1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN mới NHẤT) kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ nhất của mô đun số phức bằng phương pháp tọa độ trong mặt phẳng

22 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 899,8 KB

Nội dung

Bìa (Mẫu M1(1)) SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT SẦM SƠN SÁNG KIẾN KINH NGHIỆM KỸ THUẬT TÌM GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA MÔ-ĐUN SỐ PHỨC BẰNG PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG Người thực hiện: Nguyễn Thị Bích Huệ Chức vụ: Giáo viên SKKN thuộc lĩnh vực (mơn): Tốn THANH HOÁ NĂM 2020 TIEU LUAN MOI download : skknchat@gmail.com MỤC LỤC Mở đầu 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu …………………………………………….…………1 1.3 Đối tượng nghiên cứu ………………………………………………….… 1.4 Phương pháp nghiên cứu .1 Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lý luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm .4 2.3 Các giải pháp sử dụng để giải vấn đề 2.4 Hiệu sau áp dụng sáng kiến kinh nghiệm .15 Kết luận, kiến nghị .17 TIEU LUAN MOI download : skknchat@gmail.com Mở đầu 1.1 Lý chọn đề tài Mục tiêu Luật giáo dục 2019: “Mục tiêu giáo dục nhằm phát triển toàn diện người Việt Nam có đạo đức, tri thức, văn hóa, sức khỏe, thẩm mỹ nghề nghiệp; có phẩm chất, lực ý thức cơng dân; có lịng u nước, tinh thần dân tộc chủ nghĩa xã hội; phát huy tiềm năng, khả sáng tạo cá nhân; nâng cao dân trí, phát triển nguồn nhân lực, bồi dưỡng nhân tài, đáp ứng yêu cầu nghiệp xây dựng, bảo vệ Tổ quốc hội nhập quốc tế” [1] Yêu cầu phương pháp giáo dục Luật giáo dục 2019: “Phương pháp giáo dục phải khoa học, phát huy tính tích cực, tự giác, chủ động, tư sáng tạo người học; bồi dưỡng cho người học lực tự học hợp tác, khả thực hành, lòng say mê học tập ý chí vươn lên” [1] “Làm để phát huy tiềm năng, khả sáng tạo cá nhân?”; “Làm để phát huy tính tích cực, chủ động, tư sáng tạo người học?” Đó câu hỏi băn khoăn, trăn trở trình giảng dạy Vì bên cạnh việc truyền đạt kiến thức việc tìm kiếm kỹ thuật dạy học phù hợp, giúp học sinh hứng thú, chủ động mở rộng, phát triển kiến thức điều mà ý chăm chút Đó lý tơi chọn đề tài: Kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô-đun số phức phương pháp tọa độ mặt phẳng Trong đề tài này, tơi xin phép trình bày số hướng phát triển, mở rộng tốn tìm giá trị lớn nhất, nhỏ mô-đun số phức dựa kỹ thuật giải áp dụng phương pháp tọa độ mặt phẳng Bên cạnh cần nói thêm lớp đối tượng mà giảng dạy chủ yếu học sinh trung bình khá, tơi lựa chọn hướng phát triển từ từ, thích hợp với đại đa số học sinh, đồng thời hướng mở để học sinh khá, giỏi phát triển tốn 1.2 Mục đích nghiên cứu Với lý mục đích nghiên cứu đề tài giúp học sinh tìm hiểu, xây dựng phát triển kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ môđun số phức phương pháp tọa độ mặt phẳng Phân tích ưu, nhược điểm so sánh kỹ thuật với kỹ thuật giải khác 1.3 Đối tượng nghiên cứu Đối tượng nghiên cứu đề tài kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mơ-đun số phức, đặc biệt kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô-đun số phức phương pháp tọa độ mặt phẳng Bên cạnh đối tượng nghiên cứu khác vơ quan trọng em học sinh hai lớp 12A9 12A7 trường THPT Sầm Sơn mà giảng dạy 1.4 Phương pháp nghiên cứu Phương pháp nghiên cứu chủ yếu phương pháp nghiên cứu xây dựng sở lý thuyết Ngồi cịn có phương pháp khảo sát thực tế, thu thập thông tin TIEU LUAN MOI download : skknchat@gmail.com Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Sáng kiến kinh nghiệm xây dựng sở kiến thức số phức kết hợp với kiến thức phương pháp tọa độ mặt phẳng Các kiến thức số phức bao gồm: + Các định nghĩa số phức + Các phép tốn số phức + Các tính chất mơ-đun số phức + Các tính chất biểu diễn hình học số phức Các kiến thức phương pháp tọa độ mặt phẳng bao gồm: + Các kiến thức đường thẳng + Các kiến thức đường tròn + Các kiến thức elip Đặc biệt số tính chất hình học giải tích Oxy áp dụng tốn tìm giá trị lớn nhất, nhỏ mô-đun số phức: Tính chất 1: Trong hệ trục Oxy, cho đường thẳng điểm Điểm thuộc cho khoảng cách ngắn hình chiếu Lúc đó: Tính chất 2: Trong hệ trục Oxy, cho đường tròn đường tròn Điểm thuộc cho khoảng cách giao điểm với đường tròn 1) Trường hợp: nằm đường trịn ; điểm khơng thuộc lớn nhất, nhỏ Lúc đó: TIEU LUAN MOI download : skknchat@gmail.com 2) Trường hợp: nằm ngồi đường trịn ; Tính chất 3: Trong hệ trục Oxy, cho Elip Điểm cách lớn nhất, nhỏ giao điểm - độ dài bán trục bé (khi - độ dài bán trục lớn (khi thuộc cho khoảng với Elip Lúc đó: giao điểm giao điểm Tính chất 4: Trong hệ trục Oxy, cho đường tròn với elip), với elip) đường thẳng khơng cắt đường trịn Điểm thuộc , thuộc cho khoảng cách nhỏ giao điểm đưởng thẳng (qua vng góc với đường thẳng ) cắt đường tròn đường thẳng Lúc đó: TIEU LUAN MOI download : skknchat@gmail.com Tính chất 5: Trong hệ trục Oxy, cho hai đường trịn khơng cắt Hai điểm thuộc hai đường tròn cho khoảng cách lớn nhất, nhỏ giao điểm đưởng thẳng (đường nối tâm hai đường tròn) với hai đường trịn Lúc đó: ; 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Số phức phần chương trình tốn THPT (được đưa vào chương trình vào cuối năm lớp 12) Đây phần khơng khó, nhiên lạ lâu học sinh quen với tập số thực, với lối tư tập số thực nên nhiều học sinh gặp khó khăn với tốn số phức, đặc biệt tốn khó Bài toán giá trị lớn nhất, giá trị nhỏ mơ-đun số phức tốn khó số phức Cách giải thơng thường tốn áp dụng bất đẳng thức.Tuy nhiên, bất đẳng thức phần khó chương trình tốn học phổ thông, lại học từ năm lớp 10 nên nhiều học sinh quên gặp nhiều khó khăn áp dụng Thêm việc phát triển tốn bất đẳng thức khơng dễ đối tượng học sinh mà tơi giảng dạy Việc áp dụng kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô-đun số phức phương pháp tọa độ mặt phẳng, tốn chuyển sang tốn hình giải tích mặt phẳng nên trực quan hơn, dễ dàng xử lý Đặc biệt, mở rộng, phát triển toán theo nhiều hướng khác nhau, đa dạng Chúng ta xem xét ví dụ cụ thể sau: TIEU LUAN MOI download : skknchat@gmail.com Ví dụ: Trong số phức thỏa mãn , tìm số phức cho nhỏ [2] Giải: Cách 1: Sử dụng bất đẳng thức Giả sử , đó: Ta có: Áp dụng bất đẳng thức Bu-nhi-a-cơp-x-ki: Nên: Dấu ‘=’ xảy Vậy nhỏ Cách 2: áp dụng phương pháp tọa độ mặt phẳng Giả sử , đó: Gọi điểm biểu diễn cho số phức thuộc đường thẳng Gọi mặt phẳng phức, điểm biểu diễn cho số phức Khi đó : Để nhỏ , hình chiếu TIEU LUAN MOI download : skknchat@gmail.com Khi đó: Phương trình đường thẳng Tọa : nghiệm hệ Vậy số phức có mơ-dun nhỏ là :  So sánh hai cách giải, thấy mức độ tương đương Tuy nhiên, cách sử dụng bất đẳng thức tâm lý chung học sinh “ngại” “sợ”, với cách thứ hai tốn trở nên trực quan hơn, dễ dàng tiếp nhận Mặt khác, bất đẳng thức phương pháp tọa độ mặt phẳng kiến thức từ lớp 10, phương pháp tọa độ mặt phẳng kiến thức trọng tâm hình học 10, học sinh học suốt học kỳ hai lớp 10 Hơn phần kiến thức lại mở rộng phát triển hình học 12 (phương pháp tọa độ khơng gian) nên học sinh quen thuộc hơn, gần gũi Vì q trình giảng dạy tơi nhận thấy giới thiệu cách giải tốn phần lớn học sinh chọn cách giải thứ hai Hơn nữa, phát triển tốn, phức tạp hóa điều kiện hay u cầu việc sử dụng bất đẳng thức trở nên khó khăn, nhiều tốn khơng thể giải Trong dùng theo cách giải thứ hai toán dễ phát triển mở rộng 2.3 Các giải pháp sử dụng để giải vấn đề Với thực trạng trên, phần nghiên cứu giải pháp xây dựng phát triển kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô-đun số phức phương pháp tọa độ mặt phẳng Dựa việc áp dụng tính chất phương pháp tọa độ mặt phẳng vào tốn tìm giá trị lớn nhất, giá trị nhỏ mơ-đun số phức, phân chia toán thành dạng sau: Dạng 1: Quy tính khoảng cách nhỏ điểm và điểm thuộc đường thẳng Chúng ta bắt đầu với toán đơn giản: Bài tốn 1: Trong tất số phức có dạng:  với , tìm số phức có mơ-đun nhỏ [2] Giải Gọi điểm biểu diễn cho số phức mặt phẳng phức , thuộc đường thẳng TIEU LUAN MOI download : skknchat@gmail.com Ta có : , nhỏ Khi đó: Phương trình đường thẳng Tọa độ hình chiếu : lànghiệm hệ Vậy số phức có mơ-dun nhỏ khi: Trong toán này, vấn đề trọng yếu điểm biểu diễn cho số phức thuộc đường thẳng Từ phát triển mở rộng tốn theo chiều hướng khó, phức tạp giữ tính chất điểm biểu diễn cho số phức thuộc đường thẳng Chúng ta xem xét toán thứ hai sau: Bài toán 2: Trong số phức thỏa mãn đun nhỏ [2] Đối với toán thay điều kiện , tìm số phức có mơ- điều kiện khác mô-đun phức tạp là: Nhưng khai thác điều kiện điều kiện tương đương với điều kiện cho tốn ban đầu Giải: Giả sử , đó: Gọi điểm biểu diễn cho số phức thuộc đường thẳng mặt phẳng phức, TIEU LUAN MOI download : skknchat@gmail.com Ta có : , nhỏ Khi đó: Phương trình đường thẳng Tọa độ hình chiếu : nghiệm hệ Vậy số phức có mơ-dun nhỏ khi: Tiếp tục mở rộng, phát triển cách phức tạp hóa yêu cầu toán, toán thứ ba có điều kiện giống điều kiện toán thứ hai song yêu cầu cao hơn: Bài toán 3: Trong số phức nhỏ [2] Lúc này, điều kiện rộng thành tìm Giải: Giả sử thỏa mãn , tìm số phức cho toán hai song yêu cầu mở để mơ-đun số phức nhỏ , đó: Gọi điểm biểu diễn cho số phức thuộc đường thẳng mặt phẳng phức, Gọi điểm biểu diễn cho số phức TIEU LUAN MOI download : skknchat@gmail.com Khi đó : Để nhỏ , hình chiếu Khi đó: Phương trình đường thẳng Tọa độ : nghiệm hệ Vậy số phức có mơ-dun nhỏ khi: Bài tốn thứ tư cúng tương tự nâng cao yêu cầu toán Bài toán 4: Trong số phức thỏa mãn , tìm số phức cho nhỏ [2] Giải: Lúc này, điều kiện vậy, yều cầu kết hợp thêm tính chất mơ-đun số phức: quy tốn tương tự toán ba Giả sử , tốn lại , đó: Gọi điểm biểu diễn cho số phức thuộc đường thẳng mặt phẳng phức, TIEU LUAN MOI download : skknchat@gmail.com Ta có : phức ) Để nhỏ (với hình chiếu Khi đó: Phương trình đường thẳng Tọa đô điểm biểu diễn cho số : nghiệm hệ Vậy số phức có mơ-dun nhỏ khi: Dạng 2: Quy tính khoảng cách lớn nhất, nhỏ điểm diểm thuộc đường trịn Đặc điểm tốn dạng điều kiện biểu diễn cho số phức thuộc đường thẳng, phát triển tốn cách cho điểm thuộc đường trịn Chúng ta xem xét toán sau: Bài toán 5: Trong số phức nhất, lớn [3] Giải Giả sử Gọi thỏa mãn , tìm số phức có mơ-đun nhỏ , đó: điểm biểu diễn cho số phức thuộc đường tròn mặt phẳng phức, 10 TIEU LUAN MOI download : skknchat@gmail.com Ta có : Để nhỏ giao với đường trịn ( tâm đường trịn) Khi đó: Để nhỏ giao với đường tròn ( tâm đường trịn) Khi đó: Vậy có mơ-dun lớn , có mơ-đun nhỏ Lại nâng cao yêu cầu tốn từ tìm giá trị lớn nhất, nhỏ mơ-đun số phức sang tìm giá trị lớn nhất, nhỏ mô-đun biểu thức chứa ta toán thứ sáu Bài toán 6: Trong số phức nhất, nhỏ [3] Giải Giả sử Gọi thỏa mãn có lớn , đó: điểm biểu diễn cho số phức thuộc đường tròn Xét điểm , tìm số phức mặt phẳng phức, ( Ta có : Để nhỏ nằm hình tròn) giao với đường tròn ( tâm đường tròn) 11 TIEU LUAN MOI download : skknchat@gmail.com Khi đó: Để lớn giao với đường trịn ( tâm đường trịn) Khi đó: Đường thẳng Tọa độ điểm M nghiệm hệ Vậy với nhỏ nhất, với lớn Dạng 3: Quy tính khoảng cách lớn nhất, nhỏ điểm điểm thuộc Elip Mở rộng với thuộc Elip ta toán sau: Bài toán 7: Trong số phức thỏa mãn đun lớn nhất, nhỏ [3] Giải Giả sử , điểm biểu diễn cho số phức , tìm số phức có mơ- mặt phẳng phức đó: với () thuộc elip có tiêu điểm  Phương trình , độ dài trục lớn 12 TIEU LUAN MOI download : skknchat@gmail.com Ta có: với thuộc elip nên Nên: tương ứng với tương ứng với Dạng 4: Quy tính khoảng cách nhỏ điểm thuộc đường thẳng điểm thuộc đường trịn Lại nâng cao, phát triển tốn từ tìm số phức sang tìm hai số phức ta toán thứ bảy sau: Bài toán 8: Trong số phức số phức Giải cho Giả sử , đó: Gọi thỏa mãn Giả sử , tìm nhỏ [4] điểm biểu diễn cho số phức thuộc đường tròn ; mặt phẳng phức, , đó: Gọi điểm biểu diễn cho số phức thuộc đường thẳng Ta có : nhỏ góc với đường trịn giao đường thẳng , cịn mặt phẳng phức, qua ( tâm đường trịn) vng giao đường thẳng với đường thẳng Khi đó: Trong đó : 13 TIEU LUAN MOI download : skknchat@gmail.com vng góc với đường thẳng Đường thẳng qua  Phương trình đường thẳng Tọa độ điểm Điểm nghiệm hệ cần tìm Tọa độ điểm ứng với số phức nghiệm hệ Vậy với nhỏ Dạng 5: Quy tính khoảng cách lớn nhất, nhỏ hai điểm thuộc hai đường tròn Vẫn tốn tìm hai số phức, song điều kiện hai số phức thây đổi từ thuộc đường thẳng, đường tròn sang thuộc hai đường tròn ta tốn thứ tám thứ chín Bài tốn 9: Trong số phức thỏa mãn ; , lớn nhất, nhỏ [4] So với tốn thứ tám, tốn thứ chín phát triển điều kiện thuộc đườn thẳng, đường tròn sang thuộc hai đường tròn khác Giải Giả sử Gọi , đó: điểm biểu diễn cho số phức thuộc đường trịn mặt phẳng phức, 14 TIEU LUAN MOI download : skknchat@gmail.com Giả sử Gọi , đó: điểm biểu diễn cho số phức thuộc đường trịn mặt phẳng phức, Ta có : tâm đường trịn Với Trong đó: Vậy : Bài tốn 10: Trong số phức thỏa mãn lớn nhất, nhỏ [4] Giải ặt Đ , , Giả sử Gọi ; , đó: điểm biểu diễn cho số phức thuộc đường tròn mặt phẳng phức, Ta có: 15 TIEU LUAN MOI download : skknchat@gmail.com Giả sử Gọi , đó: điểm biểu diễn cho số phức thuộc đường tròn mặt phẳng phức, Ta có : Với tâm đường trịn Trong đó: Vậy: Với cách mở rộng phát triển vậy, tiếp tục xây dựng lớp toán giá trị lớn nhất, giá trị nhỏ mô-đun số phức từ đơn giản đến phức tạp tùy thuộc vào điều kiện hay yêu cầu toán, tùy thuộc vào đa dạng tốn hình học giải tích tương ứng mà lựa chọn Với lớp đối tượng học sinh không tốt (phần lớn học sinh trung bình phận nhỏ học sinh khá), tơi lựa chọn cách phát triển mở rộng tốn bước trên, giúp học sinh tiếp cận từ từ phù hợp với trình độ, nhận thức học sinh Đồng thời đơn giản hóa toán giá trị lớn nhất, giá trị nhỏ mơ-đun số phức giúp tốn đến gần với học sinh, để học sinh cảm thấy “có thể” giải tốn, có hứng thú hơn, nỗ lực qua trình học tập 2.4 Hiệu sáng kiến kinh nghiệm Để kiểm chứng tính hiệu đề tài, tơi tiến hành triển khai đề tài lớp 12A9, lớp 12A7 khơng (nghĩa lớp 12A7 tơi dạy học sinh tìm giá 16 TIEU LUAN MOI download : skknchat@gmail.com trị lớn nhất, giả trị nhỏ mô-đun số phức cách sử dụng bất đẳng thức, lớp 12A9 chủ yếu tìm giá trị nhỏ nhất, giá trị lớn mô-đun số phức phương pháp tọa độ mặt phẳng) Đây hai lớp mà tơi đánh giá có chất lượng tương đương Sau tơi đánh giá kết kiểm tra trắc nghiệm ngắn (15 phút) sau: ĐỀ KIỂM TRA Câu 1: Cho số phức thõa mãn A Giá trị nhỏ B Câu 2: Cho số phức C thõa mãn A B Câu 3: Trong số phức A B D Giá trị lớn C thõa mãn Câu 5: Cho số phức A B Câu 6: Cho số phức Câu 7: Cho số phức A , biết số phức D C B Giá trị lớn thõa mãn A D C thõa mãn , số phức có mơ-đun nhỏ C B D Câu 4: Trong số phức thõa mãn có mơ-đun nhỏ Khi A D Giá trị nhỏ C thõa mãn D Giá trị lớn B Câu 8: Cho số phức nhỏ A C thõa mãn D Giá trị B C D Kết thu là: Lớp 12A7 12A9 17 TIEU LUAN MOI download : skknchat@gmail.com Điểm [0; 3) [3; 5) [5; 7) [7; 9) [9; 10] Tần số 10 18 N = 45 Tần suất (%) 11,11 22,22 40 17,78 8,89 Tần số 21 15 N = 48 Tần suất (%) 4,17 6,25 43,75 31,25 14,58 So sánh kết đạt hai lớp, thấy hiệu đề tài sau triển khai Nhìn chung, nhiều học sinh biết cách làm tốn tìm giá trị lớn nhất, giá trị nhỏ modun số phức phương pháp tọa độ mặt phẳng Học sinh khơng cịn tâm lý “e ngại” gặp phải toán dạng này, chí phận khơng nhỏ học sinh tiếp cận với tốn khó đề thi trung học phổ thông quốc gia hay đề khảo sát trường Bên cạnh học sinh học hỏi cách tư lô-gic, cách quy lạ quen, cách mở rộng phát triển tốn khơng phần mà phần khác Kết luận, kiến nghị 3.1 Kết luận Trên kinh nghiệm tơi q trình dạy học Với tuổi đời tuổi nghề non trẻ, kinh nghiệm chưa nhiều nên tơi khơng tránh khỏi thiếu sót Rất mong đồng chí góp ý chia sẻ kinh nghiệm giúp ngày tiến công tác, phát triển chuyên môn nghiệp vụ Tôi xin trân trọng cảm ơn ! 3.2 Kiến nghị Tôi mong muốn Sở GDĐT, nhà trường cung cấp cho số SKKN Sở, nhà trường đánh giá có chất lượng năm học trước để học hỏi, nghiên cứu, áp dụng vào thực tế giảng dạy nhằm nâng cao chất lượng dạy học XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 10 tháng năm 2020 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác 18 TIEU LUAN MOI download : skknchat@gmail.com Nguyễn Thị Bích Huệ 19 TIEU LUAN MOI download : skknchat@gmail.com DANH MỤC TÀI LIỆU THAM KHẢO [1] Luật Giáo dục 2019 Nguồn: https://luatvietnam.vn [2] Chuyên đề số phức – Bùi Trần Duy Tuấn Nguồn: https://toanmath.com [3] Chuyên đề số phức – Nguyễn Chín Em Nguồn: https://toanmath.com [4] Giá trị lớn giá trị nhỏ biểu thức chứa modul số phức – Nguyễn Hoàng Việt Nguồn: https://toanmath.com TIEU LUAN MOI download : skknchat@gmail.com ... nghiên cứu đề tài kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mơ -đun số phức, đặc biệt kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô- đun số phức phương pháp tọa độ mặt phẳng Bên cạnh đối tượng nghiên... Kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô- đun số phức phương pháp tọa độ mặt phẳng Trong đề tài này, tơi xin phép trình bày số hướng phát triển, mở rộng tốn tìm giá trị lớn nhất, nhỏ mô- đun. .. giải pháp xây dựng phát triển kỹ thuật tìm giá trị lớn nhất, giá trị nhỏ mô- đun số phức phương pháp tọa độ mặt phẳng Dựa việc áp dụng tính chất phương pháp tọa độ mặt phẳng vào tốn tìm giá trị lớn

Ngày đăng: 10/07/2022, 06:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w