1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN mới NHẤT) hướng dẫn học sinh lớp 12 sử dụng phương pháp tọa độ trong mặt phẳng giải bài toán cực trị số phức

22 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 4,31 MB

Nội dung

MỤC LỤC Trang MỞ ĐẦU 1.1 Lí chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu .2 1.4 Phương pháp nghiên cứu 2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề 2.3.1 Nội dung hướng dẫn học sinh .8 2.3.2 Bài tập củng cố 19 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường 20 KẾT LUẬN, KIẾN NGHỊ 21 3.1 Kết luận 21 3.2 Kiến nghị 21 TÀI LIỆU THAM KHẢO 22 TIEU LUAN MOI download : skknchat@gmail.com MỞ ĐẦU 1.1 LÝ DO CHỌN ĐỀ TÀI Bài tốn tìm cực trị số phức câu hỏi thường xuất đề thi THPT Quốc Gia năm gần Trong chương trình Tốn THPT Số Phức đưa vào học lớp 12 Kiến thức số phức hoàn toàn học sinh, kiến thức số phức liên hệ chặt chẽ với kiến thức tọa độ mặt phẳng Ngày với việc thi THPT Quốc Gia thi trắc nghiệm học sinh cần phải nhanh chóng tìm cách chọn đáp án xác khoảng thời gian ngắn Do học sinh khơng giải tốn mà cịn lựa chọn phương án giải nhanh xác Nên học sinh cần rèn luyện nhìn nhận tốn theo khía cạnh khác qua tìm nhiều phương pháp giải khác để từ lựa chọn phương án tối ưu Trong trình giảng dạy, việc áp dụng cách làm, cách tư quen thuộc, nhận thấy cần thiết phải hướng dẫn để học sinh nắm phương pháp sử dụng kiến thức tọa độ phẳng để giải số tốn cực trị số phức Bởi ngồi việc bổ sung, hoàn thiện thêm phương pháp giải tốn cực trị số phức việc sử dụng phương pháp tọa độ giúp cho học sinh có cách nhìn tốn trực quan nhanh chóng tìm kết mà cách làm khác khơng có Trong q trình ơn thi THPT Quốc Gia cho học sinh lớp 12, tơi có Sáng kiến kinh nghiệm giảng dạy là: “ Hướng dẫn học sinh lớp 12 sử dụng phương pháp tọa độ mặt phẳng giải toán cực trị số phức” 1.2 MỤC ĐÍCH NGHIÊN CỨU Sáng kiến kinh nghiệm hướng tới giải số vấn đề sau học sinh lớp 12: - Bổ sung, hoàn thiện phương pháp giải tốn cực trị số phức thơng qua việc sử dụng phương pháp tọa độ - Rèn luyện kỹ vận dụng phương pháp giải thông qua hệ thống tập có hướng dẫn lớp tập tự rèn luyện nhà Sáng kiến kinh nghiệm nhằm trao đổi kinh nghiệm với đồng nghiệp tài liệu tham khảo học sinh để góp phần nâng cao hiệu dạy học tốn trường THPT Như Xn nói riêng trường THPT nói chung 1.3 ĐỐI TƯỢNG NGHIÊN CỨU Một số toán cực trị số phức chương trình Giải tích lớp 12 Hướng dẫn học sinh lớp 12 thực giải toán cực trị số phức phương pháp tọa độ mặt phẳng 1.4 PHƯƠNG PHÁP NGHIÊN CỨU TIEU LUAN MOI download : skknchat@gmail.com Lựa chọn ví dụ, tập cụ thể phân tích tỉ mỉ đặc trưng từ hướng dẫn học sinh thực phương pháp giải Thực nghiệm sư phạm: Để thực Sáng kiến kinh nghiệm sử dụng hai lớp 12 trường THPT Như Xuân Đây hai lớp tương đương học lực mơn tốn tất học sinh có học lực khá, giỏi mơn tốn Trong đó, lớp 12B4 lớp chưa áp dụng sáng kiến (lớp đối chứng), lớp 12B3 lớp áp dụng sáng kiến (lớp thực nghiệm) Thời gian thực sáng kiến kinh nghiệm từ tháng 4/2020 đến tháng 5/2020 Sau nội dung cụ thể Sáng kiến kinh nghiệm TIEU LUAN MOI download : skknchat@gmail.com NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 CƠ SỞ LÝ LUẬN CỦA SÁNG KIẾN KINH NGHIỆM Biểu diễn hình học số phức: Điểm trog hệ tọa độ vng góc mặt phẳng gọi điểm biểu diễn số phức [3] Chú ý: Cho có điểm biểu diễn có điểm biểu diễn Khi Các tốn hình học phẳng quen thuộc: Bài toán 1: Cho đường thẳng cố định điểm A cố định Điểm M di động đường thẳng Hãy xác định vị trí điểm M cho đoạn AM nhỏ Kết quả: A d M H Bài tốn 2: Cho đường trịn (T) cố định có tâm I, bán kính điểm A cố định Điểm M di động đường tròn (T) Hãy xác định vị trí điểm M cho đoạn thẳng AM lớn nhất, nhỏ M Kết quả: TH1: A nằm (T) A B I TH2: A nằm (T) khi M A C B I M TH3: A nằm (T) khi C A I B TIEU LUAN MOI download : skknchat@gmail.com Bài tốn 3: Cho hai đường trịn có tâm , bán kính ,đường trịn có tâm , bán kính Hãy xác định vị trí M N cho đoạn MN lớn nhất, nhỏ N M Kết quả: TH1: A B C D I I khi M TH2: N khi A I1 C D I2 B N TH3: M A I1 B C I2 M TH4: N A I1 C I2 B N TH5: M khi A E I1 F I2 B TIEU LUAN MOI download : skknchat@gmail.com Bài tốn 4: Cho đường trịn (T) cố định có tâm I, bán kính đường thẳng cố định Hãy xác định vị trí điểm M đường tròn (T) điểm N đường thẳng cho đoạn MN nhỏ N Kết quả: M TH1: không cắt I H B d H TH2: tiếp xúc I A TH3: d N d M B cắt A B N I M Bài toán 5: Cho đường elíp (E) có tiêu điểm điểm A cố định Hãy xác định điểm M elíp (E) cho đoạn AM lớn nhất, nhỏ Kết quả: P M TH1: E A I F1 F2 F Q TH2: đoạn thẳng hàng nằm P E M I F1 F2 A F Q P TH3: thẳng hàng M nằm đoạn E I F1 A A Q P E F F2 F M I F1 F2 TIEU LUAN MOI download : skknchat@gmail.com Q TH4: thẳng hàng nằm đoạn Bài toán 6: Cho đường thẳng hai điểm A, B cố định Hãy xác định vị trí điểm M đường thẳng cho nhỏ Kết quả: A TH1: A, B khác phía so với M d E B A TH2: A, B phía so với A’ điểm đối xứng với A qua đường thẳng d B d M E A' Bài toán 7: Cho đường thẳng hai điểm A, B cố định Hãy xác định vị trí điểm M đường thẳng cho lớn Kết quả: A' TH1: A, B khác phía so với B d M E A’ điểm đối xứng với A qua đường thẳng A TH2: A, B phía so với A B M d E 2.2 THỰC TRẠNG VẤN ĐỀ TRƯỚC KHI ÁP DỤNG SÁNG KIẾN KINH NGHIỆM Trong năm học 2019 – 2020, dạy cho học sinh lớp 12B4 chưa áp dụng Sáng kiến kinh nghiệm này, hướng dẫn học sinh phương pháp sử dụng kiến thức tọa độ phẳng để giải toán cực trị số phức Tuy nhiên, trình cho học sinh làm bài, tơi phát học sinh thường vướng mắc số vấn đề sau: - Nhận dạng toán sử dụng phương pháp chưa nhanh nhạy - Chưa nắm kỹ điều kiện vận dụng phương pháp - Chưa có thói quen tự nghiên cứu, kiểm tra lời giải TIEU LUAN MOI download : skknchat@gmail.com - Chưa làm nhiều dạng tập để rèn luyện kỹ Từ thực trạng trên, dạy cho học sinh lớp 12B3, khắc phục cách: - Trang bị cho học sinh sở lý thuyết đầy đủ cụ thể thông qua định lý tính chất - Trang bị cho học sinh nội dung phương pháp thơng qua ví dụ chọn lọc cẩn thận, điển hình - Giúp học sinh rèn luyện kỹ thông qua hệ thống tập nhà sau có kiểm tra, hướng dẫn, sửa chữa Sau biện pháp tiến hành cụ thể 2.3 CÁC SÁNG KIẾN KINH NGHIỆM HOẶC CÁC GIẢI PHÁP ĐÃ SỬ DỤNG ĐỂ GIẢI QUYẾT VẤN ĐỀ 2.3.1 NỘI DUNG HƯỚNG DẪN HỌC SINH Để hướng dẫn học sinh sử dụng phương pháp tọa mặt phẳng giải toán cực trị số phức thân tiến hành phân loại dạng tập cực trị số phức dùng phương pháp tọa độ, đặc trưng loại hướng dẫn cụ thể cách dùng phương pháp tọa độ cho loại Ví dụ Cho số phức thỏa mãn điều kiện có mơđun nhỏ A B Tìm số phức C D Giải: Gọi có điểm biểu diễn d y O Tập hợp điểm M đường thẳng M -2 H x A Gọi ta có nhỏ Phương trình đường thẳng Tọa độ H nghiệm hệ Ta có Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển toán tìm giá trị nhỏ số phức thành tốn hình học quen thuộc (Bài tốn 1) TIEU LUAN MOI download : skknchat@gmail.com Ví dụ Cho số phức z thỏa mãn Gọi giá trị lớn giá trị nhỏ Tính giá trị A B C D Giải: Gọi có điểm biểu diễn y M Tập hợp điểm M đường trịn bán kính Gọi ta có suy A nằm ngồi đường trịn tâm -2 A I O x -1 Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ nhất, giá trị lớn số phức thành tốn hình học quen thuộc (Bài tốn 2) Ví dụ Gọi số phức thỏa mãn Giá trị nhỏ bằng: [4] A B C Giải: Gọi có điểm biểu diễn số thực D y P I H E số thực suy Q O x Tập hợp điểm M đường trịn tâm bán kính Gọi có điểm biểu diễn Gọi có điểm biểu diễn Gọi điểm thỏa mãn suy TIEU LUAN MOI download : skknchat@gmail.com Ta có suy Tập hợp điểm E đường trịn tâm bán kính Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành toán hình học quen thuộc (Bài tốn 2) Ví dụ Xét số phức Tính lớn [4] A Giải: đạt giá trị B C D y có điểm biểu Tập hợp điểm M đường tròn bán kính Gọi Gọi E điểm thỏa mãn Ta có thỏa mãn điều kiện M diễn tâm F I O -1 E -2 C B A -2 x suy suy E nằm đường trịn ta có suy Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức toán tâm tỉ cự ta chuyển tốn tìm giá trị lớn số phức thành tốn hình học quen thuộc (Bài tốn 2) Ví dụ Cho số phức mãn điều kiện thỏa mãn điều kiện Tìm giá trị nhỏ , số phức thỏa 10 TIEU LUAN MOI download : skknchat@gmail.com A B C D Giải: Gọi có điểm biểu diễn y Tập hợp điểm M đường trịn tâm bán kính Gọi có điểm biểu diễn O I1 M x N -3 I2 Tập hợp điểm N đường trịn tâm bán kính Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành tốn hình học quen thuộc (Bài tốn 3) Ví dụ Cho hai số phức thỏa mãn Tìm giá trị lớn biểu thức [4] A B C D Giải: y Gọi diễn có điểm biểu I2 -6 N O x M Tập hợp điểm M đường trịn tâm bán kính Gọi có điểm biểu diễn Tập hợp điểm N đường tròn tâm I1 -10 bán kính Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị lớn số phức thành tốn hình học quen thuộc (Bài toán 3) 11 TIEU LUAN MOI download : skknchat@gmail.com Ví dụ Cho số phức mãn điều kiện A thỏa mãn điều kiện , số phức Tìm giá trị nhỏ B C thỏa D Giải: y Gọi diễn có điểm biểu M N d Tập hợp điểm M đường trịn tâm bán kính Gọi có điểm biểu diễn x O I Tập hợp điểm N đường thẳng Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành tốn hình học quen thuộc (Bài tốn 4) Ví dụ Cho số phức số phức biết A thỏa mãn điều kiện đạt giá trị nhỏ [4] B C Tìm phần thực D Giải: Gọi y có điểm biểu diễn A d 1/2 E O M x Tập hợp điểm M đường thẳng Gọi A, B nằm khác phía so với đường thẳng -4 B nhỏ 12 TIEU LUAN MOI download : skknchat@gmail.com Tọa độ E nghiệm