Chuyen de LUYỆN THI ĐẠI HỌC 2013

78 590 1
Chuyen de LUYỆN THI ĐẠI HỌC 2013

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chuyen de LTDH 2013

Các chuyên đề LUYỆN THI ĐẠI HỌC Biên soạn: Nguyễn Minh Hiếu THPT Phan Đình Phùng Đồng Hới Tháng 08 - 2012 O y x F 1 F 2 A 1 A 2 B 1 B 2 Copyright c 2012 by Nguyễn Minh Hiếu, “All rights reserved”. Nguyễn Minh Hiếu 2 www.shpt.info Mục lục Chuyên đề 1. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 §1. Tính Đơn Điệu Của Hàm Số . . . . . . 5 §2. Cực Trị Của Hàm Số . . 6 §3. Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số . . . . . 7 §4. Đường Tiệm Cận Của Đồ Thị Hàm Số . . . 8 §5. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số . . 9 Chuyên đề 2. Phương Trình - Bất Phương Trình & Hệ Phương Trình Đại Số . . . . . . . . . . . . . . . . . 11 §1. Phương Trình & Bất Phương Trình Không Chứa Căn. . . 11 §2. Phương Trình & Bất Phương Trình Chứa Căn . . . 12 §3. Hệ Phương Trình Đại Số . . 14 §4. Phương Trình & Hệ Phương Trình Chứa Tham Số . . . . . 15 Chuyên đề 3. Phương Pháp Tọa Độ Trong Mặt Phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 §1. Tọa Độ Trong Mặt Phẳng . 17 §2. Phương Trình Đường Thẳng . . . . 18 §3. Phương Trình Đường Tròn . . . 20 §4. Phương Trình Elip . 20 Chuyên đề 4. Các Bài Toán Liên Quan Đến Khảo Sát Hàm Số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 §1. Cực Trị Của Hàm Số . . . 23 §2. Tương Giao Giữa Hai Đồ Thị . . . 24 §3. Tiếp Tuyến Của Đồ Thị Hàm Số . 25 §4. Biện Luận Số Nghiệm Phương Trình Bằng Đồ Thị. . . . 26 §5. Đối Xứng - Khoảng Cách & Các Bài Toán Khác . . . . 27 Chuyên đề 5. Hàm Số Lũy Thừa. Hàm Số Mũ & Hàm Số Lôgarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 §1. Lũy Thừa . . . . . . 29 §2. Lôgarit . . . 30 §3. Hàm Số Lũy Thừa. Hàm Số Mũ & Hàm Số Lôgarit . 31 §4. Phương Trình & Bất Phương Trình Mũ. . . 31 §5. Phương Trình & Bất Phương Trình Lôgarit . . 33 §6. Hệ Phương Trình Mũ & Lôgarit . . . . . 34 Chuyên đề 6. Phương Pháp Tọa Độ Trong Không Gian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 §1. Tọa Độ Trong Không Gian . . . . . 35 §2. Phương Trình Mặt Phẳng . . 36 §3. Phương Trình Đường Thẳng . . . . 38 §4. Hình Chiếu . . . 40 §5. Góc Và Khoảng Cách . . . . . . 41 Chuyên đề 7. Phương Trình Lượng Giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 §1. Phương Trình Lượng Giác Cơ Bản . . . . . 45 §2. Phương Trình Lượng Giác Thường Gặp. . 46 §3. Phương Trình Lượng Giác Đưa Về Phương Trình Tích . 47 §4. Phương Trình Lượng Giác Chứa Ẩn Ở Mẫu . 48 §5. Nghiệm Thuộc Khoảng Cho Trước. . . 49 3 Nguyễn Minh Hiếu Chuyên đề 8. Nguyên Hàm - Tích Phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 §1. Nguyên Hàm . . . . 51 §2. Một Số Phương Pháp Tìm Nguyên Hàm . . . . 52 §3. Tích Phân . . 