1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại

139 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 139
Dung lượng 3,18 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Vũ Văn Quang NGHIÊN CỨU NÂNG CAO ĐỘ CHÍNH XÁC ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI Ngành: Kỹ thuật Cơ khí Mã số: 9520103 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Vũ Tồn Thắng Hà Nội - 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Vũ Văn Quang NGHIÊN CỨU NÂNG CAO ĐỘ CHÍNH XÁC ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI Ngành: Kỹ thuật Cơ khí Mã số: 9520103 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Vũ Toàn Thắng Hà Nội - 2022 LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu khoa học riêng tơi Những nội dung, số liệu sử dụng phân tích luận án có nguồn gốc rõ ràng, cơng bố theo quy định Các kết nghiên cứu luận án tơi tự tìm hiểu, phân tích cách trung thực, khách quan phù hợp với điều kiện Việt Nam Các kết chưa có tác giả công bố nghiên cứu khác Hà Nội, ngày 22 tháng 05 năm 2022 Người hướng dẫn khoa học Nghiên cứu sinh PGS TS Vũ Toàn Thắng Vũ Văn Quang i LỜI CẢM ƠN Trong q trình thực luận án, tơi hướng dẫn tận tình tập thể hướng dẫn khoa học, tạo điều kiện Viện Đào tạo Sau đại học, Viện Cơ khí, Giảng viên thuộc Bộ mơn Cơ khí Chính xác Quang học – Trường Đại học Bách Khoa Hà Nội Tôi Giáo sư, Phó Giáo sư, Tiến sĩ đồng nghiệp góp ý, tư vấn nhiều ý kiến cung cấp số tài liệu liên quan đến nội dung đề tài Đồng thời, Nghiên cứu sinh Bộ mơn Cơ khí xác Quang học, Viện Cơ khí chia sẻ, động viên q trình hồn thành thủ tục, nội dung luận án Tôi xin chân thành cảm ơn sâu sắc tập thể, cá nhân hướng dẫn, giúp đỡ, tạo điều kiện thời gian qua, đặc biệt xin bày tỏ biết ơn đến thầy giáo hướng dẫn: PGS Vũ Tồn Thắng Tơi xin cảm ơn đồng nghiệp, bạn bè gia đình động viên, cảm ơn người vợ thương yêu chia sẻ, tạo thuận lợi thời gian thực đề tài nghiên cứu Xin trân trọng cám ơn! ii MỤC LỤC DANH MỤC CÁC KÝ HIỆU VIẾT TẮT vi DANH MỤC BẢNG BIỂU viii DANH MỤC HÌNH VẼ viii MỞ ĐẦU 1 Lý chọn đề tài Mục tiêu luận án: Nội dung nghiên cứu Đối tượng nghiên cứu Cách tiếp cận, phương pháp nghiên cứu Ý nghĩa khoa học thực tiễn Những đóng góp luận án Cấu trúc luận án CHƯƠNG TỔNG QUAN VỀ ĐO VẬN TỐC CỦA NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI 1.1 Bài toán đo vận tốc nguồn nhiệt xạ hồng ngoại nghiên cứu liên quan 1.2 Mô tả hệ thống đo đề xuất 17 1.3 Mục tiêu, khó khăn đóng góp dự kiến 20 Kết luận chương 21 CHƯƠNG CƠ SỞ LÝ THUYẾT XÂY DỰNG HỆ THỐNG ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI 22 2.1 Các lý thuyết liên quan đến xạ hồng ngoại 22 2.1.1 Các đơn vị xạ 23 2.1.2 Đặc điểm không gian đối tượng nguồn nhiệt hồng ngoại 28 2.2 Các thành phần hệ thống thực nghiệm đo vận tốc nguồn nhiệt sử dụng mô-đun cảm biến PIR 29 2.2.1 Cảm biến nhiệt điện pyroelectric 30 2.2.2 Thấu kính Fresnel 34 2.3 Các lý thuyết tín hiệu ngẫu nhiên toán xác định thời gian trễ 36 2.3.1 Dữ liệu xác định liệu ngẫu nhiên 36 iii 2.3.2 Các thuộc