1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại

122 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 122
Dung lượng 7,77 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VŨ VĂN QUANG NGHIÊN CỨU NÂNG CAO ĐỘ CHÍNH XÁC ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI Ngành: Kỹ thuật Cơ khí Mã số: 9520103 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Vũ Toàn Thắng Hà Nội - 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VŨ VĂN QUANG NGHIÊN CỨU NÂNG CAO ĐỘ CHÍNH XÁC ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI Ngành: Kỹ thuật Cơ khí Mã số: 9520103 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Vũ Toàn Thắng Hà Nội - 2022 LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu khoa học riêng Những nội dung, số liệu sử dụng phân tích luận án có nguồn gốc rõ ràng, công bố theo quy định Các kết nghiên cứu luận án tơi tự tìm hiểu, phân tích cách trung thực, khách quan phù hợp với điều kiện Việt Nam Các kết chưa có tác giả công bố nghiên cứu khác Hà Nội, ngày 14 tháng 03 năm 2022 Ngƣời hƣớng dẫn khoa học Nghiên cứu sinh PGS TS Vũ Toàn Thắng Vũ Văn Quang i LỜI CẢM ƠN Trong trình thực luận án, hướng dẫn tận tình tập thể hướng dẫn khoa học, tạo điều kiện Viện Đào tạo Sau đại học, Viện Cơ khí, Giảng viên thuộc Bộ mơn Cơ khí Chính xác Quang học – Trường Đại học Bách Khoa Hà Nội Tơi Giáo sư, Phó Giáo sư, Tiến sĩ đồng nghiệp góp ý, tư vấn nhiều ý kiến cung cấp số tài liệu liên quan đến nội dung đề tài Đồng thời, Nghiên cứu sinh Bộ mơn Cơ khí xác Quang học, Viện Cơ khí chia sẻ, động viên q trình hồn thành thủ tục, nội dung luận án Tôi xin chân thành cảm ơn sâu sắc tập thể, cá nhân hướng dẫn, giúp đỡ, tạo điều kiện thời gian qua, đặc biệt xin bày tỏ biết ơn đến thầy giáo hướng dẫn: PGS Vũ Tồn Thắng Tơi xin cảm ơn đồng nghiệp, bạn bè gia đình động viên, cảm ơn người vợ thương yêu chia sẻ, tạo thuận lợi thời gian thực đề tài nghiên cứu Xin trân trọng cám ơn! ii MỤC LỤC DANH MỤC CÁC KÝ HIỆU VIẾT TẮT vi DANH MỤC BẢNG BIỂU viii DANH MỤC HÌNH VẼ ix MỞ ĐẦU 1 Lý chọn đề tài Mục tiêu luận án: Nội dung nghiên cứu Đối tượng nghiên cứu Cách tiếp cận, phương pháp nghiên cứu Ý nghĩa khoa học thực tiễn Những đóng góp luận án Cấu trúc luận án CHƢƠNG TỔNG QUAN VỀ ĐO VẬN TỐC CỦA NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI 1.1 Bài toán đo vận tốc nguồn nhiệt xạ hồng ngoại nghiên cứu liên quan 1.2 Mô tả hệ thống đo đề xuất 17 1.3 Mục tiêu, khó khăn đóng góp dự kiến 20 Kết luận chương 21 CHƢƠNG CƠ SỞ LÝ THUYẾT XÂY DỰNG HỆ THỐNG ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI 22 2.1 Các lý thuyết liên quan đến xạ hồng ngoại 22 2.1.1 Các đơn vị xạ 23 2.1.2 Đặc điểm không gian đối tượng nguồn nhiệt hồng ngoại .28 2.2 Các thành phần hệ thống thực nghiệm đo vận tốc nguồn nhiệt sử dụng mô-đun cảm biến PIR 29 2.2.1 Cảm biến nhiệt điện pyroelectric 30 2.2.2 Thấu kính Fresnel 34 2.3 Các lý thuyết tín hiệu ngẫu nhiên tốn xác định thời gian trễ 36 iii 2.3.1 Dữ liệu xác định liệu ngẫu nhiên 36 2.3.2 Các thuộc tính thống kê 41 Kết luận chương 43 CHƢƠNG MỘT SỐ GIẢI PHÁP NÂNG CAO ĐỘ CHÍNH XÁC TRONG PHÉP ĐO VẬN TỐC NGUỒN NHIỆT BẰNG BỨC XẠ HỒNG NGOẠI .44 3.1 Phân tích sai số độ khơng đảm bảo đo hệ thống đo vận tốc nguồn nhiệt xạ hồng ngoại 44 3.2 Giải pháp xác định hiệu chỉnh độ song song hai quang trục hai mô- đun cảm biến PIR 47 3.2.1 Thiết lập thí nghiệm vị trí quang trục mơ-đun cảm biến PIR so với bề mặt mục tiêu nguồn nhiệt tham chiếu điều biến 49 3.2.2 Phân tích độ nhạy phép đo 53 3.2.3 Xác định độ khơng đảm bảo đo vị trí quang trục mô-đun cảm biến PIR độ song song hai quang trục hai mô-đun cảm biến PIR 57 3.3 Các giải pháp nâng cao độ xác việc xác định độ trễ hai tín hiệu đầu hai mô-đun cảm biến PIR 60 3.3.1 Phương pháp tương quan chéo cổ điển 63 3.3.2 Phương pháp tương quan chéo kết hợp biến đổi Hilbert 66 3.3.3 Ứng dụng biến đổi Fourier cho đánh giá tương quan 69 Kết luận chương 72 CHƢƠNG CÁC KẾT QUẢ PHÂN TÍCH VÀ THỰC NGHIỆM 74 4.1 Khảo sát hệ thống xác định vị trí quang trục mơ-đun cảm biến PIR .74 4.1.1 Thí nghiệm xác định hiệu chỉnh vị trí quang trục mơ-đun PIR 76 4.1.2 Khảo sát độ không đảm bảo đo phương pháp xác định quang trục mô-đun cảm biến PIR 82 4.1.3 Thực nghiệm đo vị trí quang trục mơ-đun cảm biến PIR 85 4.2 Thực nghiệm đo giá trị vận tốc 89 4.2.1 Mơ tả bố trí thí nghiệm 89 4.2.2 Phân tích độ khơng đảm bảo đo cho thời gian trễ với phương pháp số khác 90 4.2.3 Thực nghiệm đo vận tốc với đối tượng thực tế 95 iv Kết luận chương 98 KẾT LUẬN 99 TÀI LIỆU THAM KHẢO 102 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 107 PHỤ LỤC A THIẾT KẾ MÔ-ĐUN CẢM BIẾN PIR 108 PHỤ LỤC B SƠ ĐỒ MẠCH ĐIỆN BIẾN ĐỔI TÍN HIỆU CHO MƠ-ĐUN CẢM BIẾN 111 PHỤ LỤC C THIẾT KẾ HỆ THỐNG HIỆU CHUẨN TRỤC QUANG HỌC CỦA MÔ-ĐUN CẢM BIẾN PIR 113 PHỤ LỤC D GIAO DIỆN PHẦN MỀM THU NHẬN DỮ LIỆU ĐO .114 PHỤ LỤC E LƢỢC TRÍCH MỘT SỐ CHƢƠNG TRÌNH TÍNH TỐN, ĐIỀU KHIỂN VÀ THU NHẬN TÍN HIỆU 115 v CHƢƠNG TỔNG QUAN VỀ ĐO VẬN TỐC NGUỒN NHIỆT DI CHUYỂN BẰNG BỨC XẠ HỒNG NGOẠI 1.1 Bài toán đo vận tốc nguồn nhiệt xạ hồng ngoại nghiên cứu liên quan Giám sát chuyển động nguồn nhiệt thơng tin tín hiệu xạ hồng ngoại áp dụng môi trường kháu (trong nhà trời), điều kiện thời tiết khác (ngày đêm) Việc sử dụng cảm biến hồng ngoại ứng dụng dẫn đến việc giảm chi phí thiết lập hệ thống theo dõi (thay cho hệ thống camera loại cảm biến khác) giảm thiểu lượng tiêu thụ mà thiết bị yêu cầu cho việc tính tốn Các hệ thống cài đặt cảm biến xạ hồng ngoại thụ động định hướng thiết bị có tính di động cao dễ dàng tích hợp mạng cảm biến Một lĩnh vực mà ứng dụng cảm biến xạ hồng ngoại kể đến việc giám sát xác định vận tốc phương tiện giao thông Tổng quan, lĩnh vực này, công nghệ giám sát phương tiện giao thông chia thành hai nhóm chính: Cơng nghệ cảm biến tiếp xúc (intrusive technology) công nghệ cảm biến không tiếp xúc (non-intrusive technology) [1] (Bảng 1.1) Theo đó, cơng nghệ sử dụng cảm biến