1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 33 - Đề 2 pdf

6 209 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 831,5 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013 Môn thi : TOÁN A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm) Câu I (2 điểm) Cho hàm số   3 2 ( ) 3 1 1 y f x mx mx m x       , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số ( ) y f x  không có cực trị. Câu II (2 điểm): Giải phương trình : 1).   4 4 sin cos 1 tan cot sin 2 2 x x x x x    ; 2).     2 3 4 8 2 log 1 2 log 4 log 4 x x x       Câu III (1 điểm) Tính tích phân 3 2 2 1 2 1 dx A x x    Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, biết SO = 3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho. Câu V (1 điểm) Tìm m để hệ bất phương trình sau có nghiệm   2 2 7 6 0 2 1 3 0 x x x m x m              B.PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. Cho tam giác ABC biết các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác trong của góc A nằm trên đ.thẳng x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Cho hai mặt phẳng     : 2 2z + 5 = 0; Q : 2 2z -13 = 0. P x y x y    Viết phương trình của mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc với cả hai m.phẳng (P) và (Q). Câu VII.a (1 điểm) Tìm số nguyên dương n thỏa mãn các điều kiện sau: 4 3 2 1 1 2 4 3 1 1 5 4 7 15 n n n n n n C C A C A                 (Ở đây , k k n n A C lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử) 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C): 2 2 2 4 8 0 x y x y      .Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B. 2. Cho mặt phẳng (P): 2 2 1 0 x y z     và các đường thẳng: 1 2 1 3 5 5 : ; : 2 3 2 6 4 5 x y z x y z d d           . Tìm các điểm 1 2 d , d M N   sao cho MN // (P) và cách (P) một khoảng bằng 2. Câu VII.b: Tính đạo hàm f’(x) của hsố   3 1 ( ) ln 3 f x x   và giải bpt: 2 0 6 sin 2 '( ) 2 t dt f x x      Đáp án Câu Ý Nội dung Điểm 2 1,00 + Khi m = 0 1 y x    , nên hàm số không có cực trị. 0,25 + Khi 0 m    2 ' 3 6 1 y mx mx m      Hàm số không có cực trị khi và chỉ khi ' 0 y  không có nghiệm hoặc có nghiệm kép 0,50   2 2 ' 9 3 1 12 3 0 m m m m m         1 0 4 m    0,25 1 1,00   4 4 sin cos 1 tan cot sin 2 2 x x x x x    (1) Điều kiện: sin 2 0 x  0,25 2 1 1 sin 2 1 sin cos 2 (1) sin 2 2 cos sin x x x x x x           0,25 2 2 1 1 sin 2 1 1 2 1 sin 2 1 sin 2 0 sin 2 sin 2 2 x x x x x         Vậy phương trình đã cho vô nghiệm. 0,50 2 1,00     2 3 4 8 2 log 1 2 log 4 log 4 x x x       (2) Điều kiện: 1 0 4 4 4 0 1 4 0 x x x x x                     0,25         2 2 2 2 2 2 2 2 2 2 (2) log 1 2 log 4 log 4 log 1 2 log 16 log 4 1 log 16 4 1 16 x x x x x x x x x                     0,25 + Với 1 4 x    ta có phương trình 2 4 12 0 (3) x x   ;   2 (3) 6 x x        lo¹i 0,25 + Với 4 1 x     ta có phương trình 2 4 20 0 x x    (4);     2 24 4 2 24 x x          lo¹i Vậy phương trình đã cho có hai nghiệm là 2 x  hoặc   2 1 6 x   0,25 III 1,00 Đặt 2 2 2 2 1 1 2 2 dx tdt t x t x tdt xdx x x            2 2 1 1 dx tdt tdt x t t       + Đổi cận: 1 3 2 2 3 1 2 2 x t x t       0,50 1 3 3 2 2 2 1 2 2 1 2 3 2 2 1 1 1 7 4 3 ln ln 1 1 2 1 2 3 | dt dt t A t t t                    0,50 IV 1,00 Gọi E là trung điểm của AB, ta có: , OE AB SE AB   , suy ra   SOE AB  . Dựng   OH SE OH SAB    , vậy OH là khoảng cách từ O đến (SAB), theo giả thiết thì OH = 1. Tam giác SOE vuông tại O, OH là đường cao, ta có: 2 2 2 2 2 2 2 1 1 1 1 1 1 1 8 1 9 9 9 3 8 2 2 OH SO OE OE OH SO OE OE             2 2 2 9 81 9 9 8 8 2 2 SE OE SO SE       0,25 2 1 36 . 8 2 9 2 2 2 SAB SAB S S AB SE AB SE        2 2 2 2 2 2 1 9 9 265 4 2 32 2 8 8 8 OA AE OE AB OE                0,25 Thể tích hình nón đã cho: 2 1 1 265 265 . . .3 3 3 8 8 V OA SO       0,25 Diện tích xung quanh của hình nón đã cho: 2 2 2 265 337 337 9 8 8 8 265 337 89305 . . . 8 8 8 xq SA SO OA SA S OA SA              0,25 V 1,00 Hệ bất phương trình   2 2 7 6 0 (1) 2 1 3 0 (2) x x x m x m                1 1 6 x    . Hệ đã cho có nghiệm khi và chỉ khi tồn tại   0 1;6 x  thỏa mãn (2). 0,25         2 2 2 3 2 2 3 2 1 ( 1;6 2 1 0) 2 1 x x x x x m m do x x x               Gọi   2 2 3 ( ) ; 1;6 2 1 x x f x x x      0,25 Hệ đã cho có nghiệm   0 0 1;6 : ( ) x f x m             2 2 2 2 2 4 2 2 8 ' 2 1 2 1 x x x x f x x x         ;   2 1 17 ' 0 4 0 2 f x x x x          Vì   1;6 x nên chỉ nhận 1 17 2 x    0,25 Ta có: 2 27 1 17 3 17 (1) , (6) , 3 13 2 2 f f f                Vì f liên tục và có đạo hàm trên [1;6] nên 27 max ( ) 13 f x  Do đó     0 0 1;6 27 1;6 : ( ) max ( ) 13 x x f x m f x m m         0,25 VIa 2,00 1 1,00 Tọa độ của A nghiệm đúng hệ phương trình:   4 3 4 0 2 2;4 2 6 0 4 x y x A x y y                   0,25 Tọa độ của B nghiệm đúng hệ phương trình   4 3 4 0 1 1;0 1 0 0 x y x B x y y                 0,25 Đường thẳng AC đi qua điểm A(-2;4) nên phương trình có dạng:     2 4 0 2 4 0 a x b y ax by a b          Gọi 1 2 3 :4 3 4 0; : 2 6 0; : 2 4 0 x y x y ax by a b              Từ giả thiết suy ra   ·   · 2 3 1 2 ; ;      . Do đó   ·   ·   2 3 1 2 2 2 2 2 |1. 2. | |4.1 2.3| cos ; cos ; 25. 5 5. 0 | 2 | 2 3 4 0 3 4 0 a b a b a a b a b a a b a b                         + a = 0 0 b   . Do đó 3 : 4 0 y    + 3a – 4b = 0: Có thể cho a = 4 thì b = 3. Suy ra 3 : 4 3 4 0 x y     (trùng với 1  ). Do vậy, phương trình của đường thẳng AC là y - 4 = 0. 0,25 Tọa độ của C nghiệm đúng hệ phương trình:   4 0 5 5;4 1 0 4 y x C x y y                0,25 2 1,00 Gọi I(a;b;c) là tâm và R là bán kính của mặt cầu (S). Từ giả thiết ta có:                     , , , , , OI AI OI AI d I P d I Q OI d I P d I P d I Q               0,25 Ta có:       2 2 2 2 2 2 2 2 5 2 1 10 4 2 30 (1) OI AI OI AI a b c a b c a b c                         2 2 2 2 2 2 2 | 2 2 5| , 9 2 2 5 (2) 3 a b c OI d I P a b c a b c a b c                        | 2 2 5| | 2 2 13| , , 3 3 2 2 5 2 2 13 ( ) 2 2 4 (3) 2 2 5 2 2 13 a b c a b c d I P d I Q a b c a b c a b c a b c a b c                                 lo¹i Từ (1) và (3) suy ra: 17 11 11 4a ; (4) 3 6 3 a b c     0,25 Từ (2) và (3) suy ra: 2 2 2 9 (5) a b c   Thế (4) vào (5) và thu gọn ta được:     2 221 658 0 a a    Như vậy 2 a  hoặc 658 221 a  .Suy ra: I(2;2;1) và R = 3 hoặc 658 46 67 ; ; 221 221 221 I        và R = 3. 0,25 Vậy có hai mặt cầu thỏa mãn yêu cầu với phương trình lần lượt là:       2 2 2 2 2 1 9 x y z       và 2 2 2 658 46 67 9 221 221 221 x y z                         0,25 VIIa 1,00 Điều kiện: 1 4 5 n n     Hệ điều kiện ban đầu tương đương:                            1 2 3 4 1 2 3 5 2 3 4.3.2.1 3.2.1 4 1 1 2 3 7 1 1 5.4.3.2.1 15 n n n n n n n n n n n n n n n n n                          0,50 2 2 9 22 0 5 50 0 10 5 n n n n n n                0,50 VIb 2,00 1 1,00 Tọa độ giao điểm A, B là nghiệm của hệ phương trình 2 2 0; 2 2 4 8 0 1; 3 5 2 0 y x x y x y y x x y                     0,50 Vì A có hoành độ dương nên ta được A(2;0), B(-3;-1). Vì · 0 90 ABC  nên AC là đường kính đường tròn, tức là điểm C đối xứng với điểm A qua tâm I của đường tròn. Tâm I(-1;2), suy ra C(-4;4). 0,50 2 1,00 Phương trình tham số của d 1 là: 1 2 3 3 2 x t y t z t           . M thuộc d 1 nên tọa độ của M   1 2 ;3 3 ;2 t t t   . Theo đề:         1 2 2 2 2 |1 2 2 3 3 4 1| |12 6| , 2 2 12 6 6 1, 0. 3 1 2 2 t t t t d M P t t t                     0,25 + Với t 1 = 1 ta được   1 3;0;2 M ; + Với t 2 = 0 ta được   2 1;3;0 M 0,25 + Ứng với M 1 , điểm N 1 2 d  cần tìm phải là giao của d 2 với mp qua M 1 và // mp (P), gọi mp này là (Q 1 ). PT (Q 1 ) là:     3 2 2 2 0 2 2 7 0 (1) x y z x y z          . Phương trình tham số của d 2 là: 5 6 4 5 5 x t y t z t            (2) Thay (2) vào (1), ta được: -12t – 12 = 0  t = -1. Điểm N 1 cần tìm là N 1 (-1;-4;0). 0,25 + Ứng với M 2 , tương tự tìm được N 2 (5;0;-5). 0,25 VIIb 1,00 Điều kiện   3 1 0 3 3 x x           3 1 ( ) ln ln1 3ln 3 3ln 3 3 f x x x x         ;     1 3 '( ) 3 3 ' 3 3 f x x x x       0,25 Ta có:       2 0 0 0 6 6 1 cos 3 3 sin sin sin 0 sin 0 3 2 2 | t t dt dt t t                         0,25 Khi đó: 2 0 6 sin 2 '( ) 2 t dt f x x         2 1 3 3 2 0 3 2 3 2 1 3 3; 2 3; 2 2 x x x x x x x x x x x                                  0,50 .  2 2 2 2 2 2 2 2 5 2 1 10 4 2 30 (1) OI AI OI AI a b c a b c a b c                         2 2 2 2 2 2 2 | 2 2 5| , 9 2 2 5 (2) 3 a. 1,00 Đặt 2 2 2 2 1 1 2 2 dx tdt t x t x tdt xdx x x            2 2 1 1 dx tdt tdt x t t       + Đổi cận: 1 3 2 2 3 1 2 2 x t x t 

Ngày đăng: 21/02/2014, 09:20

HÌNH ẢNH LIÊN QUAN

Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, - Tài liệu Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 33 - Đề 2 pdf
u IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, (Trang 1)
Thể tích hình nón đã cho: 1 21 265 265 - Tài liệu Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 33 - Đề 2 pdf
h ể tích hình nón đã cho: 1 21 265 265 (Trang 3)

TỪ KHÓA LIÊN QUAN