tính thống kê 41 Kết luận chương 43 CHƯƠNG MỘT SỐ GIẢI PHÁP NÂNG CAO ĐỘ CHÍNH XÁC TRONG PHÉP ĐO VẬN TỐC NGUỒN NHIỆT BẰNG BỨC XẠ HỒNG NGOẠI 44 3.1 Phân tích sai số độ khơng đảm bảo đo hệ thống đo vận tốc nguồn nhiệt xạ hồng ngoại 44 3.2 Giải pháp xác định hiệu chỉnh độ song song hai quang trục hai môđun cảm biến PIR 47 3.2.1 Thiết lập thí nghiệm vị trí quang trục mơ-đun cảm biến PIR so với bề mặt mục tiêu nguồn nhiệt tham chiếu điều biến 49 3.2.2 Phân tích độ nhạy phép đo 53 3.2.3 Xác định độ khơng đảm bảo đo vị trí quang trục mô-đun cảm biến PIR độ song song hai quang trục hai mô-đun cảm biến PIR 57 3.3 Các giải pháp nâng cao độ xác việc xác định độ trễ hai tín hiệu đầu hai mô-đun cảm biến PIR 60 3.3.1 Phương pháp tương quan chéo cổ điển 62 3.3.2 Phương pháp tương quan chéo kết hợp biến đổi Hilbert 66 3.3.3 Ứng dụng biến đổi Fourier cho đánh giá tương quan 68 Kết luận chương 72 CHƯƠNG CÁC KẾT QUẢ PHÂN TÍCH VÀ THỰC NGHIỆM 74 4.1 Khảo sát hệ thống xác định vị trí quang trục mơ-đun cảm biến PIR 74 4.1.1 Thí nghiệm xác định hiệu chỉnh vị trí quang trục mơ-đun PIR 76 4.1.2 Khảo sát độ không đảm bảo đo phương pháp xác định quang trục mô-đun cảm biến PIR 82 4.1.3 Thực nghiệm đo vị trí quang trục mơ-đun cảm biến PIR 85 4.2 Thực nghiệm đo giá trị vận tốc 88 4.2.1 Mơ tả bố trí thí nghiệm 88 4.2.2 Phân tích độ khơng đảm bảo đo cho thời gian trễ với phương pháp số khác 90 4.2.3 Thực nghiệm đo vận tốc với đối tượng thực tế 95 Kết luận chương 99 iv KẾT LUẬN 101 TÀI LIỆU THAM KHẢO 104 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 110 PHỤ LỤC A THIẾT KẾ MÔ-ĐUN CẢM BIẾN PIR 111 PHỤ LỤC B SƠ ĐỒ MẠCH ĐIỆN BIẾN ĐỔI TÍN HIỆU CHO MÔ-ĐUN CẢM BIẾN 114 PHỤ LỤC C THIẾT KẾ HỆ THỐNG HIỆU CHUẨN TRỤC QUANG HỌC CỦA MÔ-ĐUN CẢM BIẾN PIR 116 PHỤ LỤC D GIAO DIỆN PHẦN MỀM THU NHẬN DỮ LIỆU ĐO 117 PHỤ LỤC E LƯỢC TRÍCH MỘT SỐ CHƯƠNG TRÌNH TÍNH TỐN, ĐIỀU KHIỂN VÀ THU NHẬN TÍN HIỆU 122 v DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT λ Bước sóng điện từ trường, μm α (λ) Hệ số hấp thụ theo bước sóng ρ(λ) Hệ số phản xạ theo bước sóng κ(λ) Hệ số truyền theo bước sóng ε(λ) Hệ số phát xạ theo bước sóng Ω Góc khối, sr - steradian Γ Năng lượng xạ, J Φ Thông lượng (công suất) xạ, W I Cường độ xạ, W/sr M Năng suất phát xạ, W/cm2 E Độ rọi lượng, W/cm2 L Độ trưng, W/(cm2.sr) PIR Pyroelectric Infrared sensor - Cảm biến hồng ngoại thụ động Pyroelectric FOV Field Of View - Trường nhìn hệ thống quang học, θx, θy Góc theo phương ngang, dọc trường nhìn hệ thống quang học T Nhiệt độ nói chung, K oC Ts Nhiệt độ bề mặt nguồn nghiệt tham chiếu, K oC Tb Nhiệt độ môi trường nền, K 0C Tob Nhiệt độ trung bình bề mặt đối tượng đo, K 0C V(t) Tín hiệu điện áp đầu theo thời gian mô-đun cảm biến PIR, V VO Biên độ điện áp đầu mô-đun cảm biến PIR, V 𝔼𝔼( ) Kỳ vọng đại lượng ngẫu nhiên Rxy(τ) Tương quan chéo hai liệu ngẫu nhiên x(t), y(t) độ trễ τ σ Độ lệch chuẩn đại lượng ngẫu nhiên f Tiêu cự thấu kính, mm vi Al Tiết diện thấu kính t Đại lượng theo thời gian, s τ Độ trễ theo thời gian hai tín hiệu