xạ hồng ngoại nằm nhóm thứ hai ảng Các cơng nghệ cảm biến ứng dụng giám sát xác định vận tốc phương tiện giao thơng Nhóm cơng nghệ cảm biến tiếp xúc - Đường ống khí nén Vịng cảm ứng Cáp áp điện Cảm biến từ tính Tấm cân chuyển động Cảm biến áp điện Cảm biến tải trọng (Loadcell) … Mặc dù có nhiều cơng nghệ cảm biến sử dụng để thu thập liệu lưu lượng giao thông để xác định tham số vận tốc, lưu lượng, vị trí đối tượng mục tiêu; cơng nghệ lại có số ưu điểm nhược điểm riêng [1] Ví dụ, cảm biến âm sử dụng để phân loại phương tiện giao thông [2], [3] xác định vận tốc di chuyển phương tiện [4] Công nghệ RADARvà LIDAR (bảng 1.1) sử dụng để phát đo vận tốc phương tiện giao thông [5], [6] Tuy nhiên, phương pháp vừa đề cập khơng cho kết xác hướng của thiết bị đo không trùng với hướng đối tượng di chuyển Một số phương pháp phân loại phương tiện xác định vận tốc chúng khác dựa thiết bị ghi hình thơng thường [7] thiết bị ghi hình hồng ngoại [8] Nhược điểm thiết bị cảm biến hình ảnh chúng chịu ảnh hưởng tương đối lớn điều kiện thời tiết tầm nhìn chúng thường bị hạn chế Tiếp theo kể đến, cơng nghệ cảm biến tiếp xúc vòng cảm ứng [9], [10], cảm biến từ [11], cáp áp điện ống khí nén, sử dụng để phát xác định vận tốc phương tiện giao thông Trong thực tế, việc triển khai cảm biến thường khó khăn, chi phí tốn cho việc triển khai bảo trì, cảm biến cần bố trí bề mặt di chuyển tiếp xúc trực tiếp với đối tượng đo – phương tiện giao thơng Bên cạnh đó, số cơng nghệ cảm biến giao thông nhận nhiều quan tâm sử dụng phương tiện làm cảm biến chuyển động [12] sử dụng thiết bị hỗ trợ hệ thống định vị toàn cầu GPS điện thoại thông minh [13] Trong hệ thống này, liệu vị trí gửi đến máy chủ trung tâm để xử lý thông qua mạng internet, nhiên việc dẫn đến vấn đề liên quan đến bảo mật cá nhân chúng mục tiêu cơng mạng Trong nhóm cơng nghệ cảm biến khơng tiếp xúc phục vụ đo tham số giao thông, cảm biến hồng ngoại thụ động sử dụng đối tượng đo – phương tiện giao thông coi nguồn nhiệt di động Để phát xạ hồng ngoại, cảm biến hồng ngoại hoạt động dựa hiệu ứng photon dựa hiệu ứng nhiệt [14] Nhóm cảm biến hồng ngoại hoạt động theo hiệu ứng photon có độ nhạy cao thời gian đáp ứng nhanh - μs, nhiên chúng làm việc dải quang phổ hạn chế cần thiết bị làm mát có chi phí cao kèm Mặt khác, cảm biến hồng ngoại theo hiệu ứng nhiệt hoạt động nhiệt độ thông thường không yêu cầu kèm với thiết bị làm mát Trong nhóm này, cảm biến hồng ngoại Pyroelectric (PIR- Pyroelectric Infrared) cấu tạo từ vật liệu nhiệt điện, TGS, BaTiO3, v.v., cung cấp tín hiệu điện áp đầu phụ thuộc vào thay đổi lượng xạ hồng ngoại đến bề mặt cảm biến [14] Trong nội dung nghiên cứu, tác giả tập trung vào việc ứng dụng cảm biến hồng ngoại Pyroelectric (PIR) để phục vụ giải toán đo vận tốc nguồn nhiệt chuyển động xạ hồng ngoại Dưới đây, số nghiên cứu liên quan đế việc ứng dụng cảm biến PIR đề cập Trong cơng trình cơng bố, cảm biến PIR chủ yếu sử dụng cho ứng dụng phát định vị đối tượng nguồn nhiệt (con người) với điều kiện cài đặt nhà Trong nghiên cứu Z Zhang [15], hệ thống ma trận gồm nút cảm biến trạm xử lý trung tâm bố trí khơng gian phịng thí nghiệm (hình 1.1) để phát định vị mục tiêu nguồn nhiệt di chuyển Trên nút cảm biến, hệ thống quang học bao gồm cảm biến hồng ngoại PIR thấu kính suốt với bước sóng hồng ngoại ÷ 14 μm, sử dụng để thu nhận tín hiệu xạ hồng ngoại phát từ mục tiêu (hình 1.2) Dựa tín hiệu điện áp đầu nút cảm biến, Z Zhang cộng phát triển thuật toán với việc cài đặt ngưỡng tín hiệu khơng đổi để phát mục tiêu di chuyển 44 Chrzanowski, K (2019) Report B01/19 Introduction to Boresight of ElectroOptical Surveillance Systems; INFRAMET: Stare Babice, Poland Available online: https://www.inframet.com/Literature/Boresigh_Intro.pdf 45 M Kastek, H Madura, M Morawski, T Piatkowski, E Powiada, H Polakowski (2007), Test bed for measurement of angular parameters of passive infrared sensors, Infrared Phys Technol., 49, pp 198-201 46 Shankar M., Burchett J.B., Hao, Q.; Guenther, B.D., Brady, D.J (2006) Humantracking systems using pyroelectric infrared detectors Opt Eng., 45, 106401 47 Alexander Zaltz; Douglas Christo (1982), Methods for the control of centering error in the fabrication and assembly of optical elements, Proceedings volume 0330 of Optical Systems Engineering II, Los Angeles, United States, 48 FAS Military Analysis Network (2019), Infrared Propagation and Detection Available online: http://fas.org/man/dod101/navy/docs/es310/IR prop/IR prop.html 49 Hing Cheung So; Yiu Tong Chan; K.C Ho; Yuan Chen (2013), Simple Formulas for Bias and Mean Square Error Computation, IEEE Signal Processing Magazine, Volume: 30 Issue: 50 Xiaoming Lai, H Torp (1999) Interpolation methods for time-delay estimation using crosscorrelation method for blood velocity measurement, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(2):277–290, ISSN 08853010 51 Joseph C Hassab, R Boucher (1979), Optimum estimation of time delay by a generalized correlator, IEEE Transactions on Acoustics, Speech and Signal Processing, 27(4):373– 380, ISSN 0096-3518 52 Wen Ma, Jianguo Huang (2002) Accurate time delay estimation based on SINC filtering In Signal Processing, 2002 6th International Conference on, volume 2, pages 1621–1624 vol.2, doi: 10.1109/ICOSP.2002.1180109, 2002 53 Y.T Chan, J Riley, J Plant (1980), A parameter estimation approach to timedelay estimation and signal detection, IEEE Transactions on Acoustics, Speech and Signal Processing, 28(1): 8-16, ISSN 0096-3518 54 Fan Di, Cao Maoyong, Sun Nongliang (2009), Time delay estimation based on wiener filter in ultrasonic detection of sediments in drilling hole In Computer Science and Engineering, 2009 WCSE ’09 Second International Workshop on, vol 2, pp 582–585 55 C Guetbi, D Kouame, A Ouahabi, J.P Chemla (1998), Methods based on wavelets for time delay estimation of ultrasound signals, IEEE International Conference on Electronics, Circuits and Systems, vol.3, pp 113–116 105 56 Shiyuan Zhou, Yao Xu, Hongbo Wang, Chunguang Xu (2013), Time delay estimation via third-order cumulant Far East Forum on Nondestructive Evaluation/Testing: New Technology Application (FENDT), 2013, pp 77–81 57 Robert Hanus (2019), Time delay estimation of random signals using crosscorrelation Hilbert Transform, Measurement, vol 146, pp 792–799 58 S Holm (1987), FFT Pruning Applied to Time Domain Interpolation and Peak Localization, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol 35, pp 1776 – 1778 59 Tài liệu kỹ thuật cảm biến PIR hãng Murata, https://www.murata.com/~/media/webrenewal/products/sensor/infrared/datasheet_p ir.ashx?la=en 60 Danh mục thấu kính Fresnel hang Kube Kube single Fresnel lens, https://kube.ch/wp-content/uploads/documents/kube_single_fresnel_lenses.pdf 106 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN Vu Van Quang, Ngo Van Linh, Doan Van Phuc, Vu Toan Thang (08/2020), Vehicle speed estimation using two roadside passive infrared sensors, International Journal of Modern Physics B (IJMPB), ISI Q3, IJMPB's Volume No.34, Issue No 22n24, 08/2020 Vu Van Quang, Vu Toan Thang (10/2020) Đo vận tốc phương tiện giao thơng tín hiệu tương tự cặp cảm biến chuyển động hồng ngoại, Hội nghị đo lường toàn quốc, Hà Nội Vu Van Quang, Vu Toan Thang (05/2021)A novel system for measuring vehicle speed via analog signals of pyroelectric infrared sensors, International Journal of Modern Physics B (IJMPB), ISI Q3, IJMPB’s Volume No 35, Issue No 14n16 Vu Toan Thang, Vu Van Quang, Ngoc-Tam Bui (10/2021) A Setup for Measuring the Centering Error of a Dual-Element Pyroelectric Infrared Sensor Module, MDPI Sensors, ISI Q1, Volume 21 107 PHỤ LỤC A THIẾT KẾ MÔ-ĐUN CẢM BIẾN PIR nh Bản vẽ thiết kế hình chiếu vỏ mơ-đun cảm biến hồng ngoại PIR 108 nh2 Bản vẽ thiết kế hình chiếu vỏ mô-đun cảm biến hồng ngoại PIR 109 nh Hình ảnh vỏ mơ-đun cảm biến hồng ngoại sau chế tạo 110 PHỤ LỤC B SƠ ĐỒ MẠCH ĐIỆN BIẾN ĐỔI TÍN HIỆU CHO MƠ-ĐUN CẢM BIẾN nh Sơ đồ mạch điện biến đổi mô-đun cảm biến PIR 111 nh Hình ảnh bo mạch biến đổi tín hiệu sau chế tạo 112 PHỤ LỤC C THIẾT KẾ HỆ THỐNG HIỆU CHUẨN TRỤC QUANG HỌC CỦA MÔ-ĐUN CẢM BIẾN PIR nh C Một số hình ảnh bố trí hệ thống hiệu chuẩn trục quang học mô-đun cảm biến PIR 113 PHỤ LỤC D GIAO DIỆN PHẦN MỀM THU NHẬN DỮ LIỆU ĐO nh Giao diện phần mềm thu nhận liệu đo viết tảng Qt 114 PHỤ LỤC E LƢỢC TRÍCH MỘT SỐ CHƢƠNG TRÌNH TÍNH TỐN, ĐIỀU KHIỂN VÀ THU NHẬN TÍN HIỆU Lược trích chương tr nh tính tốn mơ tín hiệu đầu mơ-đun cảm biến PIR, giao diện lập trình MATLAB-2020 ii=15; v(ii)=20+(ii-1)*5; veloci=v(ii)/3.6; %km/h to m/s w=5; x0= -2; %% c1=3.741844e4; c2=1.438769e4; Tbk=30+273; fun1=@(x)(c1./x.^5)./(exp(c2./(Tbk*x))-1); Lbk=0.5525/pi*integral(fun1,5,Inf); Tob=Tbk+3; fun2=@(x)(c1./x.^5)./(exp(c2./(Tob*x))-1); Lob=0.5525/pi*integral(fun2,5,Inf); %% K1=35.71e3; to_th=0.5; to_e=0.08; simOut=sim('my_model'); yout=simOut.get('yout'); y2=yout(:,2); for jj=1:length(y2) if(y2(jj)>1.65) y2(jj)=1.65; end if(y2(jj)

Ngày đăng: 24/03/2022, 07:09

HÌNH ẢNH LIÊN QUAN

Hình 1.10 cho thấy các giá trị cực đại của các hệ số biến đổi sĩng con ở mỗi tỷ lệ, xuất hiện tại các vị trí tương ứng với điểm bắt đầu hoặc kết thúc của một sự kiện nguồn nhiệt đi vào trong tín hiệu đầu ra của cảm biến PIR.Vị trí của các cực đại, cĩ thể  - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
Hình 1.10 cho thấy các giá trị cực đại của các hệ số biến đổi sĩng con ở mỗi tỷ lệ, xuất hiện tại các vị trí tương ứng với điểm bắt đầu hoặc kết thúc của một sự kiện nguồn nhiệt đi vào trong tín hiệu đầu ra của cảm biến PIR.Vị trí của các cực đại, cĩ thể (Trang 18)
Mơ hình thực nghiệm đo vận tốc nguồn nhiệt, sử dụng hai mơ-đun cảm biến hồng ngoại thụ động PIR được xây dựng trong nghiên cứu cĩ thể đạt được những tính chất sau đây: (1) Cĩ tính linh động cao, dễ dàng cài đặt và di chuyển để phục vụ thực nghiệm đo vận t - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
h ình thực nghiệm đo vận tốc nguồn nhiệt, sử dụng hai mơ-đun cảm biến hồng ngoại thụ động PIR được xây dựng trong nghiên cứu cĩ thể đạt được những tính chất sau đây: (1) Cĩ tính linh động cao, dễ dàng cài đặt và di chuyển để phục vụ thực nghiệm đo vận t (Trang 20)
Các đơn vị đo bức xạ [26] được trình bày trong Bảng 2.1. Lượng năng lượng được phát ra hoặc hấp thụ, trên một đơn vị thời gian là thơng lượng hoặc cơng suất - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
c đơn vị đo bức xạ [26] được trình bày trong Bảng 2.1. Lượng năng lượng được phát ra hoặc hấp thụ, trên một đơn vị thời gian là thơng lượng hoặc cơng suất (Trang 26)
trong đĩ A là diện tích đặc trưng của gĩc khối trên bề mặt hình cầu. Số steradian lớn nhất trên một mặt cầu bán kính R là πR2 / R2 = π sr - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
trong đĩ A là diện tích đặc trưng của gĩc khối trên bề mặt hình cầu. Số steradian lớn nhất trên một mặt cầu bán kính R là πR2 / R2 = π sr (Trang 26)
Phương pháp thứ ba: là phương pháp hữu ích để biểu diễn một hình ảnh mục tiêu là hình chiếu của bề mặt mục tiêu và mơi trường nền nền trên mặt phẳng máy dị cảm biến - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
h ương pháp thứ ba: là phương pháp hữu ích để biểu diễn một hình ảnh mục tiêu là hình chiếu của bề mặt mục tiêu và mơi trường nền nền trên mặt phẳng máy dị cảm biến (Trang 31)
nh 6 Mơ tả cấu hình hệ quang học cho mơ-đun cảm biến PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh 6 Mơ tả cấu hình hệ quang học cho mơ-đun cảm biến PIR (Trang 34)
cảm biến PIR, được minh họa trong Hình 3.4, tuân theo định nghĩa được đề xuất bởi Krzysztof Chrzanowski cho hệ thống quang điện tử khơng ảnh nĩi chung. - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
c ảm biến PIR, được minh họa trong Hình 3.4, tuân theo định nghĩa được đề xuất bởi Krzysztof Chrzanowski cho hệ thống quang điện tử khơng ảnh nĩi chung (Trang 53)
nh 6 Mơ tả hình học về ảnh hưởng của độ lệch trục quang học của mơ-đun cảm biến - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh 6 Mơ tả hình học về ảnh hưởng của độ lệch trục quang học của mơ-đun cảm biến (Trang 57)
Bảng 4.1 cung cấp các thơng số của mơ-đun cảm biến hồng ngoại thụ động PIR được sử dụng phục vụ cho các tính tốn mơ phỏng: - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
Bảng 4.1 cung cấp các thơng số của mơ-đun cảm biến hồng ngoại thụ động PIR được sử dụng phục vụ cho các tính tốn mơ phỏng: (Trang 77)
nh 1 Hình dạng (trên) và hình cắt 3D (dưới) của mơ-đun cảm biến PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh 1 Hình dạng (trên) và hình cắt 3D (dưới) của mơ-đun cảm biến PIR (Trang 78)
nh2 Thiết kế 3D (trên) và hình ảnh thực (dưới) của hệ thống xác định/căn chỉnh vị trí quang trục của mơ-đun cảm biến PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh2 Thiết kế 3D (trên) và hình ảnh thực (dưới) của hệ thống xác định/căn chỉnh vị trí quang trục của mơ-đun cảm biến PIR (Trang 79)
Hình 4.3 và 4.4 mơ tả hệ số truyền của của cảm biến PIR và thấu kính Fresnel được sử dụng trong nghiên cứu. - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
Hình 4.3 và 4.4 mơ tả hệ số truyền của của cảm biến PIR và thấu kính Fresnel được sử dụng trong nghiên cứu (Trang 80)
nh 6 Mơ tả hình chiếu bằng bề mặt các phần tử cảm PIR [53] - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh 6 Mơ tả hình chiếu bằng bề mặt các phần tử cảm PIR [53] (Trang 83)
Biểu đồ hình 4.8 mơ tả giá trị K(ωm) tại các tần số gĩc điều biến khác nhau: - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
i ểu đồ hình 4.8 mơ tả giá trị K(ωm) tại các tần số gĩc điều biến khác nhau: (Trang 84)
Theo cơng thức (4.6) và hình 4.8, giá trị K(ωm) đạt cực đại tại - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
heo cơng thức (4.6) và hình 4.8, giá trị K(ωm) đạt cực đại tại (Trang 85)
Theo kết quả thu được bảng (4.2), nếu nhiệt độ bề mặt nguồn nhiệt càng lớn, dẫn đến thơng lượng bức xạ hồng ngoại đến các phần tử cảm của cảm biến PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
heo kết quả thu được bảng (4.2), nếu nhiệt độ bề mặt nguồn nhiệt càng lớn, dẫn đến thơng lượng bức xạ hồng ngoại đến các phần tử cảm của cảm biến PIR (Trang 87)
Dựa trên dữ liệu được trình bày trong Bảng 4.3, hai phương pháp cho kết quả giống nhau khi xác định vị trí gĩc của trục quang của hai mơ-đun cảm biến so với trục cơ của chúng - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
a trên dữ liệu được trình bày trong Bảng 4.3, hai phương pháp cho kết quả giống nhau khi xác định vị trí gĩc của trục quang của hai mơ-đun cảm biến so với trục cơ của chúng (Trang 91)
Hình 4.13 mơ tả sơ đồ khối hệ thống biến đổi và thu nhận tín hiệu đo của 02 mơ-đun cảm biến PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
Hình 4.13 mơ tả sơ đồ khối hệ thống biến đổi và thu nhận tín hiệu đo của 02 mơ-đun cảm biến PIR (Trang 92)
Bảng 4.4 thể hiện một số thơng số cơ bản cho việc bố trí hệ thống thực nghiệm đo. - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
Bảng 4.4 thể hiện một số thơng số cơ bản cho việc bố trí hệ thống thực nghiệm đo (Trang 93)
nh 15 Mơ hình tốn học tính tốn tín hiệu điện áp đầu ra trên nền tảng Matlab-Simulink - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh 15 Mơ hình tốn học tính tốn tín hiệu điện áp đầu ra trên nền tảng Matlab-Simulink (Trang 95)
Hình 4.16 mơ tả tín hiệu đầu ra của mơ-đun cảm biến PIR trong trường hợp mục tiêu di chuyển với vận tốc 90 km/h và nhiệt độ bề mặt T ob = Tbk + 30C = 330C. - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
Hình 4.16 mơ tả tín hiệu đầu ra của mơ-đun cảm biến PIR trong trường hợp mục tiêu di chuyển với vận tốc 90 km/h và nhiệt độ bề mặt T ob = Tbk + 30C = 330C (Trang 96)
Từ đồ thị hình 4.20 nhận thấy rằng, ước lượng thời gian trễ bằng phương pháp tương quan chéo kết hợp biến đổi Hilbert cho độ khơng đảm bảo đo luơn nhỏ hơn (khoảng 7 lần) so với việc sử dụng phương pháp tương quan chéo cổ điển. - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
th ị hình 4.20 nhận thấy rằng, ước lượng thời gian trễ bằng phương pháp tương quan chéo kết hợp biến đổi Hilbert cho độ khơng đảm bảo đo luơn nhỏ hơn (khoảng 7 lần) so với việc sử dụng phương pháp tương quan chéo cổ điển (Trang 98)
khơng cĩ sự tham gia của các đối tượng nguồn nhiệt khác (hình 4.21). Một điều cần lưu ý ở đây là, mặc dù tần số lấy mẫu của hệ vi điều khiển được cài đặt là 1000 Hz (do hạn chế của tốc độ truyền dữ liệu về máy tính), nhưng bằng kỹ thuật FFT Pruning được đ - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
kh ơng cĩ sự tham gia của các đối tượng nguồn nhiệt khác (hình 4.21). Một điều cần lưu ý ở đây là, mặc dù tần số lấy mẫu của hệ vi điều khiển được cài đặt là 1000 Hz (do hạn chế của tốc độ truyền dữ liệu về máy tính), nhưng bằng kỹ thuật FFT Pruning được đ (Trang 99)
nh2. Bản vẽ thiết kế các hình chiếu của vỏ mơ-đun cảm biến hồng ngoại PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh2. Bản vẽ thiết kế các hình chiếu của vỏ mơ-đun cảm biến hồng ngoại PIR (Trang 112)
nh2 Hình ảnh vỏ mơ-đun cảm biến hồng ngoại sau khi được chế tạo - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh2 Hình ảnh vỏ mơ-đun cảm biến hồng ngoại sau khi được chế tạo (Trang 113)
nh2 Hình ảnh bo mạch biến đổi tín hiệu sau khi được chế tạo - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh2 Hình ảnh bo mạch biến đổi tín hiệu sau khi được chế tạo (Trang 115)
nh C1 Một số hình ảnh bố trí hệ thống hiệu chuẩn trục quang học của mơ-đun cảm biến PIR - (Luận án tiến sĩ) nghiên cứu nâng cao độ chính xác đo vận tốc nguồn nhiệt di chuyển bằng bức xạ hồng ngoại
nh C1 Một số hình ảnh bố trí hệ thống hiệu chuẩn trục quang học của mơ-đun cảm biến PIR (Trang 116)

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w