1. Trang chủ
  2. » Khoa Học Tự Nhiên

BT lý THUYẾT hệ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG Toán 9

10 17 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 417,87 KB

Nội dung

BÀI 1 MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO A TÓM TẮT LÝ THUYẾT 1 Hệ thức lượng trong tam giác vuông         2 2 2 2 2 2 ; 1 2 3 1 1 1 4 b ab c ac h b c bc ah h b c         B CÁC DẠNG TOÁN Dạng 1 Biết cạnh huyền và một cạnh góc vuông (hoặc hai cạnh góc vuông), tính các hình chiếu của hai cạnh góc vuông trên cạnh huyền và ngược lại 1 Phương pháp giải Vận dụng hệ thức   2 21 ;b ab c ac   2 Ví dụ minh họa Ví dụ 1 (Bài 1, tr 68 SGK) Hãy tính x và y trong mỗi hình sau Hướng dẫn.

BÀI MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO A TÓM TẮT LÝ THUYẾT Hệ thức lượng tam giác vuông: b  ab; c  ac h  bc bc  ah 1  2  3 1  2 2 h b c  4 B CÁC DẠNG TOÁN Dạng 1: Biết cạnh huyền cạnh góc vng (hoặc hai cạnh góc vng), tính hình chiếu hai cạnh góc vng cạnh huyền ngược lại Phương pháp giải: Vận dụng hệ thức 1 : b2  ab; c  ac Ví dụ minh họa Ví dụ 1: (Bài 1, tr 68 SGK) Hãy tính x y hình sau: Hướng dẫn (h.2a) Áp dụng định lý Pi-ta-go vào ABC ta có: BC  AB2  AC  62  82  100  BC  10 Áp dụng hệ thức lượng số 1 : AB2  BH BC ta 62  10.x  x  3,6 Từ y  HC  BC  HB  6,4 Hướng dẫn (h.2b) Áp dụng hệ thức lượng số 1 : FE  EH EG ta 122  20 x  x  7, Từ y  HG  EG  HE  12,8 Ví dụ 2: (Bài 12, tr 11 SGK) Tìm x y hình Hướng dẫn (h.3) Áp dụng hệ thức lượng số (1) vào ABC ta có: AB2  BH BC  11     AB  x  AC  CH BC  1    20  AC  y  Ví dụ 3: (Bài 5, tr 69 SGK) Trong tam giác vuông với cạnh góc vng có độ dài 4, kẻ đường cao ứng với cạnh huyền Hãy tính đường cao độ dài đoạn thẳng mà định cạnh huyền Hướng dẫn (h.4) Áp dụng định lý Pi-ta-go vào ABC ta có: BC  AB2  AC  32  42  25  BC  Áp dụng hệ thức lượng số (1) vào ABC ta có: AB  BH BC  BH  AB  1,8 BC HC  BC  HB  3,2 Áp dụng hệ thức lượng số (2) vào ABC ta có: AH  BH HC  AH  BH HC  1,8.3,  2, Ví dụ 4: (Bài 6, tr 69 SGK) Đường cao tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài Hãy tính cạnh góc vng tam giác Hướng dẫn (h.5) Áp dụng hệ thức lượng số (1) vào ABC ta có: AB2  BH BC  1     AB  AC  CH BC  1     AB  Bài tập áp dụng Bài tập Tìm x y hình biết BC  13 AB  AC 12 Hướng dẫn Ta có AB 5   AB  AC AC 12 12 Áp dụng định lý Pi-ta-go vào ABC ta có: 169 5  BC  AB  AC  13   AC   AC  169  AC  AC  12 144  12  2 2 Áp dụng hệ thức lượng số (1) vào ABC ta có: AB  BH BC  BH  HC  BC  HB  AB 25  BC 13 144 13 Bài tập Tìm x y hình Hướng dẫn Áp dụng hệ thức lượng số (1) vào ABC ta có: AC  CH BC  CH  HB  BC  HC  3,6 Bài tập Tìm x y hình Hướng dẫn AC 82   6,  y BC 10 AC 62 Áp dụng hệ thức lượng số (1) vào ABC ta có: AC  CH BC  BC    CH y  HB  BC  HC    AB2  BH BC  5.9  45  AB   x Dạng Các toán liên quan đến độ dài đường cao ứng với cạnh huyền Phương pháp giải Vận dụng hệ thức  2 : h2  b ' c ',  3 :  bc Ví dụ minh họa Ví dụ Tìm x, y hình vẽ x y Hướng dẫn Cạnh huyền : y  74 35 74 Áp dụng  3 :  bc ta x y  5.7  x  Vậy x  35 ; y  74 74 Ví dụ Tìm x, y hình vẽ y x Hướng dẫn Áp dụng   : h2  b ' c ', ta có: 22  1.x  x  Áp dụng (1) ta được: y2  5.4  y  20 Vậy x  ; y  20 Ví dụ 3: Người ta đưa hai cách vẽ đoạn trung bình nhân x hai đoạn thẳng a, b hai hình sau: x a b a O O b Hướng dẫn Dựa vào hệ thức 1 ,   chứng minh cách vẽ Gợi ý: tam giác có đường trung tuyến ứng với cạnh nửa cạnh tam giác tam giác vng Hướng dẫn Cách A x b a B OA  OB  OC  H C O BC   R   ABC vuông A Áp dụng   h2  b ' c ', ta x  ab Cách A x a B H C O b Chứng minh tam giác ABC vuông A Áp dụng hệ thức (1) ta x  ab Ví dụ 4: Tìm x, y hình vẽ x 16 y x x y 12 x y Hướng dẫn a) Áp dụng hệ thức (2) ta : x2  4.9  36  x  b) Áp dụng hệ thức (2) ta : 22  x.x  x  Áp dụng hệ thức (1) y  x.x; y  c) Áp dụng hệ thức (2) ta : 122  16.x  x  Có thể áp dụng hệ thức (1) định lý Pi-ta-go để tính y  15 Dạng Các tốn liên quan đến tổng nghịch đảo bình phương hai đoạn thẳng Phương pháp giải Vận dụng hệ thức 1   2 h b c Ví dụ minh họa Ví dụ (Bài 9, tr.70 SGK) Cho hình vng ABCD Gọi I điểm nằm A B Tia DI tia CB cắt K Kẻ đường thẳng qua D, vng góc với DI Đường thẳng cắt đường thẳng BC I Chứng minh rằng: a) Tam giác DIL tam giác cân; b) Tổng 1 không đổi I thay đổi cạnh AB  DI DK Hướng dẫn a) ADI  CDL  c.g.c   DIL tam giác cân b) Áp dụng hệ thức lượng: 1   vào tam giác DKL ta được: h b c 1 1 1 hay     2 2 DC DL DK DC DI DK Vì DC khơng đổi nên 1 khơng đổi  DI DK C LUYỆN TẬP Bài Tính x y hình sau: Hình 14 Hình 15 Hướng dẫn a) Gọi tam giác ABC vuông A , AH đường cao ( H  BC ), có AC  10; AB  y; BH  x; HC   x; y   Khi đó: Tam giác ACH vng H , ta có: AH  AC  CH  AH  AC  CH  102  82  Tam giac ABC vuông A , ta có y 1    AB  2 AH AB AC AH AC 62.102 15   2 2 AC  AH 10  15 2 9  15  Tam giác ABH vng H , ta có: BH  AB  AH     62   x  2 2 b) Gọi tam giác ABC vuông A , AH đường cao ( H  BC ), có AB  30, AC  y, CH  32, BH  x  x; y    BC  BH  CH  x  32 Áp dụng công thức: AB2  BH BC AB2  BH  BH  CH   302  x  x  32   x  18  BC  BH  CH  x  32  18  32  50 Tam giác ABC vng A , ta có: AC  BC  AB  y  AC  502  302  40 Bài Cho tam giác nhọn ABC , hai đường cao CB CB , cắt H Trên HB HC lấy điểm M N cho AMC  ANC  90o Chứng minh AM  AN Hướng dẫn ANB vuông N , NE đường cao  AN  AE AB 1 AMC vuông M , MD đường cao  AN  AD.AC  2 A nằm ngồi đường trịn tứ giác BCDE nội tiếp đường tròn  AE AB  AD.AC 3 Từ 1  3 suy AM  AN Bài Cho tam giác ABC vuông A, đường cao AH Biết AB 20  AH  420 Tính chu vi AC 21 tam giác ABC Hướng dẫn giải A Ta có: AB AC 20 21 AB 20 AC 21 Áp dụng hệ thức lượng tam giác vng ta có : C B H  20   400  AC   AC   1 AC  2 1 AB  AC 841 21 441         2 2 2 400 AH AB AC AB AC 440 AC  20  AC AC  AC  441  21  841 841 4202.841     AC   337164,5455 Do đó: AH 440 AC 4202 440 AC 440 Vậy: AC  337164,5455  580,66  cm  20 AC 21 Suy ra: AB 20 580, 66 21 553, 01 cm Áp dụng định lí Pi-Ta-go cho tam giác ABC vng A ta được: BC  AB2  AC  305802,0601  337164,5455  642928,6065 Khi đó: BC  642928,6065  801,86 Chu vi tam giác ABC là: CABC  AB  AC  BC  1935,53 cm  Bài Cho hình thang ABCD vng góc A D Hai đường chéo vng góc với O Biết AB  13 ; OA  Tính diện tích hành thang Hướng dẫn giải Tam giác BAD tam giác vng A có AO đường cao nên: 1 1 1 1       2 2 2 2 AO AB AD AD AO AB 13    1   36 52 117 Do đó: AD  117  13  AOD vuông O áp dụng định lí Pi-Ta-go ta được:   AD2  AO2  OD  OD  AD  AO  13  62  117  36  81 Nên: OD  81   cm  13 A  ADC vng D có DO đường cao nên B 1 1 1      2 2 DO DA DC DC DO DA2 1 1  2    81 117 1053 13 O  C D  Do đó: DC  1053  Diện tích hình thang ABCD là: S ABCD   1 13  507 AD  AB  DC   13  13  cm2  2     Bài Cho hình thoi ABCD, hai đường chéo cắt O Cho biết khoảng cách từ O tới cạnh hình thoi h Biết rằng: AC  m; BD  n Chứng minh rằng: 1   2 m n 4h Hướng dẫn giải Gọi H chân đường cao tam giác OAB vng A O Theo giả thiết ta có: H D O B m   AO   AC  m  n    BD  n   BO  OH  h   OH  h   C Tam giác AOB vng O có OH đường cao nên: 1 1 1      2 2 OH OA OB h m n       2 4 1  1       4      h m n h n  m n 4h m ... minh rằng: a) Tam giác DIL tam giác cân; b) Tổng 1 không đổi I thay đổi cạnh AB  DI DK Hướng dẫn a) ADI  CDL  c.g.c   DIL tam giác cân b) Áp dụng hệ thức lượng: 1   vào tam giác DKL ta... Chứng minh tam giác ABC vuông A Áp dụng hệ thức (1) ta x  ab Ví dụ 4: Tìm x, y hình vẽ x 16 y x x y 12 x y Hướng dẫn a) Áp dụng hệ thức (2) ta : x2  4 .9  36  x  b) Áp dụng hệ thức (2) ta... vào hệ thức 1 ,   chứng minh cách vẽ Gợi ý: tam giác có đường trung tuyến ứng với cạnh nửa cạnh tam giác tam giác vuông Hướng dẫn Cách A x b a B OA  OB  OC  H C O BC   R   ABC vuông

Ngày đăng: 06/07/2022, 22:39

TỪ KHÓA LIÊN QUAN

w