đầu ra, s fs Tần số lấy mẫu, Hz u(.) Độ không đảm bảo đo đại lượng độc lập uc(.) Độ không đảm bảo đo đại lượng kết hợp d Khoảng cách hai quang trục hai mô-đun cảm biến PIR ℒ (𝑇𝑇) Hàm Lambertain nhiệt độ T, W/cm2 fm Tần số điều biến trập, Hz ωm Tần số điều biến góc, 2πfm Q(Ts, Tb) Hệ số phụ thuộc vào nhiệt độ bề mặt nguồn nhiệt (công thức 3.14) K(ωm) Hệ số phụ thuộc vào tần số điều biến (cơng thức 3.14) 𝜃𝜃 Góc lệch vị trị quang trục mô-đun cảm biến PIR trục đối xứng mặt phẳng mục tiêu (mục 3.2) CCF Cross-Correlation Function - Hàm tương quan chéo cổ điển CCFHT Cross-Correlation Function with Hilbert Transform - Hàm tương quan chéo kết hợp biến đổi Hilbert DFT Discrete Fourier Transform - Biến đổi Fourier rời rạc thuận IDFT Inverse Discrete Fourier Transform - Biến đổi Fourier rời rạc ngược FFT Fast Fourier Transform - Biến đồi Fourier nhanh vii DANH MỤC BẢNG BIỂU Bảng 1.1 Các công nghệ cảm biến ứng dụng giám sát xác định vận tốc phương tiện giao thông Bảng 2.1 Các đơn vị xạ 24 Hình 2.3 Phổ suất phát xạ vật đen nhiệt độ khác 27 Bảng 4.1 Thông số phục vụ mô 74 Bảng 4.2 Kết đo tín hiệu đầu mơ-đun cảm biến PIR khơng có đối tượng nguồn nhiệt mục tiêu trường nhìn 83 Bảng 4.3 Độ không đảm bảo đo vị trí góc mơ-đun cảm biến PIR 84 Bảng 4.4 Kết thực nghiệm đo vị trí góc quang trục hai mơ-đun cảm biến PIR so với nguồn nhiệt tham chiếu 87 Bảng 4.5 Một số thơng số bố trí thực nghiệm 90 Bảng 4.6 Các thơng số cài đặt phục vụ tính tốn mô SNR mô-đun 91 cảm biến PIR 91 Bảng 4.7 Kết đo vận tốc số đối tượng nguồn nhiệt sử dụng phương pháp tương quan chéo cổ điển (CCF) tương quan chéo kết hợp biến đổi Hilbert (CCFHT) 97 viii Hình A.2 Bản vẽ thiết kế hình chiếu vỏ mơ-đun cảm biến hồng ngoại PIR (tiếp) 112 Hình A.2 Hình ảnh vỏ mơ-đun cảm biến hồng ngoại sau chế tạo 113 PHỤ LỤC B SƠ ĐỒ MẠCH ĐIỆN BIẾN ĐỔI TÍN HIỆU CHO MƠ-ĐUN CẢM BIẾN Hình B.1 Sơ đồ mạch điện biến đổi mơ-đun cảm biến PIR 114 Hình B.2 Hình ảnh bo mạch biến đổi tín hiệu sau chế tạo 115 PHỤ LỤC C THIẾT KẾ HỆ THỐNG HIỆU CHUẨN TRỤC QUANG HỌC CỦA MÔ-ĐUN CẢM BIẾN PIR Hình C.1 Một số hình ảnh bố trí hệ thống hiệu chuẩn trục quang học mô-đun cảm biến PIR 116 117 118 119 Hình C.5 Bản vẽ lắp trập 120 PHỤ LỤC D GIAO DIỆN PHẦN MỀM THU NHẬN DỮ LIỆU ĐO Hình D.1 Giao diện phần mềm thu nhận liệu đo viết tảng Qt 121 PHỤ LỤC E LƯỢC TRÍCH MỘT SỐ CHƯƠNG TRÌNH TÍNH TỐN, ĐIỀU KHIỂN VÀ THU NHẬN TÍN HIỆU Lược trích chương trình tính tốn mơ tín hiệu đầu mơ-đun cảm biến PIR, giao diện lập trình MATLAB-2020 ii=15; v(ii)=20+(ii-1)*5; veloci=v(ii)/3.6; %km/h to m/s w=5; x0=-2; %% c1=3.741844e4; c2=1.438769e4; Tbk=30+273; fun1=@(x)(c1./x.^5)./(exp(c2./(Tbk*x))-1); Lbk=0.5525/pi*integral(fun1,5,Inf); Tob=Tbk+3; fun2=@(x)(c1./x.^5)./(exp(c2./(Tob*x))-1); Lob=0.5525/pi*integral(fun2,5,Inf); %% K1=35.71e3; to_th=0.5; to_e=0.08; simOut=sim('my_model'); yout=simOut.get('yout'); y2=yout(:,2); for jj=1:length(y2) if(y2(jj)>1.65) y2(jj)=1.65; end if(y2(jj)

Ngày đăng: 12/08/2022, 23:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w