1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT

26 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 2,99 MB

Nội dung

SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI: "KHAI THÁC MỐI QUAN HỆ GIỮA HÌNH HỌC KHƠNG GIAN VÀ HÌNH HỌC PHẲNG TRONG GIẢNG DẠY TOÁN Ở THPT" LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com A ĐẶT VẤN ĐỀ : Trong q trình dạy học tốn, học sinh phổ thơng thường phải phân tích , phán đoán hướng giải toán, liên hệ tốn với tốn quen thuộc, đơn giản để có hướng giải tương tự, ngược lại học sinh khá, giỏi lại từ tốn đơn giản sâu phân tích, mở rộng, phát triển thành tốn Đặc biệt chương trình hình học THPT, việc khai thác liên hệ khơng gian hai chiều ( hình học phẳng: Tổng hợp tọa độ) khơng gian ba chiều ( hình học không gian: Tổng hợp tọa độ) giúp học sinh giải nhiều vấn đề toán học phù hợp với nhiều đối tượng học sinh, với nhiều mức độ kiến thức khác nhau,nội dung kiến thức xuất nhiều kì thi: Khảo sát chất lượng, thi Học sinh giỏi cấp, thi Học sinh giỏi Quốc gia, Việc sử dụng phương pháp giải tốn hình học phẳng để giải tốn hình học khơng gian tương tự mở rộng số toán phẳng sang toán không gian giúp hoạt động giảng dạy học tập mơn hình học đạt hiệu cao B MỘT SỐ VÍ DỤ MINH HỌA Bài tốn 1: Trên mặt phẳng toạ độ xOy cho điểm A(2;0), B(1;3) Tìm toạ độ điểm M đường thẳng 4x + y - = cho khoảng MA + MB nhỏ Bài toán 1': Cho thay đổi ln thoả mãn , x , y , z số thực Tìm giá trị nhỏ biểu thức S LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Nhận xét 1: Với cách nhìn khác nhau, tốn quen thuộc với học sinh từ tiểu học trở lên có nhiều cách giải, ta để ý cách giải hình học vận dụng vào khơng gian để giải tốn 1' nên ta giải toán sau: Giải : Trong hệ trục toạ độ Đề Các Oxyz, xét vng góc điểm mặt phẳng Dễ thấy O A nằm phía với (P) Gọi B điểm đối xứng O qua (P), Với điểm M(x;y;z)  (P) ta ln có MO = MB S =MO + MA  AB (Không đổi ) Dấu "=" xảy  M  I Trong I = AB(đoạn)  (P), S đạt giá trị nhỏ Tìm toạ độ B ta B(2;2;2)  Tìm tọa độ điểm I ta nên với cặp giá trị ta có S đạt giá trị nhỏ với x, y, z, t số thực Bài toán 2: Cho thay đổi Tìm Max, biểu thức Bài tốn 2': Cho a , b , c ; , x , y , z , số thực thay đổi Tìm Max, biểu thức LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Nhận xét 2: Với cách nhìn nhận tốn góc độ hình học ta có S bình phương khoảng cách hai điểm M(x;y) N(t;z) M,N thay đổi hai đường trịn cố định, ta có cách nhìn nhận tốn 2' góc độ tương tự nên đưa lời giải tốn 2' sau: Giải : Trong hệ trục toạ độ Đề Các vng góc Oxyz xét mặt cầu (I;R) (J;r) có tâm I(-1;1;-2) , J(0;-1;1) ,  (I) (J) Từ giả thiết ta có , Dễ thấy nên mặt cầu  S đạt Max ,  MN đạt Max , Khi M thay đổi (I) , N thay đổi (J) thì:     Bài tốn 3: LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Cho ABC tam giác vuông A , với độ dài cạnh a , b , c ; đường cao AH = h ; b' = CH, c' = BH ;  ,  góc đường thẳng với hai đường thẳng AB , AC tương ứng ta ln có hệ thức : a) b) c) Bài toán 3': Cho OABC tứ diện vuông đỉnh O , đường cao OH = h , OA = a , OB = b , OC = c ; gọi S , SA , SB , SC thứ tự diện tích tam giác ABC , OBC , OCA , OAB ; S'A , S'B , S'C thứ tự diện tích tam giác HBC , HCA , HAB  ,  ,  thứ tự góc đường thẳng với đường thẳng OA , OB , OC Ta ln có : a) b) c) cos2 + cos2 + cos2  = Nhận xét 3: Bài