1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 27 - Đề 25 pptx

2 203 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 127,07 KB

Nội dung

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số mmmxxy  224 22 (1) với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m =  1. 2 Định m để đồ thị của hàm số (1) có ba điểm cực trị là ba đỉnh của một tam giác vuông. Câu II (2 điểm) 1. Giải phương trình: 1 5 6 cos 10 9 cos2 2  xx 2. Giải phương trình: 2 3 2( 3 1) 7 1 0 x x x      Câu III (1 điểm) Tính 2 9 x dx e   Câu IV (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA = a, SB = a 3 và mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của AB và BC. Tính thể tích khối chóp S.BMDN. Câu V (1 điểm) Cho hai số thực x, y khác không, thỏa mãn: 4 2 x y y x y x    . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: 2 2 3 T x y x y     PHẦN TỰ CHỌN (3 điểm) - Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hai đường tròn: 2 2 1 ( ) : ( 1) ( 1) 16 C x y     và 2 2 2 ( ):( 2) ( 1) 25 C x y     Viết phương trình đường thẳng  cắt (C 1 ) tại hai điểm A và B, cắt (C 2 ) tại hai điểm C và D thỏa mãn 2 7, 8. AB CD   2. Trong không gian tọa độ Oxyz, cho hai điểm A(0;0;3); B(2;0;1) và mặt phẳng (P): 3x  y  z +1 = 0. Tìm tọa độ điểm C nằm trên (P) sao cho ABC tam giác đều. Câu VII.a (1 điểm) Giải bất phương trình: 2 2 2 1 2 2 3 .3 12 3 4 .3 9 x x x x x x x       B. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hình chữ nhật ABCD có diện tích bằng 16, các đường thẳng AB, BC, CD, DA lần lượt đi qua các điểm M(4;5), N(6;5), P(5;2), Q(2;1). Viết phương trình đường thẳng AB. 2. Trong không gian tọa độ Oxyz, cho tam giác ABC có A(3; 1; 0), B nằm trên mặt phẳng Oxy và C nằm trên trục Oz. Tìm tọa độ các điểm B, C sao cho H(2; 1; 1) là trực tâm của tam giác ABC. Câu VII.b (1 điểm) Giải phương trình: 3 5 3 5 10log .log 15log 4log 6 0 x x x x     Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. . 2 9 x dx e   Câu IV (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA = a, SB = a 3 và mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) biểu thức: 2 2 3 T x y x y     PHẦN TỰ CHỌN (3 điểm) - Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn

Ngày đăng: 07/03/2014, 20:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN