta chia đa thức để tách thành tổng các tích phân là phương pháp tối ưu nhất Cách 6: Phân tích tử thức chứa mẫu thức (thực chất là chia đa thức) Ta có   3 2 1 x x x x    Khi đó     2 3 3 3 3 2 2 2 2 2 0 0 0 1 1 3 1 33 3 ln 1 ln2 2 2 2 2 2 1 1 1 0 0 d x x x x I dx x dx x x x x                        Bài 2: Tính tích phân bất định:    3 3 2 3 3 1 2 3 2 x x I dx dx x x x x         Giải: Cách 1: Phân tích tử thức chứa nghiệm của mẫu thức Phân tích       3 2 2 3 2 3 3 2 7 1 1 x x x x x x x          Khi đó       2 2 3 2 2 3 2 3 3 2 7 1 1 3 3 2 3 2 x x x x x x x I dx dx x x x x                       2 7 1 1 3 3 7ln 2 2 1 2 2 1 2 x x dx x x dx x x x x x                         02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 3 2 2 3 7ln 2 ln 2 ln 1 3 8ln 2 ln 1 2 2 x x x x x x C x x x C                 Cách 2: Kết hợp phân tích tử thức chứa nghiệm ở mẫu thức và kĩ thuật “nhảy tầng lầu” Phân tích         3 2 3 2 3 1 1 2 3 x x x x x x x                           2 2 3 2 3 1 2 3 2 3 3 2 3 1 2 9 1 2 3 x x x x x x x x x x x x x                        Khi đó         2 3 2 2 3 2 3 1 2 3 2 3 3 3 2 3 2 x x x x x x x I dx dx x x x x                    2 2 2 9 2 3 3 3 9ln 2 ln 3 2 2 3 2 2 x x x dx dx x x x x C x x x                         Cách 3: Kết hợp phân tích tử thức chứa nghiệm ở mẫu thức và đồng nhất thức Phân tích     3 2 2 3 2 3 3 2 7 6 x x x x x x x         Khi đó     2 2 3 2 2 3 2 3 3 2 7 6 3 3 2 3 2 x x x x x x x I dx dx x x x x                  2 1 2 7 6 3 3 3 2 2 x x x dx dx x I x x            . Tính 1 I bằng phương pháp đồng nhất thức…. Cách 4: Chia đa thức để tách thành tổng hai tích phân đơn giản hơn   1 3 2 2 2 3 9 8 9 8 3 3 3 2 3 2 3 2 I x x x I dx x dx x dx dx x x x x x x                           Tính 1 I bằng phương pháp đồng nhất thức…. Bài 3: Tìm nguyên hàm sau:   3 3 2 2 2 1 1 x x I dx dx x x x        Giải: Cách 1: Phương pháp đổi biến số Đặt 1 1 du dx u x x u          Khi đó   3 3 2 2 2 2 2 1 3 3 1 3 1 1 3 3 3ln 2 u u u u u I du du u du u u C u u u u u                         với 1 u x   Cách 2: Phân tích tử thức chứa nghiệm ở mẫu thức Phân tích       3 2 2 2 1 2 2 1 3 1 1 x x x x x x x          Khi đó       2 2 3 2 2 2 1 2 2 1 3 1 1 2 1 2 1 x x x x x x x I dx dx x x x x                   2 2 3 1 1 2 2 3ln 1 1 2 1 1 x x dx x x C x x x                       Cách 3: Kết hợp phân tích tử thức chứa nghiệm ở mẫu thức và kĩ thuật nhảy tầng lầu Phân tích       3 2 2 3 2 1 2 2 1 1 2 2 2 x x x x x x x          02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 4 Khi đó       2 2 3 2 2 3 2 1 2 2 1 1 2 2 2 2 1 2 1 x x x x x x x I dx dx x x x x                 2 2 2 1 3 2 2 3 2 2 ln 1 ln 2 1 1 2 2 1 2 2 x x x dx dx x x x x C x x x                         Cách 4: Kết hợp phân tích tử thức chứa nghiệm ở mẫu thức và đồng nhất thức Phân tích     3 2 2 2 1 2 2 1 3 2 x x x x x x x         Khi đó     2 2 3 2 2 2 1 2 2 1 3 2 2 1 2 1 x x x x x x x I dx dx x x x x                  2 1 2 3 2 2 2 2 1 2 x x x dx dx x I x x            . Tính I 1 bằng phương pháp đồng nhất thức Cách 5: Chia đa thức để tách thành tổng các tích phân đơn giản     3 3 2 2 2 2 3 1 2 1 2 1 1 1 1 2 3ln 1 2 1 x x I dx dx x dx x x x x x x x x C x                              Cách 6: Sử dụng phương pháp tích phân từng phần Đặt   3 2 2 3 1 1 1 u x du x dx dx dv v x x                   Khi đó 3 2 3 2 3 3 2 1 1 3 3 1 1 1 1 1 3 1 3 ln 1 1 1 1 2 x x x x I dx dx x x x x x x x x dx x x C x x x                                           Bài 4: Tìm nguyên hàm:   2 39 1 x dx I x    Giải: Cách 1: Sử dụng phương pháp đưa vào vi phân Phân tích       2 2 2 1 1 1 2 1 1 x x x x                         2 2 39 39 37 38 39 1 2(1 ) 1 1 2 1 1 1 1 1 1 x x x x x x x x                           37 38 39 36 37 38 1 1 1 1 1 2 1 1 1 2 36 37 38 1 1 1 1 1 1 I dx dx dx C x x x x x x                 Cách 2: Đặt 1 1 t x x t dx dt           2 39 39 38 37 38 37 36 1 1 1 1 1 1 2 1 1 1 2 38 37 36 t dt I dt dt dt C t t t t t t t                 Nhận xét: Cách 3: Sử dụng phương pháp tích phân từng phần 02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 5 Đặt     2 38 39 2 1 38 1 1 du xdx u x dx v dv x x                  Khi đó     2 38 38 1 1 19 38 1 1 x I x dx x x      …. đến đây các bạn có thể tự làm rồi Bài 5: Tìm nguyên hàm: 3 10 ( 1) x dx I x    Giải: Cách 1: Sử dụng phương pháp đưa vào vi phân Sử dụng đồng nhất thức:         3 3 2 3 1 1 1 3 1 3 1 1 x x x x x               3 10 7 8 9 10 1 3 3 1 ( 1) ( 1) ( 1) ( 1) ( 1) x x x x x x           Khi đó 7 8 9 10 6 7 8 9 3 3 ( 1) ( 1) ( 1) ( 1) 1 1 3 1 3 1 1 1 6 7 8 9 ( 1) ( 1) ( 1) ( 1) dx dx dx dx I x x x x C x x x x                        Cách 2: Sử dụng phương pháp biến đổi số Đặt 1 t x   ta có: 1 x t   nên dx dt    3 3 2 7 8 9 10 10 10 1 ( 3 3 1) 3 3 t dt t t t dt A t dt t dt t dt t dt t t                     6 7 8 9 1 1 3 1 3 1 1 1 6 ( 1) 7 ( 1) 8 ( 1) 9 ( 1) C x x x x           Cách 3: Sử dụng phương pháp tích phân từng phần Đặt     3 2 10 9 3 1 1 9 1 u x du x dx dx dv v x x                   Khi đó     1 2 3 9 9 1 1 3 9 1 1 I x I x dx x x        đến đây rùi ta có thể tính 1 I bằng phương pháp tích phân từng phần hoặc phân tích       2 2 1 1 1 1 1 x x x x        Nhận xét : - Đối với bài 3, bài 4 và mà ta sử dụng phương pháp đồng nhất thức thì giải hệ quả thật là nan giải phải không, chính vì thể mà lựa chọn phương pháp nào mà hiệu quả và nhanh về đích nhất Qua bài 3, bài 4 và bài 5 ta chú ý - Đối với tích phân hàm phân thức có dạng     n P x I dx x a    thì đặt t x a   là một phương pháp hiệu quả nhất 02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 6 - Khi tính tích phân hàm phân thức mà ta phân tích được về dạng           ' n n P x f x Q x I dx dx Q x Q x     thì ta sử dụng phương pháp tích phân từng phần nhưng nên làm khi bậc của   x a  là 1,2 n  Đặt:       ' n u f x du Q x v dv dx Q x            Bài 11: (ĐHDB – B 2004) Tính tích phân sau:   3 3 3 2 0 0 1 dx dx I x x x x       HD: Cách 1: Biến đổi số Nhân cả tử và mẫu cho 2 x     3 3 3 3 2 2 2 0 0 0 1 1 dx dx xdx I x x x x x x          Đặt 2 2 1 1 2 x t t x dt xdx            Cách 3: Biến đổi số Đặt tan x u  … Bạn đọc tự giải Cách 4: Đưa vào vi phân Phân tích tử   2 2 1 1 – x x   Khi đó   2 3 3 2 2 00 0 0 3 3 2 1 13 3 ln ln 1 2 1 1 6 ln 2 0 2 1 0 dx x dx I dx d x x x x x x x               Bài 12: Tính tích phân sau: 2 5 3 1 dx I x x    Giải: Cách 1: Sử dụng phương pháp phân tích Cách 1.1: Phân tích: 2 2 1 1 x x      2 2 2 2 3 2 3 2 3 2 3 2 3 2 1 1 1 1 1 1 1 1 ( 1) ( 1) ( 1) 1 1 x x x x x x x x x x x x x x x x x x                   Khi đó 2 2 3 2 2 2 2 1 1 1 2 1 1 1 1 1 ln 3 1 5 ln 2 ln 8 ln 1 2 1 2 2 2 1 x I dx dx dx x x x x x x                     Cách 1.2: Phân tích:     4 4 4 2 2 1 1 1 1 x x x x x              4 2 2 4 4 2 3 3 2 3 2 2 3 2 3 2 1 1 1 1 1 1 ( 1) ( 1) 1 1 1 x x x x x x x x x x x x x x x x x x x                     tự làm nhé Cách 2: Kết hợp kĩ thuật tách thành tích và phương pháp biến đổi số Phân tích     2 2 2 1 3 2 2 1 1 1 1 . 1 1 I dx dx x x x x x       02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 7 Đặt 2 1 1 1 x t t x dx dt t             Đổi cận 1 2 2 1 1 x t x t              Khi đó 1 1 3 2 2 2 2 2 1 1 2 1 1 1 1 1 t t I t dt dx t t t              đến đây lại trở thành bài 1, các bạn tha hồ mà làm nhé Cách 3: Sử dụng kĩ thuật nhân trên tử và phương pháp đổi biển số     2 2 3 2 4 2 1 1 1 1 1 x I dx dx x x x x       Đặt 2 1 2 dt t x xdx     Đổi cận 2 5 1 2 x t x t            Khi đó     5 5 2 2 2 2 5 1 1 1 1 1 1 3 1 5 ln ln 2 ln 2 2 1 2 1 1 8 2 2 1 1 dt t I dt t t t t t t t                               Hoặc các bạn có thể đặt 1 u t   hoặc phân tích   1 1 t t    hoặc đồng nhất thức Cách 4: Sử dụng kĩ thuật nhân trên tử và phương pháp đưa vào vi phân                     2 2 2 2 3 2 4 2 4 2 1 1 1 2 2 2 2 2 2 2 2 4 4 2 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 x I dx d x x x x x x x x x d x d x d x x x x x x                            2 2 3 2 1 1 1 1 1 dx dx x x x      ôi đến đây lại thành cách 1 rùi, lòng vòng quá, bỏ qua thui… Cách 5: Sử dụng phương pháp đồng nhất thức   3 2 2 3 2 1 1 1 A B C Dx E xx x x x x        đến đây thì đồng nhất thức hai vế để giải hệ tìm , , , , I A B C D E  tuy nhiên việc giải hệ là phức tạp chính vì thể trong trường hợp này ta nên làm theo cách 1, cách 2 và cách 3 là hiệu quả nhất Cách 6: Đặt   2 tan tan 1 x u dx dt     … bạn đọc tự làm Bài 14: Tính tích phân sau: 1 3 0 1 dx I x    Giải: Nhận xét:     3 2 1 1 1 x x x x      Cách 1: Dựa vào nhận xét trên ta sử dụng đồng nhất thức: 02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 8       2 2 2 1 1 1 1 x x x x x        Khi đó 1 1 2 1 2 3 2 0 0 1 1 1 x x I dx dx I I x x x           Tính 1 I bằng cách đặt 3 1 t x   hoặc   3 1 1 3 0 1 1 3 1 d x I x     Tính 2 I phân tích   1 1 1 2 1 2 2 x x     (kĩ thuật nhảy tầng lầu) Ta có 1 1 1 2 2 2 2 0 0 0 1 1 2 1 1 2 21 1 1 3 2 4 x x dx I dx dx x x x x x                     Cách 2: Đồng nhất thức Xét      2 3 2 1 1 1 1 1 1 1 A Bx C A x x Bx C x x x x x              Đến đây ta có thể đồng nhất hệ số giải hệ tìm A, B, C hoặc cho một số giá trị riêng là 1 2 1 1 ; 0 ; 1 3 3 3 x A x C x B            …Bạn tự giải tiếp nhé Kết quả ta được 1 ln2 3 3 3 I    Cách 3: Đổi biến số kết hợp kĩ thuật “nhảy tầng lầu”             1 1 1 3 2 2 0 0 0 1 1 1 1 1 1 3 1 3 dx dx d x I x x x x x x x                     Đặt 1 x t dx dt     Đổi cận 0 1 1 2 x t x t                    2 2 2 2 2 2 2 2 2 1 1 1 1 dt 1 3 3 3 1 dt 3 dt 3 3 3 3 3 3 3 3 t t t t t dt t t t t t t t t t                              2 2 2 2 2 2 1 1 1 2 2 1 dt 1 3 3 3 dt 3 3 2 23 3 3 2 4 2 1 1 2 3 1 ln 3 arctan ln2 1 3 2 3 3 3 3 3 3 d t t t t t t t t t t                                     Bài 15: Tính tích phân bất định:   4 3 50 3 5 7 8 2 x x x I dx x       . Giải : Cách 1: Biến đổi số Đặt 2 2 x t x t dx dt          Khi đó         4 3 4 3 50 50 3 2 5 2 7 2 8 3 5 7 8 2 t t t x x x I dx dt t x               Cách 2: Đồng nhất tử thức chứa nghiệm của mẫu thức 02 14 2014  Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com https://www.facebook.com/trithuc.viet.37 9 Phân tích         4 3 2 4 3 3 5 7 8 2 2 2 2 x x x a x b x c x d x e             … đồng nhất để tìm a, b, c, d, e … Cách 3: Khai triển Taylor (tham khảo) Đặt   4 3 4 3 5 7 8 P x x x x     Áp dụng khai triển taylor ta có                         3 4 2 3 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 1! 