toán quen thuộc với học sinh từ lớp nội dung cách giải, với cách nhìn mở rơng khơng gian ta đặt vấn đề kiến thức cách chứng minh mở rộng toán thành toán 3' cách dễ dàng, vấn đề SGK lớp 11 có tập vấn đề này, ta đưa vấn đề chứng minh tương tự, chẳng hạn tương tự phần 3-c hình học phẳng, với chứng minh véc tơ lớp 10, ta chứng minh 3'-c phương pháp véc tơ sau: LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Chứng minh 3'- c: Trên cạnh OA , OB , OC đặt véc tơ đơn vị đơi vng góc );gọi hình vẽ ( chúng có độ dài véc tơ phương cho  , ln có biểu thị Ta có Dễ dàng suy cos2 + cos2 + cos2  = ( Các tập 3'-a , 3'-b có hướng chứng minh sách tập hình học 11 chứng minh véc tơ ) Bài toán 4: Chứng minh tam giác ABC bất kì, trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp O thẳng hàng (Đường thẳng Ơle) Bài toán 4’ : Chứng minh rằng, với tứ diện trực tâm ABCD, ta ln có: trọng tâm G, trực tâm H tâm O mặt cầu ngoại tiếp tứ diện thẳng hàng GH = GO Nhận xét 4: Trong nhiều cách chứng minh toán 4, ta để ý cách chứng minh phép vị tự nên ta nghĩ đến việc dùng phép vị tự để giải toán 4' Hơn nữa, không gian, tứ diện có đường cao đồng quy điểm nên ta xét tứ diện có tính chất (tứ diện trực tâm) LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Giải: Ta dùng phép vị tự để giải tốn khơng gian u cầu chứng minh GH = GO gợi ý cho ta nghĩ đến phép vị tự tâm G tỉ số -1 Lần lượt lấy A′ đối xứng với A, B′ đối xứng với B, C′ đối xứng với C, D′ đối xứng với D qua G Ta dễ thấy AA' //=AB (tính chất phép vị tự) đường trung bình EF (E,F thứ tự trung điểm CD AB) qua G Trong hình bình hành A'B'AB  E trung điểm A'B'   A'CB'D hình bình hành Mặt khác tứ diện trực tâm ABCD có hai cạnh đối diện vng góc với nên AB  CD  A'B'  CD   A'CB'D hình thoi  A'C = A'B Chứng minh tương tự ta có A'C = A'D  A’ cách B, C, D nnnnn Từ giả thiết ta có O cách B,C,D nên A'O trục đường tròn ngoại tiếp BCD  A'O  (BCD)  A'O  (B'C'D') (1) Tương tự (1), ta có B'O  (A'C'D') (2); C'O  (B'A'D') (3)  O trực tâm tứ diện A'B'C'D' Xét phép vị tự , ta có: A' LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Như vậy, nên phép vị tự biến trực tâm tứ diện ABCD thành trực tâm O tứ diện A’B’C’D’ Suy ra: hay  H, G, O thẳng hàng GO = GH Bài toán 5: Chứng minh tam giác bất kì, điểm gồm: chân ba đường cao, ba trung điểm ba cạnh, ba trung điểm đoạn nối trực tâm với đỉnh thuộc đường tròn (Đường trịn Ơle) Bài tốn 5’: Cho tứ diện trực tâm ABCD Gọi chân đường cao, trọng tâm mặt điểm đoạn thẳng nối trực tâm với đỉnh thỏa mãn Chứng minh 12 điểm thuộc mặt cầu (tứ diện cần xét phải có đường cao đồng quy nên tứ diện trực tâm) Một cách giải tốn 5: Giả sử tam giác ABC có H1, H2, H3, M1, M2, M3, I1, I2, I3 chân đường cao, trung điểm cạnh, trung điểm đoạn nối trực tâm với đỉnh Gọi E1, E2, E3, F1, F2, F3 điểm đối xứng với H qua H1, H2, H3, M1 , M2, M3 Dễ dàng chứng minh điểm A, B, C, H1, H2, H3, M1, M2, M3 thuộc đường tròn (S) ngoại tiếp tam giác ABC LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có : đường trịn (S) qua ,  , thuộc đường tròn (S') ảnh Chứng minh tương tự ta có ; thuộc (S') nên điểm nêu thuộc (S') (đpcm) Nhận xét 5: Từ cách giải toán ta chọn cách giải toán 5' tương tự sau: lựa Giải toán 5': Gọi G, O thứ tự trọng tâm, tâm mặt cầu ngoại tiếp tứ diện từ toán ta biết Gọi E điểm cho cho Ta F điểm có = = = (Do G trung điểm HO) A, O, F thẳng hàng O trung điểm AF Dễ thấy H1G1 // EF mà AH1  H1G1 nên AE  EF  E, F thuộc mặt cầu ngoại tiếp tứ diện Xét phép vị tự biến điểm A, E, F thuộc mặt cầu (S) thành điểm I1 , H1, G1 thuộc mặt cầu (S') ảnh mặt cầu (S) qua phép vị tự Hoàn toàn tương tự ta chứng minh điểm lại thuộc mặt cầu (S') (đpcm) LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Bài toán : Cho tam giác ABC , ta ln có: - Một điểm G cho - đường trung tuyến đồng quy điểm G, điểm G chia đường trung tuyến theo tỉ số - Bài toán 6' : Cho tứ diện ABCD , ta ln có : - Một điểm G cho - ba đường trung bình đồng quy điểm G , điểm G chia đường trung tuyến theo tỉ số - ; bốn đường trọng tuyến đồng quy G , điểm G chia đường theo tỉ số - Bài tốn 6" : Trong khơng gian ( mặt phẳng ) cho hệ n điểm A1, A2 , … , An , ta ln có: a) Một điểm G cho b) Tất đường trung tuyến bậc k ( k = 0, 1, …, n - 1) đồng quy điểm G ( đường trung tuyến bậc k đoạn thẳng nối trọng tâm hệ k điểm n điểm cho với trọng tâm hệ n - k điểm lại) c) Điểm G chia đường trung tuyến bậc k theo tỉ số (k-n)/k Nhận xét 6: Cả ba toán tương tự nhau, có mở rộng dần khơng gian và mở rộng dần khái niệm, tính chất; với tốn có cách giải khác nhau, tốn - tốn 6' có hướng giải SGK lớp 11, nhiên cách giải cơng cụ véc tơ giải ba toán Chứng minh 6" : 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Biểu thức cần chứng minh biến đổi dạng Ta có: = (*) = Dễ chứng minh nên ta có điều phải chứng minh (*) Nhận xét 7: Bài toán mở rộng không gian xét cho tứ diện diện tích tam giác cần chứng minh chuyển thành thể tích tứ diện Bài toán 7’: Cho tứ diện ABCD, O điểm thuộc miền tứ diện Gọi V1, V2, V3, V4 thể tích tứ diện OBCD, OCDA, OABD OABC Chứng minh Giải: Tương tự toán mặt phẳng ta biến đổi đẳng thức cần chứng minh dạng (Với V thể tích tứ diện) Từ ta định hướng giải toán cách dựng hình hộp nhận AO làm đường chéo ba cạnh kề nằm ba cạnh tứ diện xuất phát từ A (hình bên) 12 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Ta có Có Tương tự ta có nên ta có đpcm Bài tốn 8: Chứng minh điều kiện cần đủ để tứ giác ngoại tiếp tổng cạnh đối diện ( BT hình học lớp 9) Nhận xét 8: Bài tốn quen thuộc với học sinh hình học phẳng kiến thức cách chứng minh, ta mở rộng tính chất khơng gian cách chứng minh tương tự hình học phẳng sao? Ta có tốn mở rộng: Bài tốn 8': Chứng minh điều kiện cần đủ để tứ diên có cạnh tiếp xúc với mặt cầu tổng cạnh đối diện Chứng minh: Điều kiện cần: Giả sử có mặt cầu tiếp xúc với cạnh tứ diện ABCD điểm hình vẽ , theo tính chất tiếp tuyến với mặt cầu ta có : AP = AN = AH = x ; BM = BP = BF = y ; CM = CN = CE = z ; DE DF = DH = t Từ tổng cạnh đối diện tứ diện có giá trị x + y + z + t, ta có = điều phải chứng minh Điều kiện đủ : 13 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Giả sử tứ diện có tổng cạnh đối diện , gọi (C1) đường tròn nội tiếp ABC M, N, P (C2) đường tròn nội tiếp BCD M' , E , F hình vẽ - Trước hết ta chứng minh M  M' Thật vậy, theo cơng thức tính khoảng cách từ đỉnh C đến tiếp điểm M' cạnh BC với đường tròn (C1) nội tiếp tam giác ta có ; tương tự ta có Giả thiết  CM' = CM  M'  M - Dễ chứng minh trục (C1) (C2) nằm mặt phẳng qua M vng góc với BC , khơng song song với nên trục cắt điểm O , dễ dàng chứng minh đoạn thẳng OM , ON , OP , OF , OE vng góc với cạnh tương ứng Từ suy mặt cầu qua M , N , E , F có tâm O đồng thời tiếp xúc với cạnh BC , CD , DB , BA , CA tứ diện - Lập luận tương tự ta thay M E ta có mặt cầu qua M , N , E , F tiếp xúc với cạnh BC , CD , DB , DA , CA tứ diện , từ mặt cầu nói tiếp xúc với cạnh tứ diện (ĐPCM) Bài toán 9: Trong mặt phẳng cho tam giác ABC có R , r bán kính đường trịn ngoại tiếp nội tiếp tam giác Chứng minh ta ln có R  2r Chứng minh: (Bài tốn có nhiều cách chứng minh, xin đưa cách chứng minh để dùng tưong tự khơng gian) Xét phép vị tự tâm G tỉ số k = -1/2 biến (O) thành (O1 ;R1) qua trung điểm A1, B1, C1 cạnh BC, CA, AB 14 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Gọi  đường thẳng song song với BC , tiếp xúc với (O1) A'1 - khác phía với A BC ; gọi A2 giao điểm đoạn AA'1 với BC Xét phép vị tự tâm A tỉ số k1 = AA'1/ AA2 ( < k  ) : Như , qua trung điểm ba cạnh ABC với < k1  tiếp xúc với cạnh BC, có điểm chung với với < k2  tiếp xúc với cạnh BC, CA có điểm chung với < k3  tiếp xúc với ba cạnh BC, CA, AB nên cạnh CA, AB với cạnh AB đường trịn nội tiếp tam giác Thực liên tiếp phép vị tự ta có (vì < k3 , k3 ,k3  1)  điều phải chứng minh 15 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Dấu "=" xảy  A1  A2  A3  A4 ; …  ABC tam giác Bài toán 9' : Trong không gian với tứ diện ABCD ta ln có R  3r , R , r thứ tự bán kính mặt cầu ngoại tiếp mặt cầu nội tiếp tứ diện Nhận xét 9: Một số đề thi mở rộng tốn cho vài tứ diện đặc biệt (hình chóp tam giác đều, tứ diện gần đều, ) với cách chứng minh dựa vào việc tính R,r chứng minh bất đẳng thức tương ứng.Trường hợp tổng quát, tốn khó, biết cách chứng minh tốn hình học phẳng ta có cách chứng minh tương tự hình học khơng gian cách nhẹ nhàng Bài toán 10: Cho ABC đều, chứng minh với điểm M ln có MA + MB + MC  3R (có thể chứng minh kiến thức lớp xem cách giải toán 10' ) Bài toán 10': Cho tứ diện ABCD , chứng minh với điểm M ln có MA + MB + MC + MD  4R Giải : Gọi G trọng tâm tứ diện , Dễ thấy GA = GB = G C = GD = R Với điểm M ta có MA.R = MA.GA   16 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Tương tự ; ; Cộng bất đẳng thức ta suy điều phải chứng minh , dấu "=" xảy  chiều với véc tơ không phương Khi suy phải phương với véc tơ nên M  G ) Bài toán 10" : Cho tam giác nhọn ABC , tìm điểm M mặt phẳng tam giác cho MA + MB + MC nhỏ B Cách : ( kiến thức lớp ) Dựng điểm M' , C' cho tam giác AMM' M , ACC' tam giác hình vẽ xét phép quay tâm A góc quay  900 để A C') Dễ dàng chứng minh MAC' = MC = M'C' ; ( thực chất C có M' M'AC'  M' mà MA = MM' nên MA + MB + MC = BM + MM' + MC'  BC' Dấu "=" xảy  B , M , M' thẳng hàng theo thứ tự Khi MA C' , C' + MB + MC đạt Khi MA + MB + MC đạt , giả sử M  T , M'  T' ATT' tam giác nên , đồng thời tứ giác ATCC' nội tiếp nên ta có  T nhìn cạnh góc1200 nên T giao điểm cung chứa góc 120 cạnh ( phía với đỉnh cịn lại Điểm T gọi điểm Tôri xenli tam giác, vị trí T ln xác định 17 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Cách : Gọi T điểm thoả mãn (*), M điểm Chứng minh MA + MB + MC  TA + TB + TC nên MA + MB + MC nhỏ  M  T ( xem cách chứng minh tương tự không gian ) - Chú ý điều kiện (*)  bình phương gọn  vế rút  T nhìn AB góc 1200 , tương tự ta có T nhìn BC , CA góc 1200 Bài tốn 10''': Trong khơng gian cho tứ diện ABCD , gọi T điểm cho (**) , M điểm Chứng minh MA + MB + MC + MD  TA + TB + TC + TD Chứng minh : Với điểm M ta ln có  Hồn tồn tương tự ta có ; ; cộng bất đẳng thức sử dụng (**) ta : 18 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com  MA + MB + MC + MD  TA + TB + TC + TD (điều phải chứng minh) Dấu "=" xảy  chiều  M  T Chú ý : Từ (**)  bình phương vế ta suy T nhìn cạnh đối diện góc Bài tốn 10"": Cho hình chóp S.ABC có cạnh đáy a , cạnh bên , gọi O điểm nhìn cạnh góc  1) Tính cos 2) M điểm khơng gian , chứng minh (Tương tự đề thi HSG Quốc gia năm 1999) Lời giải : 1) Đặt véc tơ đơn vị có gốc O hình vẽ , tứ diện S'A'B'C' có độ dài cạnh - 2cos nên tứ diện  tâm O mặt cầu ngoại tiếp trọng tâm tứ diện (*)  Bình phương vế ta = + + + 6cos 19 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com  cos  = -1/3 2) áp dụng định lí sin cho tam giác SOA , SOB , SOC ta có OA , OB , OC nghiệm dương phương trình : 3a2 = x2 + SO2 - 2x.SO.cos  x2 - 2x.SO.cos - (3a2 - SO2 ) = nên chúng (PT có nghiệm dương)  O nằm đường cao SH hình chóp S.ABC  OA = OB = OC Từ (*) ta có O điểm T tốn nên MA + MB + MC + MD  OS + 3OA Trong SHA , OHA (vng) có ; ;  Từ MA + MB + MC + MD  OS +3OA = (ĐPCM) Bài toán 11 : Trên cạnh góc xOy có điểm M , N thay đổi cho a , b độ dài cho trước Chứng minh , O M N qua điểm cố định Chứng minh : Trên tia Ox , Oy đặt đoạn OA = a , OB = b ; gọi E trung điểm AB F A E giao B điểm OE với MN , ta có N M x F y 20 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com  Mà F , M , N thẳng hàng nên có biểu thị dạng : với k + l =    OF = OE  F điểm thứ tư hình bình hành OAFB ) Bài toán 11' : Hai điểm M , N thứ tự thay đổi nửa đường thẳng chéo Ax, By cho ( a, b độ dài cho trước ) Chứng minh MN cắt đường thẳng cố định Giải : Dựng tia Bx' // Ax , lấy M' M cho MM'//AB ; Bx' , By đặt đoạn , theo kết M' ta có M'N ln qua điểm Xét đường thẳng  qua I // BA' = a , x' BB' = b Từ giả thiết  đỉnh thứ tư hình bình hành Bx'  A ( x a A' cố định I I B BA'IB') b B' N y MM' (//AB) , dễ thấy  đường thẳng cố định ln cắt MN Bài tốn 11'' : 21 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Trên tia Ox , Oy , Oz tương ứng có O điểm M , N , P thay đổi cho ln có C G , a , b , c A độ P B z dài cho trước Chứng minh mp(MNP) F M qua điểm cố định N x y Chứng minh : Cách chứng minh tương tự toán 11' Chú ý : Bài toán 11 toán 11'' dùng tính chất tỉ số diện tích, tỉ số thể tích cộng diện tích, cộng thể tích để có kết Bài tốn 12 : Cho tam giác ABC có độ dài cạnh BC = a , CA = b , AB = c Từ đỉnh A, B, C làm gốc ta dựng véc tơ đơn vị đường cao tương ứng ngược chiều với véc tơ Chứng minh : Bài toán 12' : Cho tứ diện ABCD có diện tích mặt đối diện với đỉnh A , B , C , D tương ứng SA , SB , SC , SD Từ đỉnh A , B , C , D làm gốc ta dựng véc tơ đơn vị tương ứng ngược chiều với véc tơ đường cao Chứng minh Chứng minh: Đặt  = SA AB cos( -  ) + SB 1.BA cos  = - SA AH1 + SB AH2 22 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com = -VABCD + VABCD = e1  A tương tự ta có   vng góc với véc đồng phẳng  , e3 H2 (nếu ngược C có mặt phẳng vng góc khơng lại qua A với đường  B thẳng có phương ) H1 e2 Bài tốn 13: Cho tơ D tam giác ABC có trọng tâm G e4 , nội tiếp đường tròn (O) Chứng minh A = 900  Chứng minh : Gọi A' điểm đối xứng với A qua O ta có   A   tứ giác ACA'B hình bình hành G đường trịn)  tứ giác ACA'B hình chữ nhật  ABC vng A C I (nội tiếp tam giác mặt cầu O B Bài tốn 13' : Cho tứ diện ABCD có trọng tâm G , nội tiếp (O) , ta có góc tam diện đỉnh A góc tam diện vng  A' Chứng minh : 23 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Điều kiện cần : Dựng hình hộp chữ nhật dựa cạnh AB , AC , tâm hình hộp tâm O mặt cầu, dễ dàng chứng minh đường chéo AA' hình hộp ( đường kính mặt cầu) qua trọng tâm G' giác BCD tam A (Bài tập SGK 11) C G G' mà ( tính chât trọng B D  I O tâm) nên D'   Điều kiện đủ : Giả sử tứ diện ABCD nội tiếp mặt cầu (O) có , gọi I trung điểm CD , D' điểm đối xứng D qua O , G' trọng tâm  BCD Từ (tính chất trọng tâm)  , mà nên   tứ giác ABD'C hình bình hành ( có đỉnh nằm mặt cầu)  tứ giác nội tiếp đường tròn  tứ giác ABD'C hình chữ nhật nên Chứng minh tương tự ta có  góc tam diện đỉnh A tam diện vuông 24 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỘT SỐ BÀI TOÁN KHÁC (liên hệ hình học phẳng với hình học khơng gian ngược lại) Bài toán 14: Cho ABC với trọng tâm G a) Chứng minh rằng, với điểm M ta có b)Tìm quỹ tích điểm M cho (k độ dài cho trước) Bài toán 14': Cho tứ diện ABCD trọng tâm G a) Chứng minh rằng, với điểm M ta có: b) Tìm quỹ tích M cho (k độ dài cho trước) Bài toán 15': Chứng minh tổng bình phương độ dài hình chiếu cạnh tứ diện mặt phẳng 4a2 Bài toán 16': Chứng minh bốn điểm A, B, C, D thuộc cạnh MN, NP, PQ, QM tứ diện MNPQ; đồng phẳng (Định lí Mênêlẳyt khơng gian) Bài tốn 17: 25 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Chứng minh tứ giác nội tiếp đường tròn: Các đường thẳng qua trung điểm cạnh vuông góc với cạnh đối diện đồng qui Bài tốn 17': Chứng minh tứ diện mặt phẳng qua trung điểm cạnh vng góc với cạnh đối diện đồng qui điểm ( Điểm Monge) C.KẾT LUẬN Trên vài ví dụ minh họa cho việc khai thác liên hệ tốn hình học phẳng với tốn mở rộng khơng gian, để thấy tính chất, cách chứng minh,… mở rộng, liên hệ với cách lơgic giúp cho việc dạy học tốn có hiệu hơn, kiểu tư áp dụng thực tế giảng dạy học tập tùy theo yêu cầu chương trình, người học, người dạy mà ta lựa chọn tập phù hợp Trong việc dạy tốn Trường THPT chun Lam Sơn, tơi vận dụng kiểu tư để dạy cho nhiều đối tượng, việc ôn thi học sinh giỏi, hình thành cho học sinh thói quen liên hệ tồn hình học khơng gian với tốn phẳng đơn giản mở rộng toán theo hướng ngược lại Để hiểu sâu vấn đề này, việc ứng dụng việc giảng dạy học tập mong nhận ý kiến đóng góp rút kinh nghiệm đồng nghiệp để viết thêm đầy đủ, trở thành tài liệu tham khảo tốt phục vụ cho việc giảng dạy giáo viên kích thích hứng thú học tập, tìm tịi học sinh 26 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... tích, mở rộng, phát triển thành toán Đặc biệt chương trình hình học THPT, việc khai thác liên hệ không gian hai chiều ( hình học phẳng: Tổng hợp tọa độ) khơng gian ba chiều ( hình học khơng gian: ... cấp, thi Học sinh giỏi Quốc gia, Việc sử dụng phương pháp giải toán hình học phẳng để giải tốn hình học không gian tương tự mở rộng số tốn phẳng sang tốn khơng gian giúp hoạt động giảng dạy học tập... đối diện ( BT hình học lớp 9) Nhận xét 8: Bài toán quen thuộc với học sinh hình học phẳng kiến thức cách chứng minh, ta mở rộng tính chất khơng gian cách chứng minh tương tự hình học phẳng sao?

Ngày đăng: 10/10/2022, 08:54

HÌNH ẢNH LIÊN QUAN

Nhận xét 2: Với cách nhìn nhận bài tốn 2 dưới góc độ hình học ta có S là bình phương - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
h ận xét 2: Với cách nhìn nhận bài tốn 2 dưới góc độ hình học ta có S là bình phương (Trang 4)
Trên 3 cạnh O A, O B, OC đặt 3 véc tơ đơn vị như hình vẽ ( chúng có độ dài bằng 1 và đôi một vng góc );gọi   là véc tơ chỉ phương cho  , ln có sự biểu thị duy nhất - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
r ên 3 cạnh O A, O B, OC đặt 3 véc tơ đơn vị như hình vẽ ( chúng có độ dài bằng 1 và đôi một vng góc );gọi là véc tơ chỉ phương cho  , ln có sự biểu thị duy nhất (Trang 6)
Trong hình bình hành A'B'AB E - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
rong hình bình hành A'B'AB E (Trang 7)
Nhận xét 8: Bài toán 8 khá quen thuộc với học sinh trong hình học phẳng về kiến thức và - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
h ận xét 8: Bài toán 8 khá quen thuộc với học sinh trong hình học phẳng về kiến thức và (Trang 13)
ABC ở M, N, P và (C2) là đường tròn nội tiếp BCD ở M' , E,F như hình vẽ. - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
v à (C2) là đường tròn nội tiếp BCD ở M' , E,F như hình vẽ (Trang 14)
Nhận xét 9: Một số đề thi đã mở rộng bài tốn 9 cho một vài tứ diện đặc biệt (hình chóp - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
h ận xét 9: Một số đề thi đã mở rộng bài tốn 9 cho một vài tứ diện đặc biệt (hình chóp (Trang 16)
, ACC' là các tam giác đều như hình vẽ ( thực chất - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
l à các tam giác đều như hình vẽ ( thực chất (Trang 17)
Bài toán 10&#34;&#34;: Cho hình chóp đều S.ABC có cạnh đáy là a, cạnh bê n, gọi O là điểm nhìn các cạnh dưới cùng một góc  . - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
i toán 10&#34;&#34;: Cho hình chóp đều S.ABC có cạnh đáy là a, cạnh bê n, gọi O là điểm nhìn các cạnh dưới cùng một góc  (Trang 19)
  OF =2 OE F chính là điểm thứ tư của hình bình hành OAFB ) - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
2 OE F chính là điểm thứ tư của hình bình hành OAFB ) (Trang 21)
  tứ giác ACA'B là hình bình hành (nội tiếp đường tròn)  tứ giác ACA'B là hình chữ nhật tam   giác - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
t ứ giác ACA'B là hình bình hành (nội tiếp đường tròn)  tứ giác ACA'B là hình chữ nhật tam giác (Trang 23)
Điều kiện cần: Dựng hình hộp chữ nhật dựa trên 3 cạnh A B, AC, tâm hình hộp cũng - (SKKN HAY NHẤT) khai thác mối quan hệ giữa hình học phẳng và hình học không gian trong giảng dạy toán ở THPT
i ều kiện cần: Dựng hình hộp chữ nhật dựa trên 3 cạnh A B, AC, tâm hình hộp cũng (Trang 24)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w