52 §4. Một Số Phương Pháp Tính Tích Phân . 54 §5. Tích Phân Của Hàm Số Lượng Giác . . . . 56 §6. Ứng Dụng Của Tích Phân . . . . 57 Chuyên đề 9. Số Phức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 §1. Dạng Đại Số Của Số Phức . . 59 §2. Phương T r ì n h Bậc Hai Nghiệm Phức . . . . . . 61 §3. Dạng Lượng Giác Của Số Phức . . 62 Chuyên đề 10. Hình Học Không Gian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 §1. Quan Hệ Song Song . . 63 §2. Quan Hệ V u ô n g Góc . . 64 §3. Thể Tích Khối Đa Diện . . . . 65 §4. Mặt Nón - Mặt T r ụ - Mặt Cầu . . 68 Chuyên đề 11. T ổ Hợp - Xác Suất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 §1. Hoán Vị - Chỉnh Hợp - T ổ Hợp . . . . . 69 §2. Xác Suất . . . . . 70 §3. Nhị Thức Newton . . . . 71 Chuyên đề 12. Bất Đẳng Thức & Giá T r ị Lớn Nhất - Giá T r ị Nhỏ Nhất. . . . . . . . . . . . . . . . . . . . . . 73 §1. Bất Đẳng Thức . . . . 73 §2. Giá T r ị Lớn Nhất - Giá T r ị Nhỏ Nhất . . 75 PHỤ LỤC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 PHỤ LỤC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 www.shpt.info Download ebook, tài li󰗈u, đ󰗂 thi, bài gi󰖤ng t󰖢i : http://diendan.shpt.info Chuyên đề 1 Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số §1. Tính Đơn Điệu Của Hàm Số A. Kiến Thức Cần Nhớ Định lý 1.1. Cho hàm số y = f(x) có đạo hàm trên khoảng I. • Nếu f  (x) > 0, ∀x ∈ I thì y = f(x) đồng biến trên I. • Nếu f  (x) < 0, ∀x ∈ I thì y = f(x) nghịch biến trên I. • Nếu f  (x) = 0, ∀x ∈ I thì y = f(x) không đổi trên I. Lưu ý. • Nếu f  (x) ≥ 0, ∀x ∈ I và f  (x) = 0 tại hữu hạn điểm của I thì y = f(x) đồng biến trên I. • Khoảng I ở trên có thể được thay bởi một đoạn hoặc nửa khoảng với giả thiết bổ sung: “Hàm số y = f(x) liên tục trên đoạn hoặc nửa khoảng đó”. B. Kỹ Năng Cơ Bản 1. Tìm các khoảng đơn điệu của hàm số. • Tìm tập xác định. Tính y  . Tìm các điểm tại đó y  bằng 0 hoặc không xác định. • Lập bảng biến thiên. Từ bảng biến thiên rút ra kết luận. 2. Điều kiện để hàm số luôn đồng biến, nghịch biến. • Tìm tập xác định D f . • Tính y  và chỉ ra y  ≥ 0, ∀x ∈ D f (hoặc y  ≤ 0, ∀x ∈ D f ). C. Bài Tập 1.1. Tìm các khoảng đơn điệu của các hàm số sau a) y = 2x 3 − 3x 2 + 1. b) y = −x 3 − 3x + 2. c) y = x 3 + 3x 2 + 3x. d) y = x 4 − 2x 2 + 3. e) y = −x 4 + 2x 3 − 2x − 1. f) y = √ x 2 − 2x − 3. g) y = 2x + 3 x + 2 . h) y = x + 2 3x − 1 . i) y = x 2 − 4x + 4 1 − x . 1.2. Tìm m để hàm số y = x 3 + (m − 1) x 2 +  m 2 − 4  x + 9 luôn đồng biến trên R. 1.3. Tìm m để hàm số y = −mx 3 + (3 − m) x 2 − 2x + 2 luôn nghịch biến trên R. 1.4. Tìm m để hàm số y = mx − 2 m − x luôn đồng biến trên mỗi khoảng xác định. 1.5. Tìm m để hàm số y = mx − 2 x + m − 3 luôn nghịch biến trên mỗi khoảng xác định. 1.6. Tìm m để hàm số y = x + 2 + m x − 1 luôn đồng biến trên mỗi khoảng xác định. 1.7. Tìm m để hàm số y = mx + 4 x + m nghịch biến trên (−∞; 1). 