1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 19 - Đề 23 pdf

2 210 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 137,72 KB

Nội dung

I/ PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 2 điểm ) Cho hàm số y = x 4  2mx 2 + m (1) , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2. Biết A là điểm thuộc đồ thị hàm số (1) có hoành độ bằng 1 . Tìm m để khoảng cách từ điểm B 3 ;1 4       đến tiếp tuyến của đồ thị hàm số (1) tại A lớn nhất . Câu II ( 2 điểm ) 1 . Giải phương trình 4 os(2 ) tanx cot 6 c x x     . 2 . Giải hệ phương trình 2 2 2 1 2 4( 1) 4 2 7 x y x y x y xy              . Câu III ( 1 điểm ) Tính tích phân I = 2 3 2 3 5 4 3 x x dx x     . Câu IV ( 1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và AB = 4a, hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) trùng với trung điểm I của đoạn thẳng OA. Biết khoảng cách từ I đến mặt phẳng (SAB) bằng 2 2 SI . Tính thể tích khối chóp S.ABCD theo a . Câu V (1 điểm). Cho x > 0, y > 0 thỏa mãn 2 2 3 x y xy x y xy     . Tìm giá trị nhỏ nhất của biểu thức 2 2 2 (1 2 ) 3 2 xy P x y xy      . II/PHẦN TỰ CHỌN (3 điểm ) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) Phần A .Theo chương trình chuẩn Câu VIa ( 2 điểm ) 1. Trong mặt phẳng tọa độ (Oxy) cho đường tròn (C) : (x + 6) 2 + (y – 6) 2 = 50 . Đường thẳng d cắt hai trục tọa độ tại hai điểm A, B khác gốc O .Viết phương trình đường thẳng d tiếp xúc với đường tròn (C) tại M sao cho M là trung điểm của đoạn thẳng AB . 2. Trong không gian tọa độ (Oxyz) cho A(5;3;-4) , B(1;3;4) .Hãy tìm tọa độ điểm C thuộc mặt phẳng (Oxy) sao cho tam giác CAB cân tại C và có diện tích bằng 8 5 . Câu VIIa ( 1 điểm) Giải phương trình 3 log 3. x x +( log 3 2 2 1) x x   . Phần B.Theo chương trình nâng cao Câu VIb ( 2 điểm) 1 . Trong mặt phẳng tọa độ (Oxy) tam giác ABC có trọng tâm G 11 1; 3       , đường thẳng trung trực của cạnh BC có phương trình x  3y +8 = 0 và đường thẳng AB có phương trình 4x + y – 9 = 0 . Xác định tọa độ các đỉnh của tam giác ABC . 2. Trong không gian tọa độ (Oxyz) cho mặt cầu (S) : 2 2 2 2 4 4 5 0 x y z x y z        , mặt phẳng (Q) : 2x + y – 6z + 5 = 0 . Viết phương trình mặt phẳng (P). Biết rằng mặt phẳng (P) đi qua A(1;1;2) ,vuông góc với mặt phẳng (Q) và tiếp xúc với mặt cầu (S). Câu VIIb ( 1 điểm) Cho hàm số y = 2 m x m x    (Cm). Tìm m để đồ thị (Cm) có 2 điểm cực trị A , B sao cho AB 10  . . x dx x     . Câu IV ( 1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và AB = 4a, hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD). 3 2 xy P x y xy      . II/PHẦN TỰ CHỌN (3 điểm ) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) Phần A .Theo chương trình chuẩn

Ngày đăng: 07/03/2014, 23:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN