1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài giảng về nguyên hàm tích phân 2014

68 1,6K 252

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 68
Dung lượng 1,34 MB

Nội dung

tích phân

Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 1 LUYỆN THI ĐẠI HỌC TRỰC TUYẾN §ÆNG VIÖT HïNG BÀI GIẢNG TRỌNG TÂM TÍCH PHÂN Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 2 I. NHẮC LẠI KHÁI NIỆM VỀ VI PHÂN CỦA HÀM SỐ Vi phân của hàm số y = f(x) được kí hiệu là dy và cho bởi công thức = = = ( ) ' '( ) dy df x y dx f x dx Ví d ụ :  d(x 2 – 2x + 2) = (x 2 – 2x + 2)′dx = (2x – 2)dx  d(sinx + 2cosx) = (sinx + 2cosx)′dx = (cosx – 2sinx)dx    Chú ý: Từ công thức vi phân trên ta dễ dàng thu được một số kết quả sau  ( ) ( ) 1 2 2 2 2 d x dx dx d x = ⇒ =  ( ) ( ) 1 3 3 3 3 d x dx dx d x = ⇒ =  ( ) ( ) ( ) 2 2 2 2 1 1 1 2 2 2 2 x xdx d d x d x a d a x   = = = ± = − −        ( ) ( ) ( ) 3 2 3 3 3 1 1 1 3 3 3 3 x x dx d d x d x a d a x   = = = ± = − −        ( ) ( ) ( ) ax 1 1 ln ax ln ax d b dx dx d b d x ax b a b a x + = = + → = + +  ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 sin ax sin ax ax cos ax sin 2 os2 2 b dx b d b d b xdx d c x a a + = + + = − + → = −  ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 cos cos sin cos2 sin2 2 ax b dx ax b d ax b d ax b xdx d x a a + = + + = + → =  ( ) ( ) ( ) ax 2 2 1 1 1 ax 2 b ax b ax b x x e dx e d b d e e dx d e a a + + + = + = → =  ( ) ( ) ( ) ( ) ( ) 2 2 2 ax 1 1 1 tan tan2 2 cos cos cos 2 d b dx dx d ax b d x a a ax b ax b x + = =  +  → =   + +  ( ) ( ) ( ) ( ) ( ) 2 2 2 ax 1 1 1 cot cot2 2 sin sin sin 2 d b dx dx d ax b d x a a ax b ax b x + = = −  +  → = −   + + II. KHÁI NIỆM VỀ NGUYÊN HÀM Cho hàm s ố f(x) liên t ụ c trên m ộ t kho ả ng (a; b). Hàm F(x) đượ c g ọ i là nguyên hàm c ủ a hàm s ố f(x) n ế u F’(x) = f(x) và đượ c vi ế t là ( ) f x dx ∫ . T ừ đ ó ta có : ( ) ( ) f x dx F x = ∫ Nh ậ n xét: V ớ i C là m ộ t h ằ ng s ố nào đ ó thì ta luôn có (F(x) + C)’ = F’(x) nên t ổ ng quát hóa ta vi ế t ( ) ( ) f x dx F x C = + ∫ , khi đ ó F(x) + C đượ c g ọ i là m ộ t h ọ nguyên hàm c ủ a hàm s ố f(x). V ớ i m ộ t giá tr ị c ụ th ể c ủ a C thì ta đượ c m ộ t nguyên hàm c ủ a hàm s ố đ ã cho. Ví d ụ :  Hàm s ố f(x) = 2x có nguyên hàm là F(x) = x 2 + C, vì (x 2 + C)’ = 2x  Hàm s ố f(x) = sinx có nguyên hàm là F(x) = –cosx + C, vì (–cosx + C)’ = sinx III. CÁC TÍNH CHẤT CƠ BẢN CỦA NGUYÊN HÀM Cho các hàm s ố f(x) và g(x) liên t ụ c và t ồ n t ạ i các nguyên hàm t ươ ng ứ ng F(x) và G(x), khi đ ó ta có các tính ch ấ t sau: a) Tính ch ấ t 1: ( ) ( ) ( ) f x dx f x ′ = ∫ Chứng minh: Do F(x) là nguyên hàm của hàm số f(x) nên hiển nhiên ta có ( ) ( ) ( ) ( ) ( ) f x dx F x f x ′ ′ = = ⇒ ∫ đpcm. 01. ĐẠI CƯƠNG VỀ NGUYÊN HÀM Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 3 b) Tính chất 2: [ ] ( ) ( ) ( ) ( ) ( ) f x g x dx f x dx g x dx + = + ∫ ∫ ∫ Chứng minh: Theo tính chất 1 ta có, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) f x dx g x dx f x dx g x dx f x g x ′ ′ ′ + = + = + ∫ ∫ ∫ ∫ Theo định nghĩa nguyên hàm thì vế phải chính là nguyên hàm của f(x) + g(x). Từ đó ta có [ ] ( ) ( ) ( ) ( ) ( ) f x g x dx f x dx g x dx + = + ∫ ∫ ∫ c) Tính chất 3: ( ) . ( ) ( ) , 0 k f x dx k f x dx k = ∀ ≠ ∫ ∫ Chứng minh: Tương tự như tính chất 2, ta xét ( ) ( ) . ( ) . ( ) ( ) k f x dx k f x k f x dx k f x dx ′ = → = ⇒ ∫ ∫ ∫ đpcm. d) Tính chất 4: ( ) ( ) ( ) f x dx f t dt f u du = = ∫ ∫ ∫ Tính ch ấ t trên đượ c g ọ i là tính bất biến c ủ a nguyên hàm, t ứ c là nguyên hàm c ủ a m ộ t hàm s ố ch ỉ ph ụ thu ộ c vào hàm, mà không ph ụ thu ộ c vào bi ế n. IV. CÁC CÔNG THỨC NGUYÊN HÀM    Công thức 1: dx x C = + ∫ Ch ứ ng minh: Th ậ t v ậ y, do ( ) 1 x C dx x C ′ + = ⇒ = + ∫  Chú ý: M ở r ộ ng v ớ i hàm s ố h ợ p ( ) u u x = , ta đượ c du u C = + ∫    Công thức 2: 1 1 + = + + ∫ n n x x dx C n Ch ứ ng minh: Th ậ t v ậ y, do 1 1 1 1 n n n n x x C x x dx C n n + + ′   + = ⇒ = +   + +   ∫  Chú ý: + M ở r ộ ng v ớ i hàm s ố h ợ p ( ) u u x = , ta đượ c 1 1 n n u u du C n + = + + ∫ + V ớ i 1 2 2 2 2 2 dx dx du n x C u C x x u = − ⇒ = = + ←→ = + ∫ ∫ ∫ + V ớ i 2 2 1 1 2 dx du n C C x x u u = − ⇒ = − + ←→ = − + ∫ ∫ Ví dụ: a) 3 2 3 x x dx C = + ∫ b) ( ) 5 4 4 2 2 2 5 x x x dx x dx xdx x C + = + = + + ∫ ∫ ∫ c) 1 1 2 2 2 2 2 3 3 3 3 3 3 1 2 2 2 3 x x x x x x x dx dx xdx x dx C x C x x − − = − = − = − + = − + ∫ ∫ ∫ ∫ d) ( ) ( ) ( ) ( ) 5 4 4 2 1 1 2 1 2 1 2 1 2 5 n u du x I x dx x d x I C + = + = + + → = + ∫ ∫ e) ( ) ( ) ( ) ( ) 2011 2010 2010 1 3 1 1 3 1 3 1 3 3 2011 n u du x I x dx x d x I C − = − = − − − → = − + ∫ ∫ Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 4 f) ( ) ( ) ( ) ( ) 2 2 2 2 1 1 1 1 1 . 2 2 2 1 2 2 1 2 1 2 1 du u d x dx I I C C x x x x + = = → = − + = − + + + + + ∫ ∫ g) ( ) ( ) ( ) 3 3 2 2 1 1 2 3 4 5 4 5 4 5 . 4 5 4 5 4 4 3 8 I x dx x d x I x C x C = + = + + ⇒ = + + = + + ∫ ∫    Công thức 3: ln dx x C x = + ∫ Chứng minh: Thật vậy, do ( ) 1 ln ln dx x C x C x x ′ + = ⇒ = + ∫  Chú ý: + Mở rộng với hàm số hợp ( ) u u x = , ta đượ c ln du u C u = + ∫ + ( ) 1 ln 2 1 1 2x 2 ln ax 1 ax ax ln 2 2 2 dx x k C d ax b dx k b C dx b a b a k x C k x  = + +  +  + = = + + →  + +  = − − +  −  ∫ ∫ ∫ ∫ Ví dụ: a) 4 3 3 1 1 1 2 ln 4 dx x x dx x dx dx x x C x x x x   + + = + + = + + +     ∫ ∫ ∫ ∫ b) ( ) 3 2 1 1 ln 3 2 3 2 3 3 2 3 du u d x dx I I x C x x + = = → = + + + + ∫ ∫ c) ( ) 2 2 2 2 1 2 3 3 3 3 2 2 3 ln 2 1 2 1 2 1 2 1 2 2 1 2 d x x x dx dx x dx xdx x x x C x x x x + + +   = + = + = + = + + +   + + + +   ∫ ∫ ∫ ∫ ∫    Công thức 4: sinx cos dx x C = − + ∫ Ch ứ ng minh: Th ậ t v ậ y, do ( ) cos sin x sinx cos x C dx x C ′ − + = ⇒ = − + ∫  Chú ý: + M ở r ộ ng v ớ i hàm s ố h ợ p ( ) u u x = , ta đượ c sinu cos du u C = − + ∫ + ( ) ( ) ( ) ( ) 1 1 1 sin sin cos sin 2 cos2 2 + = + + = − + + → = − + ∫ ∫ ∫ ax b dx ax b d ax b ax b C xdx x C a a Ví dụ: a) ( ) 3 2 2 1 1 1 sinx sinx cos 2 1 2 1 2 2 1 d x dx x x dx x xdx dx x dx x x x x −   + + = + + = − + =   − − −   ∫ ∫ ∫ ∫ ∫ ∫ 5 2 2 1 cos ln 2 1 5 2 x x x C = − + − + b) ( ) ( ) 4 3 3 1 3 1 3 sin2 sin 2 3 sin 2 2 os2 ln 4 3 4 3 4 3 2 4 4 3 2 4 d x dx x dx xdx xd x c x x C x x x −   + = + = + = − + − +   − − −   ∫ ∫ ∫ ∫ ∫ c) sin sinx sin3 2 x x dx   + +     ∫ Ta có ( ) ( ) ( ) ( ) 1 1 1 2 ; 2 2 2 ; 3 3 3 2 2 2 2 3 x x d dx dx d d x dx dx d x d x dx dx d x     = ⇒ = = ⇒ = = ⇒ =         Từ đó : ( ) ( ) 1 1 sin sinx sin3 sin sin 2 sin3 2 sin sin2 2 sin3 3 2 2 2 2 2 3 x x x x x dx dx xdx xdx d xd x xd x     + + = + + = + +         ∫ ∫ ∫ ∫ ∫ ∫ ∫ 1 1 2cos os2 os3 2 2 3 x c x c x C = − − − + Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 5    Công thức 5: cos sin xdx x C = + ∫ Chứng minh: Thật vậy, do ( ) sin cos cos sin ′ + = ⇒ = + ∫ x C x xdx x C  Chú ý: + Mở rộng với hàm số hợp ( ) u u x = , ta được cosu sin du u C = + ∫ + ( ) ( ) ( ) ( ) 1 1 1 cos cos sin cos2 sin 2 2 + = + + = + + → = + ∫ ∫ ∫ ax b dx ax b d ax b ax b C xdx x C a a Ví dụ: a) 4 1 5 cos sin cos sin x 4 sinx cos 4 5ln 1 1 1 x x x dx xdx dx dx x x x C x x −     − + = − + − = + + − + +     + +     ∫ ∫ ∫ ∫ b) ( ) 2 1 cos2 sin cos2 sin sin 2 cos 2 2 + − = + − = − − + ∫ ∫ ∫ ∫ x x x x dx xdx xdx xdx x x C c) ( ) 2 1 cos2 1 1 1 1 1 1 sin cos2 cos2 2 sin2 2 2 2 2 4 2 4 −   = = − = − = − +     ∫ ∫ ∫ ∫ x xdx dx x dx x xd x x x C    Công thức 6: 2 tan cos dx x C x = + ∫ Chứng minh: Thật vậy, do ( ) 2 2 1 tan tanx cos cos dx x C C x x ′ + = ⇒ = + ∫  Chú ý: + Mở rộng với hàm số hợp ( ) u u x = , ta được 2 tanu os du C c u = + ∫ + ( ) ( ) ( ) ( ) 2 2 2 1 1 1 tan tan2 cos cos cos 2 2 d ax b dx dx ax b C x C ax b a ax b a x + = = + + → = + + + ∫ ∫ ∫ Ví dụ: a) 2 2 1 1 cos sin 2 cos sin2 tan sin cos2 cos cos 2 dx x x dx xdx xdx x x x C x x   + − = + − = + + +     ∫ ∫ ∫ ∫ b) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 5 4 1 2 1 2 2 cos 2 1 5 4 cos 2 1 5 4 2 cos 2 1 4 5 4 d x d x dx dx I dx x x x x x x   − − = + = + = −     − − − − − −   ∫ ∫ ∫ ∫ ∫ ( ) 2 os 1 1 tan 2 1 ln 5 4 2 2 du c u x x C → = − − − + c) ( ) ( ) ( ) ( ) 2 os 2 2 3 2 1 1 tan 3 2 cos 3 2 2 cos 3 2 2 du c u d x dx I I x C x x − = = − → = − − + − − ∫ ∫    Công thức 7: 2 cot x sin dx C x = − + ∫ Ch ứ ng minh: Th ậ t v ậ y, do ( ) 2 2 1 cot cot x sin dx x C C sin x x ′ − + = ⇒ = − + ∫  Chú ý: + M ở r ộ ng v ớ i hàm s ố h ợ p ( ) u u x = , ta đượ c 2 cotu sin du C u = − + ∫ + ( ) ( ) ( ) ( ) 2 2 2 1 1 1 cot cot2 sin sin sin 2 2 + = = − + + → = − + + + ∫ ∫ ∫ d ax b dx dx ax b C x C ax b a ax b a x Ví dụ: a) 6 5 5 2 2 1 1 cos2 2 cos2 2 sin 2 cot sin sin 2 3 dx x x x dx xdx x dx x x C x x   − + = − + = + + +     ∫ ∫ ∫ ∫ Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 6 b) ( ) ( ) ( ) ( ) ( ) 2 sin 2 2 1 3 1 1 1 cot 1 3 cot 1 3 sin 1 3 3 sin 1 3 3 3 du u d x dx I I x C x C x x − = = − → = − − −  + = − +   − − ∫ ∫ c) 2 sin 2 2 2 2 2cot 2 sin sin 2 2 du u x d dx x I I C x x         = = → = − +                 ∫ ∫    Công thức 8: x x e dx e C = + ∫ Chứng minh: Thật vậy, do ( ) x x x x e C e e dx e C ′ + = ⇒ = + ∫  Chú ý: + Mở rộng với hàm số hợp ( ) u u x = , ta được u u e du e C = + ∫ + ( ) 2 2 2 2 1 1 1 2 1 2 + + + + + − −  = +   = + = + →   = − +   ∫ ∫ ∫ ∫ x k x k ax b ax b ax b k x k x e dx e C e dx e d ax b e C a a e dx e C Ví dụ: a) ( ) ( ) 2 1 2 1 2 1 2 2 2 3 1 4 4 1 1 2 1 4.2 sin 3 sin 3 2 3 sin 3 x x x d x dx e dx e dx dx e d x x x x x x x − + − + − +   − + = − + = − − + − +     ∫ ∫ ∫ ∫ ∫ ∫ 2 1 1 1 cot3 8 2 3 x e x x C − + = − + + + b) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 3 2 3 2 4 1 4 os 1 3 4 os 1 3 3 2 os 1 3 1 3 3 3 x x x e c x dx e dx c x dx e d x c x d x + + + + − = + − = + − − − ∫ ∫ ∫ ∫ ∫ ( ) 3 2 4 1 sin 1 3 3 3 x e x C + = − − +    Công thức 9: ln x x a a dx C a = + ∫ Chứng minh: Thật vậy, do ln ln ln ln x x x x x a a a a C a a dx C a a a ′   + = = ⇒ = +     ∫  Chú ý: + M ở r ộ ng v ớ i hàm s ố h ợ p ( ) u u x = , ta đượ c u u a du a C = + ∫ + ( ) 1 1 kx m kx m kx m a dx a d kx m a C k k + + + = + = + ∫ ∫ Ví dụ: a) ( ) ( ) ( ) 3 2 3 2 3 2 3 2 1 1 2 3 2 3 2 3 2 3 3 2 3 2 3ln2 2ln3 u x x a dux x x x x x I dx dx dx d x d x I C = + = + = + → = + + ∫ ∫ ∫ ∫ ∫ b) ( ) ( ) ( ) 1 2 1 2 4 3 1 2 4 3 1 2 4 3 4 3 1 3 2 3 2 2 3 2 1 2 4 3 2 4 2ln2 4 x x x x x x x x e dx dx e dx d x e d x e C − − + − + − + + − = − = − − − + = − + + ∫ ∫ ∫ ∫ ∫ BÀI TẬP LUYỆN TẬP: 1) ( ) 5 1 2 I x x dx = + ∫ 2) 3 5 2 7 1 3 I x dx x   = −     ∫ 3) ( ) 5 2 3 3 3 4 2 I x x x dx = − + ∫ 4) 3 4 2 5 1 2 4 x I x dx x x   = − +       ∫ 5) 5 1 x+ dx x I   =     ∫ 6) 4 6 2 2 3 x I dx x + = ∫ Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 7 7) ( ) 2 7 1x I dx x − = ∫ 8) ( ) 2 3 8 2 1 I x dx = − ∫ 9) ( ) 2 2 9 2 4x I dx x + = ∫ 10) 4 3 2 10 2 3 2 1 x x x I dx x + − + = ∫ 11) 2 11 x x x x I dx x − − = ∫ 12) 12 3 1 1 I dx x x   = −     ∫ 13) 3 13 1 I x dx x   = −     ∫ 14) 2 14 3 1 I x dx x   = +     ∫ 15) ( ) 2 3 15 2 3x x I dx x − = ∫ 16) ( ) ( ) 4 16 2 I x x x x dx = − − ∫ 17) 17 5 1 (2 3) I dx x = − ∫ 18) 18 4 1 ( 3) x I dx x + = − ∫ 19) 19 π sin 2 7 x I dx   = +     ∫ 20) 20 sin2 sin 3 x I x dx   = +     ∫ 21) 21 sin 2 x I x dx   = +     ∫ 22) 22 π 1 sin 3 sin 4 2 x I x dx   +   = + −         ∫ 23) 2 23 cos 2 x I dx = ∫ 24) 2 24 sin 2 x I dx = ∫ 26) 26 2 cos 4 dx I x = ∫ 27) ( ) 27 2 cos 2 1 dx I x = − ∫ 28) ( ) 2 28 tan 2 I x x dx = + ∫ 29) 4 29 tan I x dx = ∫ 30) 2 30 cot I xdx = ∫ 31) ( ) 31 2 sin 2 3 dx I x = + ∫ 32) 32 1 cos6 dx I x = − ∫ 33) 2 2 33 2 1 cot dx I x x x   = + +     ∫ 34) 2 34 1 dx 3 2 I x x   = +   +   ∫ 35) 2 35 1 sin 2 5 I x dx x   = −   −   ∫ 36) 36 2 dx 3 x I x + = − ∫ 37) 37 2 1 4 3 x I dx x − = + ∫ 38) 38 6 5 x I dx x = − ∫ 39) 2 39 11 3 x x I dx x + + = + ∫ 40) 2 40 2 5 1 x x I dx x − + = − ∫ 41) 3 2 41 3 2 1 2 x x x I dx x + + + = + ∫ 42) 3 2 42 4 4 1 2 1 x x I dx x + − = + ∫ 43) 2 43 4 6 1 2 1 x x I dx x + + = + ∫ 44) 2x 3 44 I e dx − + = ∫ 45) 3 1 45 cos(1 ) x I x e dx −   = − +   ∫ 46) 2 1 46 . x I x e dx − + = ∫ 47) 47 2 2 sin (3 1) x I e dx x −   = +   +   ∫ 48) 48 2 2 cos x x e I e dx x −   = +     ∫ 49) ( ) 1 2 4 3 49 2 x x I e dx − + = − ∫ 50) 50 1 2 x I dx = ∫ 51) 51 2 7 x x I dx = ∫ 52) 2 1 52 3 x I dx + = ∫ Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 8 CÁC BIỂU THỨC VI PHÂN QUAN TRỌNG 1. ( ) ( ) ( ) 2 2 2 1 1 1 2 2 2 xdx d x d x a d a x = = ± = − − 6. ( ) ( ) ( ) 2 cot cot cot sin dx d x d x a d a x x = − = − ± = − 2. ( ) ( ) ( ) 2 3 3 3 1 1 1 3 3 3 x dx d x d x a d a x = = ± = − − 7. ( ) ( ) ( ) 2 dx d x d x a d a x x = = ± = − − 3. sin (cos ) (cos ) ( cos ) xdx d x d x a d a x = − = − ± = − 8. ( ) ( ) ( ) x x x x e dx d e d e a d a e = = ± = − − 4. cos (sin ) (sin ) ( sin ) xdx d x d x a d a x = = ± = − − 9. ( ) ( ) ( ) ln ln ln dx d x d x a d a x x = = ± = − − 5. ( ) ( ) ( ) 2 tan tan tan cos dx d x d x a d a x x = = ± = − − 10. ( ) ( ) 1 1 dx d ax b d b ax a a = + = − − Ví dụ 1. Tìm nguyên hàm của các hàm số sau: a) 1 2 1 x I dx x = + ∫ b) 2 10 2 (1 ) I x x dx = + ∫ c) 2 3 3 1 x dx I x = + ∫ Hướng dẫn giải: a) S ử d ụ ng các công th ứ c vi phân ( ) ( ) ( ) 2 2 2 1 1 2 2 2 ln x xdx d d x d x a du d u u    = = = ±         =   Ta có ( ) ( ) ( ) 2 2 (ln ) ln 2 1 1 2 2 2 1 1 1 1 ln 1 . 2 2 2 1 1 1 du d u u C u d x d x x I dx I x C x x x = = + + = = = ←→ = + + + + + ∫ ∫ ∫ ∫ ∫ b) S ử d ụ ng các công th ứ c vi phân ( ) ( ) 2 2 2 1 1 1 2 2 2 1 n n x xdx d d x d x a u u du d n +    = = = ±           =    +    Ta có ( ) ( ) ( ) ( ) 11 2 10 10 2 2 2 2 1 1 1 1 1 . 2 22 x I x x dx x d x C + = + = + + = + ∫ ∫ c) S ử d ụ ng các công th ứ c vi phân ( ) ( ) 3 2 3 1 3 3 2 x x dx d d x a du d u u    = = ±         =   Ta có ( ) ( ) 3 3 2 3 3 3 3 3 1 1 1 2 2 1 . 3 3 3 1 1 2 1 d x d x x dx x I C x x x + + + = = = = + + + + ∫ ∫ ∫ Ví dụ 2. Tìm nguyên hàm của các hàm số sau: a) 2 4 1 I x x dx = − ∫ b) 5 2 1 dx I x = − ∫ c) 6 5 2 I x dx = − ∫ H ướ ng d ẫ n gi ả i: 02. PHƯƠNG PHÁP VI PHÂN TÌM NGUYÊN HÀM Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 9 a) Sử dụng các công thức vi phân ( ) ( ) 2 2 2 1 1 1 2 2 2 1 n n x xdx d d x d a x u u du d n +    = = = − −           =    +    Ta có ( ) ( ) ( ) ( ) ( ) 3 2 1 1 2 2 2 2 2 2 2 4 1 1 1 1 1 1 1 . 2 2 3 x I x x dx x d x x d x C − = − = − = − − − = − + ∫ ∫ ∫ b) S ử d ụ ng các công th ứ c vi phân ( ) ( ) ( ) 1 1 ax ax 2 dx d b d b a a du d u u  = + = − −     =   Ta có ( ) ( ) ( ) 2 5 5 2 1 2 1 1 2 1 . 2 2 1 2 1 2 2 1 du d u u d x d x dx I I x C x x x = − − = = = ←→ = − + − − − ∫ ∫ ∫ c) Sử dụng các công thức vi phân ( ) ( ) 1 1 1 ax ax 1 n n dx d b d b a a u u du d n +  = + = − −       =    +    ( ) ( ) ( ) ( ) ( ) 3 3 1 2 2 6 5 2 2 5 2 1 1 1 5 2 5 2 2 5 2 5 2 . . 2 2 2 3 3 x x I x dx x d x x d x C C − − ⇒ = − = − = − − − = − + = − + ∫ ∫ ∫ Ví dụ 3. Tìm nguyên hàm của các hàm số sau: a) 3 7 5 4 2 5 x I dx x = − ∫ b) 8 5 (3 2 ) dx I x = − ∫ c) 3 9 ln x I dx x = ∫ Hướng dẫn giải: a) Sử dụng các công thức vi phân ( ) ( ) 4 3 4 4 1 1 1 4 4 4 1 n n x x dx d d x a d a x du u d n u − +    = = ± = − −           =    − +    ( ) ( ) ( ) ( ) 4 4 4 4 4 5 5 1 3 4 4 5 7 5 5 4 4 5 5 5 5 4 2 1 1 2 5 5 . . 2 2 4 8 5 5 x d x x x I dx x d x C C x x −     − −   ⇒ = = = − − = + = + − − ∫ ∫ ∫ b) Ta có ( ) ( ) ( ) 6 5 8 5 3 2 1 3 2 3 2 . (3 2 ) 2 12 x dx I x d x C x − = = − − − = − + − ∫ ∫ c) S ử d ụ ng công th ứ c vi phân ( ) ln dx d x x = ta được ( ) 3 4 3 9 ln ln ln ln . 4 x x I dx xd x C x = = = + ∫ ∫ Ví dụ 4. Tìm nguyên hàm của các hàm số sau: a) ( ) 10 2010 3 4 2 dx I x = − ∫ b) 11 cos x I dx x = ∫ c) 12 cos sin I x xdx = ∫ H ướ ng d ẫ n gi ả i: a) Ta có ( ) ( ) ( ) ( ) ( ) 2009 2010 10 2010 2009 4 2 3 3 3 3 4 2 4 2 . 2 2 2009 4 2 4018 4 2 x dx I x d x C C x x − − − = = − − − = − + = + − − − ∫ ∫ b) S ử d ụ ng các công th ứ c vi phân ( ) ( ) cos sin 2 udu d u dx d x x  =   =   Ta có ( ) 11 cos cos 2 2 os 2sin . 2 x x I dx dx c x d x x C x x = = = = + ∫ ∫ ∫ Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Học offline: Số 11 – ngách 98 – ngõ 72 Tôn Thất Tùng (Đối diện ĐH Y Hà Nội) Học online: www.moon.vn Trang 10 c) Sử dụng các công thức vi phân ( ) ( ) cos sin sin x cos udu d u dx d x  =   = −   Ta có ( ) ( ) ( ) 3 3 1 2 2 12 2 cos 2 cos cos sin cos cos . 3 3 x x I x xdx x d x C = = − = − = − + ∫ ∫ Ví dụ 5. Tìm nguyên hàm của các hàm số sau: a) 3 13 sin cos I x xdx = ∫ b) 14 5 sin cos x I dx x = ∫ c) 4 15 sin cos I x xdx = ∫ Hướng dẫn giải: a) S ử d ụ ng các công th ứ c vi phân ( ) ( ) sin cos cos sin udu d u xdx d x  = −   =   Ta có ( ) ( ) ( ) 1 4 3 3 4 3 3 4 1 3 4 3 3 3 13 3 sinx 3 sin sin cos sinx sin 4 4 u du d u x I x xdx d x I C C     =     = = ←→ = + = + ∫ ∫ b) Ta có ( ) 4 14 5 5 4 cos sin (cos ) 1 . cos cos 4 4cos x x d x I dx C C x x x − = = − = − + = + − ∫ ∫ c) S ử d ụ ng các công th ứ c vi phân ( ) 1 cos sin 1 n n xdx d x u u du d n +  =     =    +    Khi đ ó ta đượ c ( ) 5 4 5 5 4 4 15 15 sin sin cos sin sin . 5 u u du d x I x xdx xd x I C   =       = = ←→ = + ∫ ∫ Ví dụ 6. Tìm nguyên hàm của các hàm số sau: a) 16 tanx I dx = ∫ b) 17 sin 4 cos4 I x xdx = ∫ c) 18 sin 1 3cos xdx I x = + ∫ H ướ ng d ẫ n gi ả i: a) S ử d ụ ng các công th ứ c sin x (cos ) ln dx d x du u C u = −    = +   ∫ Ta có ( ) 16 cos sin tan ln cos . cos cos d x xdx I xdx x C x x = = = − = − + ∫ ∫ ∫ b) Ta có ( ) ( ) 17 1 1 sin 4 cos4 sin 4 cos4 4 sin4 sin4 4 4 I x xdx x xd x x d x = = = ∫ ∫ ∫ ( ) 3 3 2 2 sin 4 1 sin 4 . . 4 3 6 x x C C = + = + c) Ta có ( ) ( ) 18 cos 3cos 1 sin 1 1 ln 1 3cos . 1 3cos 1 3cos 3 1 3cos 3 d x d x xdx I x C x x x + = = − = − = − + + + + + ∫ ∫ ∫ Ví dụ 7. Tìm nguyên hàm của các hàm số sau: a) ( ) 19 2 2cos 2 5sin xdx I x = − ∫ b) 20 cos 4sin x 3 xdx I = − ∫ c) ( ) 21 tan .ln cos I x x dx = ∫ Hướng dẫn giải: a) Sử dụng công thức vi phân 2 cos (sin x) 1 xdx d du d u u =      = −       ( ) ( ) ( ) ( ) ( ) ( ) 19 2 2 2 2 sin 2 5sin 2cos 2 2 . 5 5 2 5sin 2 5sin 2 5sin 2 5sin d x d x xdx I C x x x x − ⇒ = = = − = + − − − − ∫ ∫ ∫ b) Sử dụng công thức vi phân ( ) cos (sin x) 2 xdx d du d u u =    =   [...]... PHẦN TÌM NGUYÊN HÀM CƠ SỞ PHƯƠNG PHÁP: Công thức nguyên hàm từng phần I = ∫ P ( x).Q ( x)dx = ∫ udv = uv − ∫ vdu Độ ưu tiên khi lựa chọn đặt u: Hàm logarith, lnx → hàm đa thức → hàm lượng giác = hàm mũ ( ) Nếu I có chứa ln n [ g ( x)] thì đặt u = ln n [ g ( x)]  du = ln n [ g ( x)] ' → Nếu I có chứa hàm đa thức (không chứa hàm loga) thì đặt u = P(x) Nếu I có chứa cả hàm lượng giác và hàm mũ thì... www.moon.vn Khóa học LTĐH môn Toán – Thầy Đặng Việt Hùng (0985.074.831) – Facebook: LyHung95 Trang 24 05 NGUYÊN HÀM CỦA HÀM PHÂN THỨC HỮU TỈ Xét nguyên hàm của hàm phân thức hữu tỉ I = ∫ P ( x) dx Q( x) Nguyên tắc giải: Khi bậc của tử số P(x) lớn hơn Q(x) thì ta phải chia đa thức để quy về nguyên hàm có bậc của tử số nhỏ hơn mẫu số I MẪU SỐ LÀ BẬC NHẤT Khi đó Q(x) = ax + b Nếu bậc của P(x) lớn hơn thì... được, ta phải phân tích theo quy tắc: P( x) P ( x) A Bx + C = = + 2 2 Q ( x) ( x − x1 ) mx + nx + p x − x1 mx + nx + p ( ) Đồng nhất hệ số hai vế ta được A, B, C Bài toán trở về các dạng cơ bản đã xét đến Chú ý: du 1 u - Nguyên hàm ∫ 2 = arctan   + C 2 u u +a a - Ngoài việc sử dụng đồng nhất, ta cũng có thể phân tích tử số theo đạo hàm của mẫu để giải Ví dụ 3 Tìm nguyên hàm của các hàm số sau:... nhất thì ta có phân tích P( x) P ( x) 1 A B  Q( x) = a ( x − x1 )( x − x2 )  → = =  +  Q( x) a ( x − x1 )( x − x2 ) a  x − x1 x − x2  Đồng nhất hệ số ở hai vế ta được A, B Từ đó, quy về bài toán nguyên hàm có mẫu số là hàm bậc nhất đã xét ở trên Nếu P(x) có bậc lớn hơn hoặc bằng 2 thì ta chia đa thức, quy bài toán về hai trường hợp có bậc của P(x) như trên để giải Chú ý: Việc phân tích đa thức... lặp, các thao tác đặt u phải cùng dạng hàm với nhau Chú ý: Với các bài toán tìm nguyên hàm từng phần, chúng ta có thể sử dụng cách giải truyền thống (đặt u, tìm v) hoặc cách giải nhanh(chuyển nguyên hàm cần tính về dạng ∫ udv ) mà không cần đặt u, v Tuy nhiên cách giải nhanh chỉ có thể dùng được khi học sinh phải rất thành thạo vi phân Ví dụ 1 Tìm nguyên hàm của các hàm số sau: a) I1 = x sin x dx b) I... )2 Đồng nhất hệ số hai vế ta được A, B, C Bài toán trở về các dạng cơ bản đã xét đến Chú ý: Ngoài việc sử dụng đồng nhất, ta cũng có thể phân tích tử số theo đạo hàm của mẫu để giải Ví dụ 2 Tìm nguyên hàm của các hàm số sau: dx x −1 2 x2 + x + 4 a) I1 = 2 b) I 2 = dx c) I 3 = dx x 2 ( 2 x − 1) x ( x + 2) ( x + 1)2 ( 2 x − 3) Để đồng nhất được, ta phải phân tích theo quy tắc: ∫ ∫ ∫ Hướng dẫn giải: a)... ĐỒNG NHẤT TÌM NGUYÊN HÀM 1) Khái niệm về phân thức đơn giản Một phân số được gọi là đơn giản nếu nó có một trong các dạng sau k k k k ; ; ; , ( b 2 − 4ac < 0 ) n 2 2 ax + b ( ax + b) ax + bx + c (ax + bx + c)n Ví du 1: Các phân thức sau được gọi là phân thức đơn giản 1 2 2 5 5 ; ; ; ; 4 2 2 x + 1 3 x − 1 (2 x + 3) x + 3 x + 10 (2 x + x + 4)3 Ví du 2: Các phân thức sau chưa được gọi là phân thức đơn... x − x3 )  → = + + Q ( x) x − x1 x − x2 x − x3 Đồng nhất hệ số hai vế ta được A, B, C Bài toán quy về nguyên hàm có mẫu số là bậc nhất đã xét ở trên Chú ý: Để việc đồng nhất được, thì ta vẫn phải tuân thủ nguyên tắc là biến đổi sao cho bậc của tử số phải nhỏ hơn bậc c ủ a mẫ u s ố Ví dụ 1 Tìm nguyên hàm của các hàm số sau: dx 6 x2 + x − 2 3x 4 − x 2 + 3x − 7 a) I1 = b) I 2 = dx c) I 3 = dx x x2 −... x − 1) : dung ' Ví dụ: 3x − 4 x + 1 = 2 1  ( x − 1)  x −  : sai 3  Khi tử số là bậc nhất thì ngoài cách đồng nhất ở trên, ta có thể phân tích tử số có chứa đạo hàm của mẫu, rồi tách thành 2 nguyên hàm (xem các ví dụ dưới đây) Ví dụ 1 Tìm nguyên hàm của các hàm số sau: dx 2dx a) I1 = 2 dx b) I 2 = ∫ 2 −3 x + 4 x − 1 x − 2x − 3 2x + 3 3x + 4 c) I 3 = 2 dx d) I 4 = ∫ 2 dx 5x + 6x + 1 x − 3x − 4... )2 a 2 ax + b a  a  ax + b Nếu P(x) có bậc lớn hơn hoặc bằng 2 thì ta chia đa thức, quy bài toán về hai trường hợp có bậc của P(x) như trên để giải Chú ý: t −b  x = → Ngoài cách giải đã nêu trên, dạng nguyên hàm này có cách giải tổng quát là đặt t = ax + b   a dt = adx  Ví dụ 1 Tìm nguyên hàm của các hàm số sau: 2dx dx a) I1 = 2 b) I 2 = ∫ 2 6x + 9x + 1 x − 2x + 1 ∫ c) I 3 = ∫ 25x 2 dx − 10 . + II. KHÁI NIỆM VỀ NGUYÊN HÀM Cho hàm s ố f(x) liên t ụ c trên m ộ t kho ả ng (a; b). Hàm F(x) đượ c g ọ i là nguyên hàm c ủ a hàm s ố f(x) n ế u. c ủ a nguyên hàm, t ứ c là nguyên hàm c ủ a m ộ t hàm s ố ch ỉ ph ụ thu ộ c vào hàm, mà không ph ụ thu ộ c vào bi ế n. IV. CÁC CÔNG THỨC NGUYÊN HÀM

Ngày đăng: 18/02/2014, 23:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w