2! 3! 4! P P P P P x P x x x x                           2 3 4 4 66 149 2 48 2 29 2 3 2 P x x x x x                                        2 3 4 50 50 49 48 47 46 49 48 47 46 45 66 149 2 48 2 29 2 3 2 2 66 2 149 2 48 2 29 2 3 2 66 149 48 29 3 49 2 48 2 47 2 46 2 45 2 x x x x I dx x x x x x x dx C x x x x x                                             Bài 16: (ĐHTN – 2001) Tính tích phân sau: 1 5 2 2 4 2 1 1 1 x I dx x x       Giải: Ta có 1 5 1 5 1 5 2 2 2 2 2 2 4 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 x x x dx dx dx x x x x x x                              Đặt 2 1 1 1 t x dt dx x x            . Đổi cận 1 0 1 5 1 2 x t t x               Khi đó 1 2 0 1 dt I t    . Đặt   2 tan 1 tan t u dt u du     . Đổi cận 0 0 1 4 u t t u               Khi đó 1 24 4 2 2 0 0 0 1 tan . 4 4 1 1 tan 0 dt u I du du u t u                Cách khác: Ta có thể gộp hai lần đặt là   2 2 1 1 tan 1 1 tan x u dx u du x x             … bạn đọc tự giải Bài 17: Tính tích phân: I 2 2 4 1 1 1 x dx x     Giải: [...]... x 2 3  1 HD: Cách 1: Đặt x  tan t Cách 2: Sử dụng phương pháp tích phân từng phần u  x  Đặt  dv  xdx 3   x2  1  Cách 3: Sử dụng phương pháp phân tích thành hai tích phân đơn gián Phân tích x 2   x 2  1  1 0 Khi đó I   1 0 x 2 dx x 2 3  1   1 0 dx x 2  1 2  1 dx x 2  1 3 II TÍCH PHÂN HÀM VÔ TỶ Bài tập giải mẫu: 7 3 Bài 1: (ĐHGTVT – 1998) Tính tích phân: I   0 x... Changngoc203@gmail.com 14 7 x2 Bài 13: (DBĐH 2 – A 2005) Tính tích phân: I   3 x 1 0 3 Bài 14: (DBĐH 1 – A 2008) Tính tích phân: I  x   1 2 3 2x  2 4 Bài 15: (DBĐH 1 – A 2007) Tính tích phân: I   0 3 1 dx  2x  1 1  2x  1 3 Bài 16: (CĐXD – 2005) Tính tích phân: I  231 10  12 5 dx  2  ln 2 x3 dx x 1  x  3 III TÍCH PHÂN HÀM SỐ MŨ VÀ LOGARIT Bài tập giải mẫu: e ln x 3 2  ln 2 x dx x 1 Bài 1: (PVBCTT... 3 x  1 3 d  3 x  1 bạn đọc tự giải 2 2 0 3x  1 2 60 0 1 Bài 2: Tính tích phân: I   1 x3 x2  1 dx  0 HD: C1: Đặt x  tan t C2: Phân tích x 3  x  x 2  1  x u  x 2  C3: Đặt  x dx  dv  2 x 1  C4: Đặt x  t C5: Phân tích x 3 dx  x 2 xdx   x 2  1  1 d  x 2  1   2 Bài 3: (ĐHBKHN – 1995) Tính tích phân sau: I  x 2 dx x2  1 Giải: Cách 1: Phương pháp biến đổi số Đặt... x  tan x  1 2 3 0 Đặt t  tan x … bạn đọc tự giải Cách 7: t  tan x … bạn đọc tự giải https://www.facebook.com/trithuc.viet.37 32 02 Giáo viên: Nguyễn Thành Long  2014 Email: Changngoc203@gmail.com 14  3 Bài 3: Tính tích phân sau: I   tan 3 xdx  4 Giải: Cách 1: Sử dụng phương pháp phân tích kết hợp với phương pháp đưa vào vi phân 1  1  Phân tích tan 3 x  tan x.tan 2 x  tan x   1  tan... 1) (3  t ) 3  t (3  t ) 3  t 2 I= 2  2x  x 2 Tính J1 bằng cách đặt 3  t 2  u , tính J 2 bằng cách đặt 3  t2  u  3t  Bài tập tự giải có hướng dẫn: 7 Bài 1: (ĐHĐN- 1997) Tính tích phân: I   2 1 2  x 1 dx  2  4 ln 2  2 ln 3 HD: Sử dụng phương pháp biến đổi số Đặt t  2  x  1 Hoặc t  2  x 2 Bài 2: (ĐHSP QN – 1999) Tính tích phân: I   0 x 1 3 3x  2  1 28  3 3 4 10   https://www.facebook.com/trithuc.viet.37... Hoặc phân tích x 2 theo  x  1 như sau 9 9 x 2  x  1   x 2  1  1  x  1    Nhận xét:  x  1  x  1  2  1  x  1   9 11 10 9   x  1  2  x  1   x  1 9 - Với bài toán này ta sử dụng phương pháp phân tích tức là khai triển  x  1 hay phương pháp tích phân từng phần như bài 20 thì cũng ra nhưng rất dài và phức tạp vì bậc của  x  1 là lớn 1 Bài 22: Tính tích phân: ... đặt u  1  3t hoặc 0 u  1  3t hoặc đưa vào vi phân bằng cách phân tích t  e Bài 3: Tính tích phân sau: I   1 1 1 1  3t   3 3 1  ln x dx x Giải: Cách 1: Phương pháp biến đổi số Đặt t  1  ln x  t 2  1  ln x  2tdt  dx x  x  1 t  1 Đổi cận    x  e t  2    t3 2 2 2 2  1  31 3 1 1 1 Cách 2: Phương pháp đưa vào biểu thức vi phân e Khi đó I   1  ln x dx  x 2 2 2  t.2tdt... Tính tích phân sau: I   0 Đs: I  e2 x ex  1 dx 2 2 3 e Bài 3: (ĐHHH – 98) Tính tích phân: I =  x 1 ln x 1  ln x dx HD: Đặt t = 1  ln x Đs: I  42 2 3 3 Bài 4: I  e x 2 1 x 2 dx  e 2  e x 1 0 HD: Đặt t  x 2  1  dt  2 x dx 2 x 1  Tổng quát: I   e f  x  g  x  dx mà f '  x   kg  x  ; k  R  đặt t  f  x   IV TÍCH PHÂN HÀM LƯỢNG GIÁC Bài tập giải mẫu:  4 Bài 1: Tính tích. .. 1 1 1 Phân tích x  1  2 x  1     ta được I  3 2 3 2 18 1  2 x  2  1  2 x  1  2 x     Hoặc đặt t  1  2 x Hoặc tích phân từng phần 1 x2  3 21 13 Bài 10: Tính tích phân: I   dx   ln 2  ln 3 4 2 4 4 1 x  x  3x  2  2 HD: Cách 1: Nhân cả tử và mẫu cho x rồi đặt t  x 2 Cách 2: Phân tích mẫu x  x 4  3x 2  2   x  x 2  1 x 2  2  và sử dụng đồng nhất thức 1 Bài 5:... 1 x2  2 3 Bài 6: Tính tích phân: I   4 dx   3 2 44 1 x  2x  5x  4 x  4 2 HD: Phân tích x 4  2 x3  5 x 2  4 x  4   x 2  x  2  2 Cách 1: Đồng nhất thức https://www.facebook.com/trithuc.viet.37 14 02  2014 Giáo viên: Nguyễn Thành Long Email: Changngoc203@gmail.com 14 Cách 2: Chia cả tử và mẫu cho x 2 và đặt t  x  0 Bài 7: Tính tích phân sau: I   1 2 Hoặc đưa vào vi phân x x 2 dx . 1 GIẢI TOÁN TÍCH PHÂN BẰNG NHIỀU CÁCH (Một phương pháp nhằm phát triển tư duy) I. TÍCH PHÂN HÀM HỮU TỶ Bài tập giải mẫu: Bài 1: Tính tích phân.           Bài 12: Tính tích phân sau: 2 5 3 1 dx I x x    Giải: Cách 1: Sử dụng phương pháp phân tích Cách 1.1: Phân tích: 2 2 1 1 x x 

Ngày đăng: 12/03/2014, 09:00

TỪ KHÓA LIÊN QUAN

w