1.8. Tìm m để hàm số y = mx − 2 x + m − 3 nghịch biến trên (1; +∞). 5 Nguyễn Minh Hiếu 1.9. Tìm a để hàm số y = x 3 + 3x 2 + ax + a nghịch biến trên đoạn có độ dài bằng 1. 1.10. Tìm m để hàm số y = −x 3 + 3x 2 + mx + 2 đồng biến trên đoạn có độ dài bằng 3. §2. Cực T r ị Của Hàm Số A. Kiến Thức Cần Nhớ Định lý 1.2. Giả sử hàm số y = f(x) đạt cực trị tại x 0 . Khi đó, nếu y = f(x) c ó đạo hàm tại x 0 thì f  (x 0 ) = 0. Định lý 1.3. Giả sử hàm số y = f(x) liên tục trên khoảng (a; b) chứa x 0 và c ó đạo hàm trên (a; x 0 ), (x 0 ; b). Khi đó • Nếu f  (x) < 0, ∀x ∈ (a; x 0 ) và f  (x) > 0, ∀x ∈ (x 0 ; b) thì hàm số y = f(x) đạt cực tiểu tại x 0 . • Nếu f  (x) > 0, ∀x ∈ (a; x 0 ) và f  (x) < 0, ∀x ∈ (x 0 ; b) thì hàm số y = f(x) đạt cực đại tại x 0 . Định lý 1.4. Giả sử hàm số y = f(x) c ó đạo hàm c ấ p một trên (a; b) và c ó đạo hàm c ấ p hai khác 0 tại x 0 . Khi đó • Nếu  f  (x 0 ) = 0 f  (x 0 ) < 0 thì hàm số đạt cực đại tại x 0 . • Nếu  f  (x 0 ) = 0 f  (x 0 ) > 0 thì hàm số đạt cực tiểu tại x 0 . Lưu ý . Nếu y  (x 0 ) = 0 thì hàm số có thể đạt cực trị hoặc không đạt cực trị tại x 0 . B. Kỹ Năng Cơ Bản 1. Tìm cực trị của hàm số. • Tìm tập xác định. Tính y  . Tìm các điểm tại đó y  bằng 0 hoặc không xác định. • Lập bảng biến thiên. Từ bảng biến thiên rút ra k ế t luận. 2. Điều kiện để hàm số có cực trị, có k cực trị. • Sử dụng ĐL 1.3 v à ĐL 1.4. 3. Điều kiện để hàm số đạt cực trị tại x 0 . • Tính y  , y  . Hàm số đạt cực trị tại x 0 ⇒ y  (x 0 ) = 0 ⇒ m. • Thay m v à x 0 v à o y  để k ế t luận. Lưu ý . Nếu y  (x 0 ) = 0 thì phải kiểm tra dấu của y  để k ế t luận. C. Bài T ậ p 1.11. Tìm cực trị của các hàm số sau a) y = 2x 3 − 3x 2 + 1. b) y = −x 3 − 3x + 2. c) y = x 3 + 3x 2 + 3x. d) y = x 4 − 2x 2 + 3. e) y = −x 4 + 2x 3 − 2x − 1. f) y = √ x 2 − 2x − 3. g) y = 2x + 3 x + 2 . h) y = x + 2 3x − 1 . i) y = x 2 − 4x + 4 1 − x . 1.12. Tìm m để hàm số y = x 3 − 3mx 2 + 3 (2m −1) x − 2 a) Có cực trị. b) Đạt cực trị tại x = 0. c) Đạt cực đại tại x = 1. 1.13. Cho hàm số y = 1 3 x 3 − mx 2 +  m 2 − m + 1  x + 1. V ớ i giá trị nào của m thì hàm số a) Đạt cực đại tại x = 1. b) Có cực đại, cực tiểu. c) Không có cực trị. 1.14. Cho hàm số y = x 4 − 2 (m + 1) x 2 + 2m + 1. V ớ i giá trị nào của m thì hàm số a) Có ba điểm cực trị. b) Đạt cực tiểu tại x = 0. c) Đạt cực trị tại x = 1. 1.15. Tìm m để hàm số y = −x 4 + 2 (2m −1) x 2 + 3 có đúng một cực trị. 1.16. (B-02) Tìm m để hàm số y = mx 4 +  m 2 − 9  x 2 + 10 có ba điểm cực trị. 1.17. Xác định giá trị của m để hàm số y = x 2 + mx + 1 x + m a) Không có cực trị. b) Đạt cực tiểu tại x = 1. c) Đạt cực đại tại x = 2. 6 www.shpt.info Chuyên đề 1. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số §3. Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số A. Kiến Thức Cần Nhớ Định nghĩa 1.5. Cho hàm số y = f(x) xác định trên tập hợp D. Khi đó • M = max x∈D f(x) ⇔  f(x) ≤ M, ∀x ∈ D ∃x 0 ∈ D : M = f (x 0 ) . • m = min x∈D f(x) ⇔  f(x) ≥ m, ∀x ∈ D ∃x 0 ∈ D : m = f(x 0 ) . Lưu ý. • Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó. • Trên khoảng hoặc nửa khoảng hàm số có thể có hoặc không có giá trị lớn nhất và giá trị nhỏ nhất. B. Kỹ Năng Cơ Bản 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên miền D. • Tính y  , y  = 0 ⇒ x i ∈ D. • Lập bảng biến thiên. Từ bảng biến thiên rút ra kết luận. 2. Xét tính đơn điệu trên khoảng cho trước. PP1: • Tính y  và chỉ ra y  ≥ 0, ∀x ∈ D (hoặc y  ≤ 0, ∀x ∈ D). • Từ y  ≥ 0, ∀x ∈ D ⇒ m ≥ g(x), ∀x ∈ D. • Lập bảng biến thiên của g(x) trên D. Từ bảng biến thiên rút ra kết luận. PP2: • Tính y  . Tìm các điểm tại đó y  = 0 hoặc không xác định. • Lập bảng biến thiên. Từ bảng biến thiên rút ra kết luận. Lưu ý. • m ≥ f(x), ∀x ∈ D ⇔ m ≥ max x∈D f(x). • m ≤ f(x), ∀x ∈ D ⇔ m ≤ min x∈D f(x). C. Bài Tập 1.18. Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) y = 1 + 8x − 2x 2 trên [−1; 3]. b) y = x 3 − 3x 2 + 1 trên [−2; 3]. c) y = 1 + 4x 3 − 3x 4 trên [−2; 1]. d) y = x 3 − 3x 2 + 1 trên (1; 4). e) y = x − 5 + 1 x trên (0; +∞). f) y = x − 1 x trên (0; 2]. g) y = 4 1 + x 2 . h) y = x 4 + 2x 2 − 1. i) y = x + √ 4 − x 2 . 1.19. Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau a) y = x + √ 2 cos x trên  0; π 2  . b) y = 2 sin x − 4 3 sin 3 x trên [0; π]. c) y = sin 4 x − 4sin 2 x + 5. d) y = sin 4 x + cos 4 x. e) y = 5 sin x −12 cos x − 5. f) y = sin 2 x + sin 2x + 2cos 2 x. 1.20. Cho parabol (P ) : y = x 2 và điểm A (−3; 0). Tìm điểm M ∈ (P ) sao cho khoảng cách AM ngắn nhất và tính khoảng cách đó. 1.21. Tìm m để hàm số y = x 3 + 3x 2 − mx − 4 đồng biến trên (−∞; 0). 1.22. (BĐT-79) Tìm m để hàm số y = − 1 3 x 3 + (m − 1) x 2 + (m − 3) x − 4 đồng biến trên (0; 3). 1.23. Tìm m để hàm số y = mx 3 − 3 (m −1) x 2 + 9 (m −2) x + 1 đồng biến trên [2; +∞). 1.24. Tìm m để hàm số y = x 3 + 3x 2 + (m + 1) x + 4m đồng biến trên (−∞; −2) và (2; +∞). 1.25. (BĐT-50) Tìm m để hàm số y = mx 2 + 6x − 2 x + 2 nghịch biến trên [1; +∞). 1.26. Tìm m để hàm số y = x 2 − 2mx + 2m 2 − 2 x − m đồng biến trên (1; +∞). 1.27. Tìm a để hàm số y = x 2 − 2ax + 4a 2 x − 2a đồng biến trên (2; +∞). 7 Nguyễn Minh Hiếu §4. Đường Tiệm Cận Của Đồ Thị Hàm Số A. Kiến Thức Cần Nhớ Định nghĩa 1.6. Đường thẳng y = y 0 được gọi là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếu lim x→+∞ f(x) = y 0 hoặc lim x→−∞ f(x) = y 0 . Định nghĩa 1.7. Đường thẳng x = x 0 được gọi là đường tiệm cận đứng của đồ thị hàm số y = f(x) nếu lim x→x + 0 f(x) = +∞; lim x→x + 0 f(x) = −∞; lim x→x − 0 f(x) = +∞ hoặc lim x→x − 0 f(x) = −∞. Định nghĩa 1.8. Đường thẳng y = ax + b, (a  = 0) được gọi là đường tiệm cận xiên của đồ thị hàm số y = f(x) nếu lim x→+∞ [f(x) −(ax + b)] = 0 hoặc lim x→−∞ [f(x) −(ax + b)] = 0. B. Kỹ Năng Cơ Bản 1. Tìm tiệm cận ngang v à tiệm cận đứng. • Tìm lim x→±∞ f(x) ⇒TCN. • Tìm lim x→x ± 0 f(x) ⇒TCĐ. Lưu ý . x 0 thường là một nghiệm của mẫu. 2. Tìm tiệm cận xiên. C1: Viết lại hàm số dưới dạng y = ax + b + g(x). Chỉ ra lim x→±∞ [y −(ax + b)] = 0 ⇒TCX. C2: Tính a = lim x→±∞ f(x) x v à b = lim x→∞ [f(x) −ax] ⇒TCX. C. Bài T ậ p 1.28. Tìm tiệm cận (nếu có) của các hàm số sau a) y = 2x − 1 x − 2 . b) y = x − 3 −x + 2 . c) y = 3 − 4x x + 1 . d) y = √ x 2 + x x − 1 . e) y = √ x + 3 x + 1 . f) y = 2x −1 + 1 x . g) y = x 2 − 4x + 4 1 − x . h) y =  x 2 + x − 1. i) y = x +  x 2 + 2x. 1.29. Tìm m để đồ thị hàm số y = mx 2 − 2m (m − 1) x − 3m 2 + m − 2 x + 2 có tiệm cận xiên đi qua A (−1; −3). 1.30. Tìm m để hàm số y = 2x 2 + (m + 1) x − 3 x + m có giao hai tiệm cận nằm trên parabol (P ) : y = x 2 + 2x − 1. 1.31. (A-08) Tìm m để góc giữa hai tiệm cận của hàm số y = mx 2 +  3m 2 − 2  x − 2 x + 3m bằng 45 0 . 1.32. Tìm m để đồ thị hàm số y = x 2 + mx − 1 x − 1 có tiệm cận xiên tạo v ớ i các trục toạ độ một tam giác có diện tích bằng 4. 1.33. Tìm m để đồ thị hàm số y = 2x 2 − (5m − 1) x + 4m 2 − m − 1 x − m có tiệm cận xiên tạo v ớ i các trục toạ độ một tam giác có diện tích bằng 4. 1.34. Cho hàm số y = 3x − 1 x − 2 . Chứng minh tích các khoảng cách từ điểm M nằm trên đồ thị hàm số đến hai tiệm cận không đổi. 1.35. (A-07) Cho hàm số y = −x 2 + 4x − 3 x − 2 . Chứng minh tích các khoảng cách từ điểm M nằm trên đồ thị hàm số đến hai tiệm cận là một hằng số. 1.36. Tìm điểm M thuộc đồ thị hàm số y = 3x − 5 x − 2 để tổng khoảng cách từ M đến hai tiệm cận là nhỏ nhất. 1.37. Tìm điểm M thuộc đồ thị hàm số y = x 2 + 2x − 2 x − 1 để tổng khoảng cách từ M đến hai tiệm cận là nhỏ nhất. 8 www.shpt.info Chuyên đề 1. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số §5. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số A. Kiến Thức Cần Nhớ 1. Sơ đồ khảo sát tổng quát. 1. Tập xác định. 2. Sự biến thiên. • Giới hạn, tiệm cận (nếu có). • Bảng biến thiên (tính đạo hàm, lập bảng biến thiên, tính đơn điệu, cực trị). 3. Đồ thị. • Tương giao với các trục. • Tính đối xứng (nếu có). • Điểm đặc biệt (nếu cần). 2. Điểm uốn. Định nghĩa 1.9. Điểm U (x 0 ; f (x 0 )) được gọi là điểm uốn của đồ thị hàm số y = f(x) nếu tồn tại một khoảng (a; b) chứa điểm x 0 sao cho trên một trong hai khoảng (a; x 0 ) và (x 0 ; b) tiếp tuyến của đồ thị tại điểm U nằm phía trên đồ thị còn trên khoảng kia tiếp tuyến nằm phía dưới đồ thị. Mệnh đề 1.10. Nếu hàm số y = f(x) có đạo hàm cấp hai trên một khoảng chứa x 0 , f  (x 0 ) = 0 và f  (x) đổi dấu khi qua điểm x 0 thì U (x 0 ; f (x 0 )) là một điểm uốn của đồ thị hàm số y = f(x). B. Các Dạng Đồ Thị Khảo Sát • Hàm số y = ax 3 + bx 2 + cx + d (a = 0). • Hàm số y = ax 4 + bx 2 + c (a = 0). O O y y x x U U O O y y x x • Hàm số y = ax + b cx + d (c = 0, ad − bc = 0). • Hàm số y = ax 2 + bx + c dx + e (a = 0, d = 0). O O y y x x I I O O y y x x I I C. Bài Tập 1.38. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau a) y = x 3 + 3x 2 − 4. b) y = −x 3 + 3x − 2. c) y = −x 3 + 1. d) y = x 3 + 3x 2 + 3x + 1. e) y = x 3 + x − 2. f) y = −2x 3 − x − 3. g) y = −x 3 + 3x 2 − 1. h) y = 1 3 x 3 − x 2 − 3x − 5 3 . 1.39. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau a) y = x 4 − 2x 2 − 3. b) y = x 4 + 2x 2 − 1. c) y = 1 2 x 4 + x 2 − 3 2 . d) y = 3 − 2x 2 − x 4 . e) y = −x 4 + 2x 2 − 2. f) y = 2x 4 − 4x 2 + 1. g) y = −2x 4 − 4x 2 + 1. h) y = x 4 − 4x 2 + 3. 1.40. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau a) y = 4 2 − x . b) y = x − 3 2 − x . c) y = x + 3 x − 1 . d) y = −x + 2 2x + 1 . e) y = x − 2 x + 1 . f) y = x + 2 x − 1 . g) y = 2 − x x + 1 . h) y = x + 3 x − 2 . 9 Nguyễn Minh Hiếu 1.41. Khảo sát sự biến thiên v à v ẽ đồ thị của các hàm số sau a) y = x 2 + 2x + 2 x + 1 . b) y = x 2 − 2x − 3 x − 2 . c) y = 2x 2 + 5x + 4 x + 2 . d) y = −x 2 − 2x x + 1 . e) y = x 2 − 2x x − 1 . f) y = 2x 2 − x + 1 1 − x . g) y = −x + 2 + 1 x − 1 . h) y = x −1 + 1 x + 1 . 10 www.shpt.info [...]... sát sự biến thi n và vẽ đồ thị hàm số y = x3 − 3x2 − 1 Biện luận theo k số nghiệm của phương trình x3 − 3x2 − k = 0 4.57 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = 2x3 − 3x2 + 1 Biện luận theo m số nghiệm phương trình 4x3 − 6x2 − m = 0 4.58 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = −x4 + 2x2 + 3 Biện luận theo m số nghiệm của phương trình x4 − 2x2 + m − 1 = 0 4.59 Khảo sát sự biến thi n và vẽ... − 3 (m + 1) x2 + 3m (m + 2) x + 1 đạt cực đại, cực tiểu tại các điểm có hoành độ dương 4.7 Tìm m để hàm số y = mx2 + 3mx + 2m + 1 có cực đại, cực tiểu nằm về hai phía của trục Ox x−1 4.8 (A-02) Cho hàm số y = −x3 + 3mx2 + 3 1 − m2 x + m3 − m2 Viết phương trình đường thẳng đi qua hai điểm cực trị của hàm số 4.9 Tìm m để hàm số y = x3 − 3 mx2 + 1 m3 có cực đại, cực tiểu đối xứng nhau qua đường thẳng... nghiệm phân biệt 4.60 (DB-06) Khảo sát sự biến thi n và vẽ đồ thị hàm số y = x2 + 2x + 5 Tìm m để phương trình sau có hai x+1 nghiệm dương phân biệt x2 + 2x + 5 = m2 + 2m + 5 (x + 1) 4.61 (A-06) Khảo sát sự biến thi n và vẽ đồ thị hàm số y = 2x3 − 9x2 + 12x − 4 Tìm m để phương trình sau có 3 sáu nghiệm phân biệt 2|x| − 9x2 + 12 |x| = m 3 4.62 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = −2x3 +3x2 −2... + 1) = 0 có đúng bốn nghiệm 4.63 (DB-03) Khảo sát sự biến thi n và vẽ đồ thị hàm số y = 2x2 − 4x − 3 Tìm m để phương trình 2x2 − 4x − 2 (x − 1) 3 + 2m |x − 1| = 0 có hai nghiệm phân biệt 4.64 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = x2 + 3x + 3 Tìm m để phương trình x+1 x2 +3x+3 |x+1| = m có bốn nghiệm phân biệt 4.65 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = x3 − 3x2 + 4 Tìm m để phương... 3 biệt |x − 1| − 3 |x − 1| − m = 0 4.66 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = x3 −3x+1 Tìm m để phương trình x3 − 3x + 1 −2m2 +m = 0 có ba nghiệm phân biệt 4.67 (B-09) Khảo sát sự biến thi n và vẽ đồ thị hàm số y = 2x4 − 4x2 Với các giá trị nào của m, phương trình x2 x2 − 2 = m có đúng sáu nghiệm thực phân biệt 4.68 Khảo sát sự biến thi n và vẽ đồ thị hàm số y = x4 − 4x2 + 3 Tìm m để phương... (m + 1) x + m2 + 4m có cực đại cực tiểu đồng thời các điểm cực trị cùng x+2 với gốc toạ độ tạo thành một tam giác vuông 4.15 (A-07) Tìm m để hàm số y = 23 www.shpt.info Nguyễn Minh Hiếu 4.16 (B-2012) Tìm m để hàm số y = x3 − 3mx2 + 3m3 có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48 4.17 (A-05) Tìm m để hàm số y = mx + 1 cận xiên bằng √2 1 x có cực đại cực tiểu đồng thời khoảng... đến tiệm 4.18 (B-05) Chứng minh rằng với mọi m bất kỳ, hàm số y = √ cực tiểu và khoảng cách giữa hai điểm đó bằng 20 x2 + (m + 1) x + m + 1 luôn có điểm cực đại, điểm x+1 4.19 Tìm m để hàm số y = 1 x3 − mx2 − x + m + 1 có khoảng cách giữa cực đại, cực tiểu là nhỏ nhất 3 §2 Tương Giao Giữa Hai Đồ Thị A Kiến Thức Cần Nhớ 1 Giao điểm của hai đồ thị • Hoành độ giao điểm của (C1 ) : y = f (x) và (C2 ) :... m2 − 1 x − 3m2 − 1 có cực đại, cực tiểu và các điểm cực trị cách đều gốc toạ độ 4.11 Tìm m để hàm số y = x3 − 3mx − 3m + 1 có cực trị đồng thời chúng cách đều đường thẳng d : x − y = 0 4.12 (D-2011) Tìm m để hàm số y = x4 − 2 (m + 1) x2 + m có ba cực trị A, B, C sao cho OA = BC, trong đó O là gốc tọa độ và A thuộc trục tung 4.13 Tìm m để hàm số y = x4 − 2mx2 + 2m + m4 có cực đại, cực tiểu lập thành tam... c) 2 x − 2 − 1 + x + 6 + x − 2 − 2 = 0 √ √ b) x − 2 + 4 − x = x2 − 6x + 11 √ d) 5x3 + 3x2 + 3x − 2 = 1 x2 + 3x − 1 2 2 d) x + x− √ x ≥ 1 1 − 2 (x2 − x + 1) 3 (1 − x2 ) = 2 1 − 2x2 §3 Hệ Phương Trình Đại Số A Phương Pháp Giải Cơ Bản 1 Đưa về hệ mẫu mực (Hệ đối xứng loại I, hệ đối xứng loại II, hệ đẳng cấp) 2 Phương pháp thế • Loại 1: Rút một biểu thức từ một phương trình rồi thế vào phương trình kia... y) x2 − y 2 = 25 b) b) (DB-06) d) (D-09) 14 x2 + 1 + y (y + x) = 4y x2 + 1 (y + x − 2) = y x (x + y + 1) − 3 = 0 2 5 (x + y) − x2 + 1 = 0 Chuyên đề 2 Phương Trình - Bất Phương Trình & Hệ Phương Trình Đại Số 2.34 Giải các hệ phương trình sau √ √ 3 x−y = x−y √ a) (B-02) x+y = x+y+2 2xy x2 + y 2 + x+y = 1 √ c) x + y = x2 − y 1 1 x− x =y− y 2y = x3 + 1 6x2 − 3xy + x + y = 1 x2 + y 2 = 1 b) (A-03) d)

Ngày đăng: 07/03/2014, 13:13

Từ khóa liên quan

Mục lục

  • www.SHPT.info

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan