1. Trang chủ
  2. » Thể loại khác

BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRÒN XOAY

130 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Trắc Nghiệm Nguyên Hàm Tích Phân - Diện Tích Hình Phẳng Thể Tích Khối Tròn Xoay
Trường học Trường Đại Học
Chuyên ngành Toán Học
Thể loại bài tập
Năm xuất bản 2018
Thành phố Bắc Giang
Định dạng
Số trang 130
Dung lượng 3,68 MB

Nội dung

BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRỊN XOAY I NGUN HÀM TÍCH PHÂN Câu 1: [2D3-3] [ĐỀ SỞ BẮC GIANG 2018] Cho hàm số f ( x ) có đạo hàm đoạn  0;1 thỏa mãn f (1) = x   f  ( x ) dx =  ( x + 1) e f ( x ) dx = 0 e2 − Tính tích phân I =  f ( x ) dx e B I = e − A I = − e C I = D I = e −1 Lời giải Chọn B  ( x + 1) e f ( x ) dx x Xét tích phân u = f ( x ) du = f  ( x ) dx  x x dv = ( x + 1) e dx v = xe Đặt  Nên  ( x + 1) e f ( x ) dx = f ( x ) xe x x 0 Do  xe x f  ( x ) dx = − 1 −  xe f  ( x ) dx = −  xe x f  ( x ) dx x 0 ex −1 Lại có (theo BĐT tích phân) 1 x  x 2  e2 −  − e2 x    x e f x d x  x e d x f x d x   =  xe f x d x  ( )   ( )   ( ) ( )     4   0  0 Dấu " = " xảy f  ( x ) = k xe x Suy  kx ( e x ) dx = Do − e2  k = −1  f  ( x ) = − xe x  f  ( x )dx =  − xe dx = (1 − x ) e x 1 0 x + C  f (1) = C = Vậy I =  f ( x ) dx =  (1 − x ) e xdx = e − 1 Câu 2:Cho hàm số y = f ( x ) liên tục thoả mãn f ( x ) + f   = 3x với x   ; 2  x 2  Tính  A f ( x) dx x B − C D − Lời giải Chọn A Đặt I =  f ( x) dx x 1 f  f x ( ) 1 x Với x   ; 2 , f ( x ) + f   = 3x  +2   =3 x x  x 2   1 f  f ( x) x  dx + 2 dx =  3dx (1) x x 1 2 Đặt t = 1 1  dt = − dx  − dt = dx x t x x 1 f  f (t ) x 2   dx = 2 dt = I x t 1 2 2 (1)  3I =  3dx  I = 2 Câu 3: [2D3-3] [Sở GD&ĐT Hà Tĩnh - Lần - năm 2018] Cho f x dx 2018 Tính tích phân f sin x cos xdx A 2018 B 1009 C Lời giải Chọn D 2018 D 1009 Đặt t sin 2x Đổi cận: x dt 2cos 2xdx t 0; x f sin x cos xdx t f t dt 1 2018 1009 Câu 4: [2D3-3] [Sở GD&ĐT Phú Thọ, lần năm 2018] Biết F ( x ) = ( ax + bx + c ) x + ( 20 x + 30 x + 11 khoảng a, b, c  ) nguyên hàm hàm số f ( x ) = 2x +    − ; +    Tính T = a + b + c B T = 10 A T = 11 C T = D T = Lời giải Chọn A 20 x + 30 x + 11 f ( x) = Đặt 2x +  t2 − x = 2x + = t  2x + = t  dx = tdt  2  t2 −  20   + 15 ( t − 3) + 11  I =  f ( x ) dx =   t.dt t =  ( 5t − 15t + 11)dt = t ( t − 5t + 11) + C = x + ( x + x + ) + C  a = 4; b = 2; c =  a + b + c = 11 Câu 5: [2D3-3] [Sở GD&ĐT Phú Thọ, lần năm 2018] Biết x + dx = a + b ln + c ln (a, b, c  ) Tính T = a + b + c 3 2x + +  2x + A T = −3 B T = −5 D T = −7 C T = −4 Lời giải Chọn A 2x + 2x + 0 x + x + + dx = 0 x + + x + + d 6 ( ) t2 dt với t = x + t + 5t + 2x + =  4   5t + 1 16 1 16 =  1 − dt −  dt = + ln − ln  dt =  1dt +  t +1 t+4 3 3 ( t + 1)( t + )  2 Suy a = 2, b = , c = − 16  a + b + c = −3 Câu 6: [2D3-3] Cho f ( x) hàm số liên tục  thỏa mãn f ( x ) + f ( − x ) = − cos x Tính tích phân I = 3 −  f ( x ) dx A I = D I = C I = B I = Lời giải Chọn C Ta có I = 3 − 3  f ( x ) dx =  f ( x ) dx +  f ( x ) dx − 3 3  f ( x ) dx Đặt t = − x  dt = −dx ; Đổi cận: x = −  t = ; Xét x =  t = − Suy − 0 3 thiết ta 3 3 0  ( f ( x ) + f ( − x ) ) dx =  3 3 3 0 3  3 0 có: − cos xdx  f ( x ) dx +  f ( − x ) dx =  sin x dx  f ( x ) dx +  f ( x ) dx = 2 sin x dx −  sin x dx  giả f ( x ) + f ( − x ) = − cos x   3  f ( x ) dx = −  f ( −t ) dt =  f ( −t ) dt =  f ( − x ) dx Theo  3 − 3 −  f ( x ) dx = Câu 7:[SỞ GD VŨNG TÀU-LẦN 2-NĂM 2018] Hàm số f ( x ) liên tục 1;2018 2017 2017 f (2018 − x) = f ( x) x  [1; 2018] ,  f ( x)dx = 10 Tính I =  x f ( x)dx : B I = 20170 A I = 10100 C I = 20180 D I = 10090 Lời giải Chọn.D Đặt t = 2018 − x  dt = −dx x =  t = 2017, x = 2017  t = 1  I =− (2018 − t )f (2018 − t )dt = 2017  (2018 − t )f (t )dt 2017 = 2018 2017  f (x )dx − 2017  xf (x )dx  I = 2018.10 − I  I = 10090  Câu 8:[2D3-3] Hàm số f ( x ) liên tục  0;   : f ( − x) = f ( x) x  [0;  ] ,  f ( x)dx =  Tính I =  x f ( x)dx A I =  B I = 2 C I = Lời giải Chọn.D Đặt t =  − x  dt = −dx x = t = , x =  t = 0 I = −  ( − t )f ( − t )dt   =  ( − t )f (t )dt   0 =   f (x )dx −  xf (x )dx  I =   −I  I = 2  D I = 2  Câu 9:[2D3-3] Hàm số f ( x ) liên tục a; b  : f (a + b − x) = f ( x) x  [a; b] ; b  a b f ( x)dx = a + b Tính I =  x f ( x)dx a ( a + b) A I = ( a + b) B I = ( a + b) C I = ( a + b) D I = Lời giải Chọn.D Đặt t = a + b − x  dt = −dx x = a  t = b , x = b  t = a a I = −  (a + b − t )f (a + b − t )dt b b =  (a + b − t )f (t )dt a b b a a = (a + b ) f (x )dx −  xf (x )dx (a + b )  I = (a + b ).(a + b ) − I  I = 2 Câu 10: [2D3-3] [Chuyên ĐH Vinh lần – 2018] Cho hàm số 1; 2 thỏa mãn f (1) = A B 20 f ( x ) = x f  ( x ) − x − 3x y = f ( x) có đạo hàm liên tục Tính giá trị C 10 f ( 2) D 15 Lời giải Chọn B Cách 1: + x  1; 2 : f ( x ) = x f  ( x ) − x3 − 3x   Vậy f ( x) f ( x) = − 2x − x2 x f ( x) f ( x)   − = 2x +   f ( x )  = 2x + x x x  f ( x)    = x + 3x + C f x d x = x + d x ( ) ( )     x x + Vì f (1) =  C = Do f ( x ) = x3 + 3x  f ( ) = 20 Cách 2: Từ giả f ( x ) = xf  ( x ) − x3 − 3x  thiết xf  ( x ) − f ( x ) = 2x + x2  f ( x )    = x + 3x x   (  ) f ( ) f (1)  f ( x )     − = x + 3x  dx =  ( x + 3x ) dx  x  1 ( )  f ( ) = 20 Nhận xét: Đặc điểm chung toán từ khai thác đạo hàm thương, tích hàm đạo hàm hàm hợp Ta nêu số dạng tổng quát sau: 1) Cho trước hàm g ( x ) , u ( x ) , v ( x ) có đạo hàm liên tục  a; b , g ( x )  0, x   a; b  hàm f ( x) có đạo hàm liên tục  a; b thỏa mãn: f ( x ) g  ( x ) + f  ( x ) g ( x ) = u ( x ) v ( x ) + u ( x ) v ( x ) Khi đó, ( f ( x ) g ( x ) ) = ( u ( x ) v ( x ) )  f ( b ) − f ( a ) = u (b ) v (b ) u ( a ) v ( a ) − g (b) g (a) 2) Cho trước hàm g ( x ) , u ( x ) có đạo hàm liên tục  a; b , g ( x )  0, x   a; b  hàm f ( x ) có đạo hàm liên tục  a; b thỏa mãn: f  ( x ) g ( x ) − f ( x ) g  ( x ) = u ( x ) g ( x )  f ( x )  Khi đó,   = u ( x )  f ( b ) − f ( a ) = u ( b ) g ( b ) − u ( a ) g ( a ) g x ( )   3) Cho trước hàm g ( x ) , u ( x ) , v ( x ) có đạo hàm liên tục  a; b hàm f ( x ) có đạo hàm liên tục  a; b thỏa mãn: u ( x ) f  ( x ) f ( u ( x ) ) = v ( x ) g  ( x ) g ( v ( x ) ) Khi đó, ( f (u ( x ))) = ( g ( v ( x )))  f (u (b )) − f (u ( a )) = g ( v (b )) − g (v ( a )) Câu 11: [2D3-3] Một ô tô bắt đầu chuyển động nhanh dần với vận tốc v1 ( t ) = 7t ( m/s ) Đi ( s ) , người lái xe phát chướng ngại vật phanh gấp, ô tô tiếp tục chuyển động chậm dần với gia tốc a = −70 ( m/s ) Tính quãng đường S ( m ) ô tô từ lúc bắt đầu chuyển bánh dừng hẳn A S = 87,50 ( m ) B S = 94, 00 ( m ) C S = 95, 70 ( m ) D S = 96, 25 ( m ) Lời giải Chọn D Vận tốc ô tô thời điểm bắt đầu phanh là: v1 ( 5) = 35 ( m / s ) Vận tốc chuyển động sau phanh là: v2 ( t ) = −70t + C Do v2 ( ) = 35  C = 35  v2 ( t ) = −70t + 35 Khi xe dừng hẳn tức v2 ( t ) =  −70t + 35 =  t = Quãng đường S ( m ) ô tô từ lúc bắt đầu chuyển bánh dừng hẳn là: 0 S ( m ) =  7t dt +  ( −70t + 35 ) dt = 96, 25 ( m ) Câu 12: [2D3-2] Giả sử  ( x − 1) ln xdx = a ln + b , ( a; b  ) Tính a + b A B C D Lời giải Chọn D Đặt   du = dx u = ln x  x   dv = ( x − 1) dx v = x − x   x2  x2 − x   = ln − = x x − x − ln x ln − x d x = d x ( ) ( )  − x  = ln − nên a = , 1  1  x  1 2 2 b=− Vậy a + b = Câu 13: [2D3-3] [Chuyên Lê Hồng Phong - TP HCM - năm 2018] x3 + 3x 2 0 x + 3x + dx = a + b ln + c ln với a, b, c số hữu tỉ , tính S = 2a + b + c Biết A S = 515 B S = 164 C S = 436 D S = −9 Lời giải Chọn A 1  x3 + 3x 10 x +  −4 14   Xét : I =  dx =   x − + + dx  dx =   x − + x + 3x + x + x +  ( x + 1)( x + )  0   1 1 x2 1 I= − 3x − ln x + + 14 ln x + = − − ln + 14 ln − 14 ln 2 −5  a =  −5 I= − 18ln + 14 ln  b = −18  S = 2a + b + c = 515 c = 14   Câu 14:[2D3-3] [SGD Thanh Hóa- KSCL 14/4- Mã đề 101] Cho hàm số f ( x ) liên tục  16 thỏa mãn  cot x f ( sin x ) dx =  2  f ( x ) dx = Tính tích phân I = x f ( 4x ) dx x C I = B I =  A I = D I = Lời giải Chọn D Đặt t = sin x  dt = 2sin x cos xdx  dt = cot xdx 2t   =  cot x f ( sin x ) dx =  f ( t ) 1 f ( x) dt f ( x ) =  dx   dx = 2t x x 2 2tdt = dx Đặt t = x   x = t 16 1=  f ( x ) dx = x  4 f (t ) f ( x) f ( x) 2td t = d x  dx =   t x x 1 Đặt t = x  dt = 4dx I = Phân tích: 4 f ( 4x) f ( t ) dt f ( x ) f ( x) f ( x) dx =  = dx =  dx +  dx = t x x x x 1 2 Dạng dạng tốn tìm tích phân hàm f ( x ) khơng biết, cho thêm điều kiện, điều kiện đoạn cận tích phân cần tìm, u cầu đưa tích phân biết giống dạng chưa biết f ( x ) liên tục Câu 15: [2D3-3] Cho hàm số e2 thỏa mãn  e  2 f ( x) dx x  f ( cos x ) tan xdx = Tính  A B f ( ln x ) dx = x ln x C D Lời giải Chọn A Đặt t = ln x  dt = dx x e2 1=  e 2 f ( ln x ) f (t ) f ( x) dx =  dt =  dx x ln x t x 1 Đặt t = cos x  dt = − sin xdx  =  f ( cos x ) f (t ) f ( x) sin x dx = −  dt =  dx cos x t x 1 Do  2 f ( x) f ( x) f ( x) dx =  dx +  dx = x x x 1 Câu 16: [2D3-3] (THPT Gang Thép Thái Nguyên Lần – 2018) Tính tích phân  /4 I=  ln(tan x + 1)dx ta kết I= a ln + c với với a, b, c  , b  0, (a, b) = b Khi P = abc nhận giá trị A B C Lời giải Chọn D D A 4 + 3 B C 2 + D + 3 Lời giải Chọn A Phương trình hoành độ giao điểm parabol đường cho x4 x + =  x + x − 36 = suy x =  Phương trình x + y =  y =  − x Bài tốn đưa tính diện tích hình phẳng giới hạn  y = − − x2  x2  y = −  đường:  x = −   x = 3 S( H ) =  Vì ( H ) đối xứng qua Oy nên 3  x2 x2  x − − x dx =   − x −  dx =  − x dx −  dx 3 0     2x =  t + sin 2t  −  0 = 4 + Chọn A Câu 188: Tính diện tích hình phẳng ( H ) y = x − x tiếp tuyến với parabol parabol kẻ từ A 5  M  ;6  2  điểm B Lời giải C D giới hạn Chọn A Phương trình tiếp tuyến với parabol cho kẻ từ điểm M  ;6  d1 : y = x + 2  d2 : y = −4 x + 16 Chia hình phẳng ( H ) thành hai hình giới hạn  y = −4 x + 16   y = x − x ( H2 ) :  x =   x =  y = 2x +1   y = x − x ( H1 ) :  x =  x =  Suy S( H ) = S( H ) + S( H 2 ) =  x + − x + x dx +  −4 x + 16 − x + x dx 5 =  ( x − 1) dx +  ( x − ) 2 ( x − 1) dx = ( x − 4) + 3 = Chọn A Câu 189: [Chuyên Lương Văn Chánh, Long An- L2- năm 2018] Cho hàm số y = f ( x) có đạo hàm f ( x ) liên tục R đồ thị hàm số y = f ( x) cắt trục hồnh điểm có hồnh độ a, b, c, d (hình bên) Chọn khẳng định khẳng định sau A f (c)  f (a)  f (b)  f (d ) B f (a)  f (c)  f (d )  f (b) C f (a)  f (b)  f (c)  f (d ) D f (c)  f (a)  f (d )  f (b) Lời giải Chọn A Gọi S1 , S2 , S3 diện tích hình phẳng giới hạn ĐTHS y = f ( x) , trục Ox từ trái sang phải Ta có: b + S1     − f ( x)dx   −  f (b) − f (a )    f (a)  f (b), (1) + a b c a b S1  S    − f ( x) dx    f ( x) − 0dx  f (a) − f (b)  f (c) − f (b)  f (a)  f (c), (2) c d b c + S2  S3    f ( x) − 0 dx    − f ( x) dx  f (c) − f (b)  f (c) − f (d )  f (d )  f (b), (3) Từ (1), (2), (3) ta có f (c)  f (a)  f (b)  f (d ) Phân tích: Ý tưởng tốn dựa sử dụng ứng dụng tích phân để tính diện tích hình phẳng Câu 190: Cho hàm số y = f ( x) có đạo hàm f ( x ) liên tục R đồ thị hàm số y = f ( x) cắt trục hoành điểm có hồnh độ a, b, c (hình bên) Chọn khẳng định khẳng định sau A f (c)  f (a)  f (b) B f (c)  f (b)  f (a) C f (a)  f (b)  f (c) D f (b)  f (a)  f (c) Lời giải Chọn A Gọi S1 , S2 diện tích hình phẳng giới hạn ĐTHS y = f ( x) , trục Ox từ trái sang phải Ta có: b + S1     − f ( x)dx   −  f (b) − f (a )    f (a)  f (b), (1) + a b c a b S1  S    − f ( x) dx    f ( x) − 0dx  f (a) − f (b)  f (c) − f (b)  f (a)  f (c), (2) Từ (1), (2) ta có f (c)  f (a)  f (b) Câu 191: [Chuyên Thái Bình Lần 4, năm 2018] Cho hàm số y = f ( x) có đạo hàm liên tục đoạn  −3; 3 g ( x) = f ( x) đồ thị hàm số y = f  ( x) hình vẽ bên Biết f (1) = x + 1) ( − Kết luận sau đúng? A Phương trình g ( x) = có hai nghiệm thuộc  −3;3 B Phương trình g ( x) = có nghiệm thuộc  −3;3 C Phương trình g ( x) = khơng có nghiệm thuộc  −3;3 D Phương trình g ( x) = có ba nghiệm thuộc  −3;3 Lời giải Chọn B ( x + 1)2 g ( x) = f ( x) −  g '( x) = f '( x) − ( x + 1) Ta thấy đường thẳng y = x + đường thẳng qua điểm ( −3; −2) , (1;2) , ( 3;4) Gọi S diện tích hình phẳng giới hạn ĐTHS y = f ( x) ,đường thẳng y = x + 1, x = −3, x = Gọi S ' diện tích hình phẳng giới hạn ĐTHS y = f ( x) , đường thẳng y = x + 1, x = 1, x = Do f (1) =  g (1) = Ta có: S    g ( x)dx   g (1) − g (−3)   g (−3)  −3 S '   −  g ( x)dx   g (1) − g (3)   g (3)  Từ đồ thị hàm số y = f  ( x) đường thẳng y = x + với kết ta có bảng biến thiên sau: x −3 g ( x) + - g ( x) g (3)  g (−3)  Từ bảng biến thiên ta có phương trình g ( x) = có nghiệm thuộc  −3;3 Câu 192: [Đặng Thúc Hứa – Lần – 2018] Tính diện tích hình phẳng giới hạn nửa đường ( ) tròn y = − x đường thẳng d qua hai điểm A − 2;0 B (1;1) (phần tô đậm hình vẽ ) A  +2 B 3 + 2 C  −2 D 3 − 2 Lời giải Chọn D Cách 1: Phương trình đường thẳng AB : y = ( ) −1 x + − Gọi S diện tích cần tính, ta có ( S= − x2 − − ( ) ) − x − + dx =  − + Tính S1 =   (( − x dx − − x dx : −    Đặt x = sin t , t  − ;  Ta có dx = cos tdt  2 − ) ) − x + − dx   Đổi cận x = −  t = − , x =  t = Suy S1 =    4  − − 2sin t cos tdt =  − 2 cos t cos tdt =  −  cos tdt =  (1 + cos 2t ) dt − 2  3  4 =  t + sin 2t  = +   −  (( S2 = −  −1  − x + − dx =  x + − x   − ) Vậy S = S1 − S2 = ) ( ) = 2 +1 3 − 2 Cách 2: Sử dụng MTCT Phương trình đường thẳng AB : y = ( ) −1 x + − ( Gọi S diện tích cần tính, ta có S = − x2 − − ( ) ) − x − + dx Sử dụng MTCT, tính S , gán giá trị vào biến A Lấy giá trị A trừ kết đáp án, chọn đáp án có kết phép trừ Đó đáp án D Câu 193: Cho ( H ) hình phẳng giới hạn parabol y = phương trình y = x nửa đường elip có − x ( với −2  x  ) trục hoành (phần tơ đậm hình vẽ) Gọi S diện tích của, biết S = a + b ( với a , b , c  c ) Tính P = a + b + c y −2 A P = B P = 12 x O C P = 15 Lời giải Chọn A D P = 17 Phương trình hoành độ giao điểm parabol nửa đường elip là: 3x = − x  3x + x − =  x = 1  3x3 1  1    Vậy S =   +  − x dx  =  x dx +  + − x dx  =  S    21  0      Trong S1 = − x dx 1 Đặt x = 2sin t  dx = 2cos tdt Đổi cận x =  t = x=2t =       2  Vậy S1 =  cos tdt =  (1 + cos2t ) dt =  t + sin 2t  = −     2 6  4 −  4 −  =  12  Suy S =  Câu 194: [Đặng Thúc Hứa – Lần – 2018] Cho hàm số y = f ( x ) xác định liên tục đoạn  −3;3 Biết diện tích hình phẳng S1 , S2 giới hạn đồ thị hàm số y = f ( x ) đường thẳng y = − x − M ; m Tính tích phân  f ( x ) dx : −3 A + m − M B − m − M C M − m + D m − M − Lời giải Chọn D Chia diện tích hình phẳng S1 M = S11 + S12 hình vẽ mơ tả y −3 O x −2 −4 y = −x −1 f ( x) Gọi x0 hoành độ giao điểm đồ thi ( C ) hàm số y = f ( x ) với trục Ox x0 Ta có  f ( x ) dx =  f ( x ) dx +  f ( x ) dx = ( S −3 −3 ABC − S11 ) −  S12 + SCMQ + ( SMNPQ − m ) x0 = ( − S11 ) −  S12 + + ( − m )  = m − M − Vậy chọn D Nhận xét: Đây toán dựa vào diện tích hình phẳng giới hạn hai đường cho trước Nếu xác định M , m cho trước g ( x ) ta tính b  f ( x ) dx a Câu 195: Cho hàm số y f ( x) xác định liên tục đoạn hình phẳng S1 , S2 , S3 giới hạn đồ thị hàm số y 5;3 Biết diện tích f ( x) đường thẳng y g x ax bx c m, n, p Tích phân f ( x)dx A m − n + p − 208 45 B m − n + p + 208 45 C −m + n − p − 208 208 D −m + n − p + 45 45 Lời giải Chọn B Đồ thị hàm y = g ( x ) qua điểm O ( 0;0 ) , A ( −2;0 ) , B ( 3; ) nên  a = 15 c =  4    g ( x ) = x2 + x 4a − 2b =  b = 15 15 9a + 3b =  15  c =   m−n+ p = −2 −5 −2   f ( x ) − g ( x ) dx −   g ( x ) − f ( x ) dx +   f ( x ) − g ( x ) dx =  3 −5 −5  f ( x ) dx −  g ( x ) dx 3 −5 −5  f ( x ) dx = m − n + p +  g ( x ) dx = m − n + p + 208 45 y y=g(x) S3 S1 -1 -5 -2 S2 O x y=f(x) a =  Vậy b = −1  P = a + b + c = c =  Câu 196: Trong mặt phẳng Oxy , cho hình chữ nhật ( H ) có cạnh nằm trục hồnh có ( ) hai đỉnh đường chéo A ( −1;0 ) C m; m với m  Biết đồ thị hàm số y = x chia hình ( H ) thành hai phần có diện tích Tìm m A m = B m = C m = D m = Lời giải Phân tích: Ta cần tìm tọa độ điểm B tính diện tích phần mà đường y = x chia hình ( H ) Chọn D Từ giả thiết suy B ( m;0 )  Ox  S ABCD = ( m + 1) m Gọi S1 diện tích hình phẳng giới hạn đường y = x ; x = 0; x = m; y = Suy m S1 =  m 2x x xdx = = 2m m Theo giả thiết ta có S1 = S ABCD  Câu 197: Trong mặt phẳng ( 2m m ( m + 1) m =  m = 3 Oxy , cho hình thang vng ABCD có A ( −1;0 ) ) B ( m;0 ) ; C m; m + ; D ( −1;5 ) với m  −1 Biết đồ thị hàm số y = x + chia hình ( H ) thành hai phần có diện tích Tìm A m = 12 B m = m C m = D m = 10 Lời giải Phân tích: Trước hết cần vẽ hình xác định phần diện tích cần tính Sau dùng tích phân để tính phần diện tích Chọn C S ABCD = 1 ( AD + BC ) AB = 2 ( ) m + + ( m + 1) Gọi S1 diện tích hình phẳng giới hạn đường y = x + 1; x = −1; x = m; y = Suy m S1 =  −1 ( x + 1) x + x + 1dx = m = −1 ( m + 1) m + Theo giả thiết ta có S1 = S ABCD  ( m + 1) m + 1 = 2 ( ) m + + ( m + 1)  m +1 =  m = x−2 Câu 198: Trong mặt phẳng Oxy , A ( 0; ) B ( m;0 ) với m  Biết đồ thị hàm số y = x −1 (C) chia tam giác OAB thành hai phần Tính diện tích phần giới hạn y= x−2 ; y = đường thẳng AB theo m x −1 3m2 − m − ln A m2 − m − ln B m2 + m − ln C m2 − m + ln D Lời giải Phân tích: Trước hết cần vẽ hình xác định phần diện tích cần tính Chú ý phần diện tích cần tìm gồm hai phần tam giác vng hình thang cong Chọn B Ta có phương trình đường thẳng AB là: x y + =1 y = − x + m m Xét phương trình hồnh độ giao điểm (C) AB : x−2 = − x + (1) ( điều kiện x  ) x −1 m Với điều kiện phương trình (1) tương đương với: x = 2x − ( m + 2) x =   x = m +  2 Với x =  y =  E ( 0; )  A m+2 m−2  m+2 m−2 y= F ;  2   Với x = Gọi S1 diện tích hình phẳng giới hạn đường y = x−2 ; y = − x + 2; y = Suy x −1 m S1 = m+ 2  m+ x−2  m +  m − m2 − m dx + SFHB = ( x − ln x − ) +  m − = − ln  x −1   Câu 199: Gọi H tập hợp điểm biểu diễn số phức z mặt phẳng tọa độ Oxy thỏa mãn z − z  số phức z có phần ảo khơng âm Tính diện tích hình H A 3 B 3 C 3 Lời giải Chọn C D 6 z − z   ( x + yi ) − ( x − yi )   x + ( y )   x2 + y   − x2 x2 x2 y 1 − − x2  y  − x2 + 3y2   +   y2  3 3 3 − x2 Mà y không âm nên  y  Diện tích cần tìm S =  − − x dx 33 Đặt x = sin t  dx = cos tdt Cận x = −  t = −  ; x= 3t =   − −  S =  2 − 3sin t cos tdt =  2 3cos tdt = 2   3 2 + cos t dt = t + sin t ( )     − 2 − =       3 −  −  =   2 Câu 200: Cho hình D giới hạn đường y = x − y = − x Khi diện tích hình D là: A 13 B C 7 D 13 Lời giải Chọn B Hoành độ giao điểm hai đồ thị hàm số cho nghiệm phương trình:  x =1 x − = − x  x =1    x = −1 Khi diện tích hình D xác định bởi: 1 −1 −1 S =  x − − x dx =  ( x − x + ).dx +  ( − x − x + ).dx 7  x x3   x x3  =  − + x  +  − − + x  = + = (đvdt)   −1  0 6

Ngày đăng: 12/07/2022, 08:32

HÌNH ẢNH LIÊN QUAN

Hình  ( ) H  giới hạn bởi: - BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRÒN XOAY
nh ( ) H giới hạn bởi: (Trang 82)
Đồ thị là  . Gọi  là diện tích hình phẳng giới hạn bởi  , trục hoành, đường thẳng - BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRÒN XOAY
th ị là . Gọi là diện tích hình phẳng giới hạn bởi , trục hoành, đường thẳng (Trang 84)
Hình phẳng giới hạn bởi các đường  x = y , y = − + x 2, x = 0  quay quanh  Ox  có giá trị là kết quả  nào sau đây - BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRÒN XOAY
Hình ph ẳng giới hạn bởi các đường x = y , y = − + x 2, x = 0 quay quanh Ox có giá trị là kết quả nào sau đây (Trang 92)
Hình  vuông  có  cạnh  là  ,  hình  tròn  có  bán  kính  bằng  ,  hình  phẳng  giới  hạn  bởi  hai - BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRÒN XOAY
nh vuông có cạnh là , hình tròn có bán kính bằng , hình phẳng giới hạn bởi hai (Trang 110)
Đồ thị hàm  y = g x ( ) đi qua các điểm  O ( ) ( 0;0 , A − 2;0 , ) ( ) B 3; 2  nên - BÀI TẬP TRẮC NGHIỆM NGUYÊN HÀM TÍCH PHÂN - DIỆN TÍCH HÌNH PHẲNG THỂ TÍCH KHỐI TRÒN XOAY
th ị hàm y = g x ( ) đi qua các điểm O ( ) ( 0;0 , A − 2;0 , ) ( ) B 3; 2 nên (Trang 124)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w