1. Trang chủ
  2. » Luận Văn - Báo Cáo

vành hoàn thiện và nửa hoàn thiện và các đặc trưng đồng điều của chúng

62 532 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 589,23 KB

Nội dung

BỘ GIÁO DỤC ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Văn Thị Kim Xuyến VÀNH HOÀN THIỆN NỬA HOÀN THIỆN CÁC ĐẶC TRƯNG ĐỒNG ĐIỀU CỦA CHÚNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2011 BỘ GIÁO DỤC ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Văn Thị Kim Xuyến VÀNH HOÀN THIỆN NỬA HOÀN THIỆNCÁC ĐẶC TRƯNG ĐỒNG ĐIỀU CỦA CHÚNG Chuyên ngành: Đại số lý thuyết số Mã số: 60.46.05 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS BÙI TƯỜNG TRÍ Thành phố Hồ Chí Minh - 2011 LỜI NÓI ĐẦU Lý thuyết về các môđun trên vành Artin một phía đã phát triển rất mạnh mẽ. Đến thập niên 1960, một phần lý thuyết này đã được mở rộng đến vành nửa hoàn thiện vành hoàn thiện phải (trái). Điều này thật sự có ý nghĩa đối với đại số đồng điều bởi các đặc trưng khá thú vị của chúng: mọi môđun (trái, phải) hữu hạn sinh trên vành nửa hoàn thiện đều có cái phủ xạ ảnh, mọi môđun phải dẹt trên vành hoàn thiện phải đều là môđun xạ ảnh… Những đặc trưng khá thú vị này đã đem lại nhiều ứng dụng cho phương pháp đồng điều trong lý thuyết vành. Vành nửa hoàn thiện vành hoàn thiện phải đều được khái quát từ vành Artin một phía. Hơn nữa, chúng còn được khái quát từ vành nửa nguyên sơ. Ta đã biết vành R được gọi là vành nửa nguyên sơ nếu R radR là vành nửa đơn radR là lũy linh. Sự xuất hiện của vành hoàn thiện phải vành nửa hoàn thiện là kết quả của việc xem xét tính lũy linh của radR . Ngoài ra, vành hoàn thiện phải còn được đặc trưng bởi điều kiện dây chuyền giảm (DCC) trên các iđêan trái chính. Mối quan hệ giữa hai lớp vành này với các lớp vành cơ bản được thể hiện qua sơ đồ sau: {vành Artin một phía} ∩ {vành nửa nguyên sơ} ∩ {vành hoàn thiện phải} ∩ {vành địa phương} ⊂ {vành nửa hoàn thiện} ⊂ {vành nửa địa phương} Luận văn nghiên cứu mối quan hệ giữa lớp các vành hoàn thiện, nửa hoàn thiện với các lớp vành Artin trái (phải), vành nửa nguyên sơ, vành nửa địa phương, vành địa phương, đồng thời nghiên cứu các đặc trưng đồng điều của vành nửa hoàn thiện vành hoàn thiện phải. Luận văn gồm ba chương: - Chương 1: Những vấn đề cơ bản của lý thuyết vành lý thuyết môđun - Chương 2: Lớp các vành hoàn thiện, nửa hoàn thiện mối quan hệ của chúng với các lớp vành cơ bản - Chương 3: Đặc trưng đồng điều của vành hoàn thiện nửa hoàn thiện Tác giả xin bày tỏ lòng biết ơn sâu sắc đối với PGS. TS Bùi Tường Trí, người đã trực tiếp tận tình giúp đỡ hướng dẫn luận văn. Tác giả xin chân thành cảm ơn Quý Thầy, Cô Trường Đại học Sư phạm Tp. Hồ Chí Minh đã tận tình giảng dạy truyền đạt nhiều kiến thức mới, bổ ích giúp tác giả làm quen dần với việc nghiên cứu khoa học. Vì kiến thức bản thân còn nhiều hạn chế nên luận văn này không tránh khỏi nhiều thiếu sót, rất mong được sự chỉ bảo của quý Thầy, Cô sự góp ý chân thành của độc giả. Thành phố Hồ Chí Minh, tháng 08 năm 2011 Văn Thị Kim Xuyến Mục lục LỜI NÓI ĐẦU 3 Mục lục 5 Chương 1: NHỮNG VẤN ĐỀ CƠ BẢN CỦA LÝ THUYẾT VÀNH LÝ THUYẾT MÔĐUN 8 1.1. Định nghĩa môđun, môđun con 8 1.1.1. Định nghĩa môđun 8 1.1.2. Định nghĩa môđun con 8 1.1.3. Ann(M) 9 1.2. Đồng cấu môđun 9 1.3. Điều kiện dây chuyền tăng (ACC) điều kiện dây chuyền giảm (DCC) 10 1.3.1. Điều kiện dây chuyền tăng (ACC) 10 1.3.2. Điều kiện dây chuyền giảm (DCC) 10 1.4. Môđun Noether môđun Artin 10 1.5. Vành Noether vành Artin 11 1.5.1. Vành Noether 11 1.5.2. Vành Artin 11 1.6. Tổng trực tiếp tích trực tiếp 11 1.7. Dãy khớp 13 1.7.1. Định nghĩa dãy khớp 13 1.7.2. Định nghĩa dãy khớp ngắn 13 1.7.3. Định nghĩa dãy khớp ngắn chẻ 13 1.7.4. Một số tính chất 13 1.8. Môđun tự do 14 1.9. Môđun xạ ảnh 14 1.9.1. Định nghĩa môđun xạ ảnh 14 1.9.2. Một số tính chất 14 1.10. Hàm tử tenxơ 14 1.11. Môđun dẹt 16 1.12. Môđun đơn, môđun nửa đơn 17 1.12.1. Định nghĩa môđun đơn (môđun bất khả qui) 17 1.12.2. Định nghĩa môđun nửa đơn 17 1.12.3. Tính chất 17 1.13. Vành đơn, vành nửa đơn 17 1.14. Vành nguyên 17 1.15. Vành chia 17 1.16. Vành nguyên thủy 18 1.17. Tập nil , tập lũy linh 18 1.18. Radical Jacobson của một vành 18 1.18.1. Định nghĩa radical Jacobson của một vành 18 1.18.2. Định nghĩa vành J-nửa đơn (vành nguyên thủy) 18 1.18.3. Một số tính chất 18 1.19. Vành nửa nguyên sơ 19 1.20. Iđêan nguyên tố, iđêan nửa nguyên tố 20 1.21. Radical nguyên tố của một vành 20 1.22. Vành nguyên tố, vành nửa nguyên tố 20 1.23. Tập lũy linh địa phương 21 1.24. Định nghĩa phần tử lũy đẳng 21 1.25. Vành địa phương 21 1.26. Môđun không phân tích được, môđun thật sự không phân tích được 21 1.27. Vành nửa địa phương 22 1.28. Lý thuyết về các phần tử lũy đẳng 23 Chương 2: LỚP CÁC VÀNH HOÀN THIỆN, NỬA HOÀN THIỆN MỐI QUAN HỆ CỦA CHÚNG VỚI CÁC LỚP VÀNH CƠ BẢN 27 2.1. Vành nửa hoàn thiện 27 2.2. Vành hoàn thiện 34 2.3. Một số nghiên cứu về các phát biểu tương đương của định lí Bass 41 Chương 3: ĐẶC TRƯNG ĐỒNG ĐIỀU CỦA VÀNH NỬA HOÀN THIỆN VÀNH HOÀN THIỆN 44 3.1. Môđun con đủ bé 44 3.1.1. Định nghĩa 44 3.2.2. Một số nhận xét 44 3.2. Radical của môđun 45 3.2.1. Định nghĩa 45 3.2.2. Nhận xét 3.2 45 3.3. Một số tính chất 45 3.4. Cái phủ xạ ảnh 47 3.4.1. Định nghĩa 47 3.4.2. Một số nhận xét về cái phủ xạ ảnh 48 3.5. Đặc trưng đồng điều của vành hoàn thiện vành nửa hoàn thiện 49 3.6. Một số nghiên cứu thêm về các đặc trưng đồng điều của vành hoàn thiện phải vành nửa hoàn thiện 59 Kết luận 61 Tài liệu tham khảo 62 Chương 1: NHỮNG VẤN ĐỀ CƠ BẢN CỦA LÝ THUYẾT VÀNH LÝ THUYẾT MÔĐUN 1.1. Định nghĩa môđun, môđun con 1.1.1. Định nghĩa môđun Cho R là vành có đơn vị. Nhóm cộng Aben ( ) ,M + được gọi là một môđun phải trên vành R nếu trên M ta đã xác định được một tác động phải từ R, tức có ánh xạ :MR M µ ×→ mà kết quả ( ) ,xr µ ta ký hiệu là xr gọi là tích của phần x với hệ tử r, ngoài ra các tiên đề sau cần được thỏa mãn: M 1 : .1xx= M 2 : ( ) ( ) x rs xr s= M 3 : ( ) x y r xr yr+=+ M 4 : ( ) x r s xr xs+=+ với mọi ,rs R∈ mọi ,xy M∈ . Ký hiệu: R M , ta gọi M là R-môđun phải, R là vành hệ tử. Môđun trái trên vành R được định nghĩa hoàn toàn tương tự nếu trên M ta đã xác định được một tác động trái từ R. 1.1.2. Định nghĩa môđun con Cho A, B là các tập con của môđun M KR⊂ ( với ,,ABK≠∅ ), ta định nghĩa: { } { } , , A B a ba Ab B KA ra r K a A += + ∈ ∈ = ∈∈ Tập A ≠∅ trong X được gọi là bộ phận ổn định của M nếu AA A+⊂ RA A⊂ . Mỗi bộ phận ổn định A của môđun M, cùng với các phép toán cảm sinh lập thành một R-môđun ta gọi A là môđun con của môđun M. Nhận xét: - Mỗi môđun bất kỳ luôn có hai môđun con tầm thường là (0) chính nó. - Mỗi vành R đều là R-môđun trái (phải) với các môđun con chính là các iđêan trái (phải) của R. 1.1.3. Ann(M) Cho M là R-môđun, ta định nghĩa ann(M) là tập tất cả các phần tử của vành hệ tử R, linh hóa M. Cụ thể: - Nếu M là R-môđun phải thì ( ) ( ) { } 0ann M r R Mr=∈= . - Nếu M là R-môđun trái thì ( ) ( ) { } 0ann M r R rM =∈= . 1.2. Đồng cấu môđun Định nghĩa. Cho M, M’ là các R-môđun. Ánh xạ ' :fM M→ được gọi là R-đồng cấu nếu ( ) ( ) ( ) 1122112 2 frx rx rfx rfx+= + với mọi 12 ,xx M∈ với mọi 12 ,rr R∈ . Để giản tiện về mặt ngôn ngữ, các R-đồng cấu được gọi một cách đơn giản là các đồng cấu. Khi f là đồng cấu, ta định nghĩa: + Ảnh của f là ( ) ( ) { } fM fxx M= ∈ . + Hạt nhân của f là ( ) ( ) { } 1 00 Kerf f x M f x − ==∈= . Đồng cấu f được gọi là đơn cấu nếu f đồng thời là đơn ánh. Đồng cấu f được gọi là toàn cấu nếu f đồng thời là toàn ánh. Nếu f vừa là đơn cấu vừa là toàn cấu thì f được gọi là đẳng cấu. Tính chất - Cho ' :fM M→ là đồng cấu. Khi đó nếu N là môđun con của M thì f(N) là mô đun con của M’, còn nếu N’ là môđun con của M’ thì ( ) 1' fN − là môđun con của M. - Tích của hai đồng cấu là một đồng cấu. Tích của hai đơn cấu (toàn cấu, đẳng cấu) là một đơn cấu (toàn cấu, đẳng cấu). - Đồng cấu f là đơn cấu khi chỉ khi Kerf = (0). -Nếu ' :fM M→ là một đẳng cấu thì 1' :fM M − → cũng là một đẳng cấu. - Nếu ' :fM M→ là một toàn cấu thì M Y Kerf ≅ . 1.3. Điều kiện dây chuyền tăng (ACC) điều kiện dây chuyền giảm (DCC) 1.3.1. Điều kiện dây chuyền tăng (ACC) Một họ các tập con { } i iI C ∈ của tập hợp C được gọi là thỏa mãn điều kiện dây chuyền tăng (viết tắt là ACC) nếu trong họ không tồn tại một dây chuyền vô hạn, tăng nghiêm ngặt: 12 ii CC ≠≠ ⊂⊂ Điều này tương đương với một trong các khẳng định sau: (1) Mọi dây chuyền tăng 12 ii CC⊆⊆ trong họ đều dừng, nghĩa là tồn tại n∈ sao cho 12 nn n ii i CC C ++ = = = (2) Mọi họ con khác rỗng của họ đều có phần tử tối đại. 1.3.2. Điều kiện dây chuyền giảm (DCC) Một họ các tập con { } i iI C ∈ của tập hợp C được gọi là thỏa mãn điều kiện dây chuyền giảm (viết tắt là DCC) nếu trong họ không tồn tại một dây chuyền vô hạn, giảm nghiêm ngặt: 12 ii CC ≠≠ ⊃⊃ Điều này tương đương với một trong các khẳng định sau: (1) Mọi dây chuyền giảm 12 ii CC⊇⊇ trong họ đều dừng, nghĩa là tồn tại n∈ sao cho 12 nn n ii i CC C ++ = = = (2) Mọi họ con khác rỗng của họ đều có phần tử tối tiểu. 1.4. Môđun Noether môđun Artin Cho vành R M là R-môđun trái (hoặc R-môđun phải). Ta nói M là Noether (Artin) nếu họ gồm tất cả các môđun con của M thỏa mãn ACC (DCC). Tính chất: - Môđun M là Noether khi chỉ khi mọi môđun con của M đều hữu hạn sinh. - Môđun M vừa Noether vừa Artin khi chỉ khi M có chuỗi hợp thành (hữu hạn) [...]... MỐI QUAN HỆ CỦA CHÚNG VỚI CÁC LỚP VÀNH CƠ BẢN Ở chương này, tác giả trình bày định nghĩa và các tính chất cơ bản của vành nửa hoàn thiện vành hoàn thiện phải, đặc biệt là tính chất của các phần tử lũy đẳng trong lớp các vành nửa hoàn thiện 2.1 Vành nửa hoàn thiện 2.1.1 Định nghĩa Vành R được gọi là nửa hoàn thiện nếu R là vành nửa địa phương mọi phần tử lũy đẳng của R radR có thể được nâng... lũy đẳng 0 1 trong R Nói cách khác, mọi phần tử lũy đẳng của R radR đều có thể được nâng lên từ R Do đó, vành địa phương cũng là vành nửa hoàn thiện Như vậy, các vành nửa hoàn thiện có thể được xem như sự khái quát của vành địa phương vành Artin một phía .Đồng thời, theo định nghĩa trên thì lớp các vành nửa hoàn thiện là lớp con thật sự của lớp các vành nửa địa phương vì có những vànhnửa địa... trực tiếp của các vành địa phương Chứng minh Vì vành địa phương là nửa hoàn thiện tổng trực tiếp của các vành nửa hoàn thiệnvành nửa hoàn thiện nên ta có chiều đảo Giả sử R là vành giao hoán nửa hoàn thiện Khi đó, 1 = e1 + + en , với các phần tử ei là các phần tử lũy đẳng địa phương trực giao với nhau từng đôi Do đó, R = e1 R ⊕ ⊕ en R ei Rei là vành địa phương Vì R là vành giao hoán ei lũy... 1.27 Vành nửa địa phương Định nghĩa Vành R được gọi là nửa địa phương nếu R radR là vành Artin trái hoặc R radR là vành nửa đơn Nhận xét: - Vành địa phương là nửa địa phương, vành Artin một phía là vành nửa địa phương - Tổng trực tiếp của các vành nửa địa phương là vành địa phương Mệnh đề 1.3 Cho K là vành nửa địa phương giao hoán, R là K -đại số là K -môđun hữu hạn sinh Khi đó, R là vành nửa địa... Radical nguyên tố của một vành Radical nguyên tố của vành R là giao tất cả các iđêan nguyên tố của vành R Ký hiệu: Nil∗ R Nil∗ R là iđêan nửa nguyên tố nhỏ nhất của vành R 1.22 Vành nguyên tố, vành nửa nguyên tố Vành R được gọi là vành nguyên tố (nửa nguyên tố) nếu ( 0 ) là iđêan nguyên tố (nửa nguyên tố) của R Mệnh đề 1.2 Với mỗi vành R, các phát biểu sau là tương đương: (1) R là vành nửa nguyên tố;... thiện Vì vậy, tích trực tiếp của một vành địa phương một vành Artin trái là vành nửa hoàn thiện 2.1.2 Ví dụ về vành nửa hoàn thiện Cho K là vành địa phương Khi đó, R = M n ( K ) là vành nửa hoàn thiện Thật vậy, ta có Mn (K ) Mn (K ) R = = ≅ Mn K , radR radM n ( K ) M n ( radK ) ( ) K=K với radK ( ) Vì M n K là vành Artin đơn nên R radR cũng là Artin đơn Do đó, R là vành nửa địa phương ( ) Bây giờ... vậy, M n ( K ) ≅ End ( K n ) K cũng là nửa hoàn thiện Sau đây là một kết quả về cấu trúc của một lớp con của lớp các vành nửa hoàn thiện: 2.1.7 Định lí 2.3 Với mỗi vành R bất kỳ, các phát biểu sau là tương đương: (1) R là vành nửa hoàn thiện R radR là vành đơn; (2) R ≅ M n ( K ) , với K là vành địa phương nòa đó Nếu (1) hoặc (2) xảy ra thì n là duy nhất vành địa phương K là duy nhất sai khác... Vì R là nửa đơn nên theo hệ quả 1.5 (3), e bất khả qui phải trong R , theo mệnh đề 1.9 thì e là lũy đẳng địa phương trong R Kết quả này cho chúng ta đặc trưng đầu tiên của lớp các vành nửa hoàn thiện 2.1.4 Định lý 2.1 Vành R là vành nửa hoàn thiện khi chỉ khi 1 = e1 + e2 + + en , với {ei }i =1,n là tập các phần tử lũy đẳng địa phương trực giao Chứng minh ● Giả sử R là vành nửa hoàn thiện Khi... Hệ quả 2.1 Nếu K là vành nửa hoàn thiện thì M n ( K ) là vành nửa hoàn thiện Chứng minh Vì K là vành nửa hoàn thiện nên End ( K K ) ≅ K cũng là nửa hoàn thiện Theo định lí 2.2, K K là tổng trực tiếp của các K-môđun thật sự không phân tích được, suy ra ( K n ) K cũng là tổng trực tiếp các K-môđun thật sự không phân tích được Vì thế, theo định lí 2.2, End ( K n ) K là vành nửa hoàn thiện Vì vậy, M n (... không là nửa hoàn thiện Chẳng hạn, nếu R là vành nguyên nửa địa phương giao hoán chỉ có hai ideal tối đại m 1 m 2 thì R radR ≅ R m × R m có hai phần tử lũy đẳng không tầm thường 1 2 ( ) ( ) là 1;0 0;1 , hai phần tử này không được nâng lên R vì R chỉ có hai phần tử lũy đẳng tầm thường Vì thế, R không là vành nửa hoàn thiện + Tổng trực tiếp của các vành nửa hoàn thiệnvành nửa hoàn thiện Vì . Đặc trưng đồng điều của vành hoàn thiện và vành nửa hoàn thiện 49 3.6. Một số nghiên cứu thêm về các đặc trưng đồng điều của vành hoàn thiện phải và vành. Lớp các vành hoàn thiện, nửa hoàn thiện và mối quan hệ của chúng với các lớp vành cơ bản - Chương 3: Đặc trưng đồng điều của vành hoàn thiện và nửa hoàn

Ngày đăng: 19/02/2014, 08:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w