hệ Phần thực số phức Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành tốn hình học quen thuộc (Bài tốn 6) Ví dụ Cho số phức trị nhỏ biểu thức A thỏa mãn điều kiện Tìm giá [4] B C D Giải: Gọi có điểm biểu diễn A' H A Tập hợp điểm M đường thẳng -2 điểm đối xứng với E M O -2 Gọi suy A, B nằm phía so với đường thẳng Gọi y d x B qua nhỏ Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành tốn hình học quen thuộc (Bài tốn 6) Ví dụ 10 Cho số phức thỏa mãn điều kiện giá trị lớn A Tìm B C D Giải: Gọi có điểm biểu diễn 13 TIEU LUAN MOI download : skknchat@gmail.com y Tập hợp điểm M đường thẳng d B Gọi suy A, B nằm phía so với đường thẳng M A O x Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị lớn số phức thành tốn hình học quen thuộc (Bài tốn 7) Ví dụ 11 Cho số phức phức Giá trị biểu thức A Giải: thỏa mãn điều kiện Biết số thỏa mãn B đạt giá trị lớn C có điểm biểu diễn D y B d M Tập hợp điểm M đường thẳng Gọi suy A, B nằm khác phía so với đường thẳng Gọi điểm đối xứng với qua A' A O x Ta có lớn M giao điểm Tọa độ giao điểm nghiệm hệ Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị lớn số phức thành tốn hình học quen thuộc (Bài tốn 7) Ví dụ 12 Cho số phức thỏa mãn Tìm giá trị nhỏ biểu thức 14 TIEU LUAN MOI download : skknchat@gmail.com A B C D Giải: Gọi diễn có điểm biểu y d2 A1 E O Tập hợp điểm M đường thẳng x A d1 Gọi diễn M F có điểm biểu N A2 Tập hợp điểm M đường thẳng Gọi điểm đối xứng với qua qua , điểm đối xứng với Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành toán hình học quen thuộc (Bài tốn 6) Ví dụ 13 Cho số phức biểu thức với A thỏa mãn điều kiện số hữu tỉ Giá trị B Giá trị nhỏ viết dạng là: [4] C D Giải Gọi có điểm biểu diễn y C d B Tập hợp điểm M đường thẳng Gọi E A M H A1 O x suy A,B,C thẳng hàng B trung điểm AC 15 TIEU LUAN MOI download : skknchat@gmail.com Gọi điểm điểm đối xứng với qua ta có thẳng hàng E trung Vậy Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành tốn hình học quen thuộc (Bài tốn 6) Ví dụ 14 Tìm số phức thỏa mãn điều kiện đạt giá trị nhỏ [4] A B C D Giải: Gọi có điểm biểu diễn biểu thức y A B E Tập hợp điểm M đường trịn bán kính Gọi Goi K điểm tia IA cho Do góc tâm K M I O1 5/2 x suy chung, suy với E giao điểm đoạn thẳng Phương trình đường thẳng đường tròn Tọa độ E nghiệm hệ Vậy 16 TIEU LUAN MOI download : skknchat@gmail.com Nhận xét: Bằng cách sử dụng điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ số phức thành tốn hình học quen thuộc Ví dụ 15 Cho số phức Giá trị lớn A Giải: Gọi thỏa mãn điều kiện là: [4] B C D có điểm biểu diễn y E Gọi C -3 -1 O A I x M -3 B -7 F Tập hợp điểm M đường elíp có tiêu điểm ta có trục lớn thuộc đoạn thẳng Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị lớn số phức thành tốn hình học quen thuộc (Bài tốn 5) Ví dụ 16 Cho số phức trị nhỏ A thỏa mãn điều kiện Giá là: B C D Giải: Gọi Gọi có điểm biểu diễn y E P B A -1 M C O x Q F TIEU LUAN MOI download : skknchat@gmail.com 17 Tập hợp điểm M đường elíp có tiêu điểm , trục lớn suy tâm elíp , trục nhỏ Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị hỏ số phức thành tốn hình học quen thuộc (Bài tốn 5) Ví dụ 17 Cho số Gọi phức thỏa mãn điều kiện giá trị lớn giá trị nhỏ Khi tổng A là: [4] B C D Giải: Gọi có điểm biểu diễn y Gọi A M H -1 O C -2 x B Tập hợp điểm M đoạn thẳng Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ nhất, giá trị lớn số phức thành tốn hình học mà dễ dàng giải dựa vào hình biểu diễn Ví dụ 18 Cho số phức Tìm giá trị nhỏ thỏa mãn điều kiện 18 TIEU LUAN MOI download : skknchat@gmail.com A B C D Giải: Gọi có điểm biểu diễn y C B Gọi M -2 -1 O -1 x A Tập hợp điểm M đoạn thẳng Nhận xét: Bằng cách sử dụng kiến thức điểm biểu diễn hình học số phức ta chuyển tốn tìm giá trị nhỏ nhất, giá trị lớn số phức thành tốn hình học mà dễ dàng giải dựa vào hình biểu diễn 2.3.2 BÀI TẬP CỦNG CỐ Bài Cho số phức thỏa mãn điều kiện Tìm phần thực số phức A B Bài Cho số phức C Gọi Tính trị lớn A Bài Cho số phức A giá trị lớn B C thỏa mãn điều kiện D Số phức B C thỏa mãn điều kiện D Gọi lớn giá trị nhỏ biểu thức A B C Bài Cho số phức thỏa mãn điều kiện có giá trị nhỏ D thỏa mãn điều kiện giá trị nhỏ A Bài Cho số phức nhỏ A Bài Cho số phức mà giá trị Tính D Tìm giá B C thỏa mãn điều kiện D Tìm giá trị nhỏ B D C 19 TIEU LUAN MOI download : skknchat@gmail.com Bài Cho số phức biểu thức A B Bài Cho số phức thỏa mãn điều kiện biểu thức A thỏa mãn điều kiện đạt giá trị nhỏ Tính C D Tìm giá trị nhỏ B C D 2.4 HIỆU QUẢ CỦA SÁNG KIẾN KINH NGHIỆM ĐỐI VỚI HOẠT ĐỘNG GIÁO DỤC, VỚI BẢN THÂN, ĐỒNG NGHIỆP VÀ NHÀ TRƯỜNG Để đánh giá hiệu sáng kiến kinh nghiệm thân tiến hành thực nghiệm lớp dạy học cụ thể Quá trình thực nghiệm tiến hành lớp 12B3 lớp đối chứng 12B4 hai lớp có trình độ tương đương trường THPT Như Xuân Đối với lớp đối chứng, giáo viên dạy học bình thường Việc dạy học thực nghiệm đối chứng tiến hành song song theo lịch trình giảng dạy nhà trường Việc thực nghiệm thực sau tiến hành kiểm tra đánh giá kết Kết kiểm tra: Điểm 10 Số Lớp Lớp 11B3 0 10 10 43 Lớp 11B4 0 9 0 39 + Lớp thực nghiệm đạt 95,34% trung bình trở lên 67,44% đạt giỏi + Lớp thực nghiệm đạt 87,2% trung bình trở lên 43,6% đạt khơng có học sinh đạt điểm giỏi Qua trình dạy thực nghiêm lớp 12B3 nhận thấy học sinh lớp 12B3 có hiệu tích cực là: - Khả nhìn nhận tốn góc độ khác học sinh linh hoạt, nhạy bén Học sinh có linh hoạt tư duy, chủ động suy nghĩ tìm lời giải tốn - Học sinh nắm vững bước vận dụng thành thạo phương pháp tọa độ vào giải toán cực trị số phức - Học sinh mạnh dạn, chủ động nhận xét làm bạn, tìm sai lầm sửa chữa để có lời giải Từ hình thành cho học sinh thói quen nghiên cứu lời giải, kiểm tra lại kết để phòng tránh, phát sửa chữa sai lầm Đối với thân, sử dụng Sáng kiến kinh nghiệm thấy hiệu tiết dạy tốt hơn, tạo tự tin hứng thú giảng Giúp truyền đạt cách đọng đầy đủ, xác trọn vẹn nội dung cần giảng dạy khoảng thời gian ngắn 20 TIEU LUAN MOI download : skknchat@gmail.com Ngoài ra, Sáng kiến kinh nghiệm tổ chuyên đánh giá tốt, thiết thực đồng ý triển khai vận dụng cho năm học tới tồn trường nhằm góp phần nâng cao hiệu dạy học tốn Nhà trường nói riêng địa phương nói chung Đồng thời, Sáng kiến kinh nghiệm cịn tài liệu tham khảo hữu ích cho giáo viên học sinh 12 trình ôn thi, đặc biệt ôn thi THPT Quốc Gia Nó hệ thống tương đối hồn chỉnh nội dung phương pháp tọa độ giải toán cực trị số phức Như vậy, Sáng kiến kinh nghiệm mang lại hiệu tích cực thiết thực cho người học người dạy Đáp ứng đường đổi phương pháp dạy học, nâng cao hiệu giáo dục giai đoạn KẾT LUẬN, KIẾN NGHỊ 3.1 KẾT LUẬN Qua việc nghiên cứu, triển khai vận dụng Sáng kiến kinh nghiệm này, rút số học kinh nghiệm sau: - Trong giảng dạy cần phải thường xun tìm tịi, đúc rút kinh nghiệm để đưa giải pháp nâng cao hiệu dạy học Đặc biệt vấn đề khó, dễ nhầm lẫn học sinh - Nội dung giảng dạy giáo viên cần viết dạng Sáng kiến kinh nghiệm tập hợp thành tài liệu cung cấp cho học sinh Qua đó, phát huy khả tự học học sinh - Những nội dung truyền tải cho học sinh, giáo viên cần phải nghiên cứu kỹ lưỡng, tìm phương pháp giảng dạy hợp lý, đảm bảo xúc tích, ngắn gọn đầy đủ, xác Những cách làm giúp tiết dạy đạt hiệu cao, người dạy người học hứng thú, tiết kiệm thời gian phát huy tính chủ động, sáng tạo, khả tự học học sinh Đó điều rút từ Sáng kiến kinh nghiệm Sáng kiến kinh nghiệm sử dụng để ôn thi cho học sinh lớp 12, đặc biệt với đối tượng học sinh ôn thi THPT Quốc Gia cho năm học trường THPT Như Xuân nói riêng trường THPT nói chung Có thể mở rộng, phát triển thêm nội dung Sáng kiến kinh nghiệm để trở thành tài liệu hoàn chỉnh phương pháp tọa độ giải toán cực trị số phức 3.2 KIẾN NGHỊ Đối với tổ chuyên môn đồng nghiệp: Đề nghị Tổ chun mơn Tốn nhanh chóng triển khai ứng dụng Sáng kiến kinh nghiệm giảng dạy Nhà trường năm học tới Đối với Sở GD&ĐT: Đề nghị Sở GD&ĐT đóng góp ý kiến tạo điều kiện để tiếp tục phát triển Sáng kiến kinh nghiệm tìm tịi Sáng kiến XÁC NHẬN CỦA Thanh Hóa, ngày 25 tháng năm 2020 THỦ TRƯỞNG ĐƠN VỊ Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác 21 TIEU LUAN MOI download : skknchat@gmail.com Lê Đình Quân TÀI LIỆU THAM KHẢO Trần Văn Hạo (Tổng chủ biên) – Nguyễn Mộng Hy (Chủ biên) – Nguyễn Văn Đoành – Trần Đức Huyên (2007) Hình Học 10 NXB Giáo Dục Trần Văn Hạo (Tổng chủ biên) – Vũ Tuấn (Chủ biên) – Doãn Minh Cường – Đỗ Mạnh Hùng – Nguyễn Tiến Tài (2013) Đại Số 10 NXB Giáo Dục Trần Văn Hạo (Tổng chủ biên) – Vũ Tuấn (Chủ biên) – Lê Thị Thiên Hương – Nguyễn Tiến Tài – Cấn Văn Tuất (2008) Giải Tích 12 NXB Giáo Dục Nguồn khác: Internet 22 TIEU LUAN MOI download : skknchat@gmail.com ... phải hướng dẫn để học sinh nắm phương pháp sử dụng kiến thức tọa độ phẳng để giải số toán cực trị số phức Bởi việc bổ sung, hoàn thiện thêm phương pháp giải toán cực trị số phức việc sử dụng phương. .. là: “ Hướng dẫn học sinh lớp 12 sử dụng phương pháp tọa độ mặt phẳng giải toán cực trị số phức? ?? 1.2 MỤC ĐÍCH NGHIÊN CỨU Sáng kiến kinh nghiệm hướng tới giải số vấn đề sau học sinh lớp 12: - Bổ... sử dụng phương pháp tọa mặt phẳng giải tốn cực trị số phức thân tơi tiến hành phân loại dạng tập cực trị số phức dùng phương pháp tọa độ, đặc trưng loại hướng dẫn cụ thể cách dùng phương pháp tọa

Ngày đăng: 10/07/2022, 06:39

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN