Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
134,78 KB
Nội dung
Đề kiểm tra đại số 11 Chương giới hạn Thời gian làm : 90 phút Bài :Tính giới hạn sau : n 3n5 n 3n 8n 3n3 (n 1) 1/ lim 2/ lim n 3n 4n n( n 2) n 4n 2n 3n x 2 2n 3n 3 8n 4n 2n n n 3/ lim 4/ lim n n 25 25 5 n n3 n 5n 5/ lim 6/ lim n n n n n n2 Baøi : Tính giới hạn sau : x5 3x x x2 1 1/ lim 2/ lim x 3 x 0 x 10 x 16 x x x3 x n 2n 1 3/ lim m x2 3x m x x2 x 4/ lim x 0 x x2 Bài : Tính giới haïn sau : x x x x 2/ xlim x 3x 1/ xlim x( x x x x x) 3/ xlim Baøi : Tính giới hạn sau : sin(a x) 2sin(a x) sin a cos x lim lim 1/ x 0 2/ x 0 x2 sin x.tan x lim 3/ x sin x 4 ( cos x 1)(tan x.tan x tan x.tan x) DeThiMau.vn Đáp án thi 8n 3n3 (n 1) 8n 3n3 n 2n lim Baøi :a/ lim n 3n 4n n( n 2) n 3n 4n n 2n n6 n n n n lim = n n6 n n n 3 6 n n 3n5 n 3n n n2 n4 n6 lim lim b/ n 4n 2n5 3n3 5n n 2 n 4 n n n n 8n3 4n 2n c/ lim n lim n lim 8n3 4n 2n (8n3 4n 1) 2n 8n3 4n 4n (8n3 4n 1) 2n 8n3 4n 4n 4n = n n 2n 4n n n n n 4 n2 n n lim 0 = n 3 8 4 n2 n n n n 2 2n 3n n n =lim D d/ lim n 5 25 25 5 Trước tiên ta có nhận xét raèng : n n2 n 1 2 2 2 2 2 2 1 1 5 DeThiMau.vn n 2 1 n 2 2 2 1 => 3 1 n 3 3 3 5 Tương tự : n 1 n 1 1 n 1 2 3 1 1 5 5 2 Do : lim D = 5 n n 2 3 1.25 13 5 5 lim 2 = n 6 25 1 3 3 n 2 2n 5n n n n n lim lim e/ n n n n 7 7 n3 n n n n n n Ta có : 4 4 4 n n n n n n n n n n n 1 lim , lim Vì n n n n n n n n 5n Và nên lim n n n n n n n n3 lim lim f/ n n5 n n 1 n n n n n n n3 n3 n3 n n3 DeThiMau.vn 1 n n n.n n n5 n n n n3 n3 lim = n 1 n n 15 n n n 1 n n 3 n9 n 25 4 15 n n lim lim = n = n 1 n n 15 4 n n n n n.5 x5 3x x x ( x 3) ( x 3) lim Baøi :a/ lim x 3 n x 10 x 10 ( x 1)( x 1)( x 1)( x 3)( x 10 4) = lim x 3 x 10 16 ( x 3)( x 1)( x 1)( x 1)( x 10 4) (3 1)(3 1)(32 1) 2.3 10 4) lim lim 320 x 3 x 3 2( x 3) b/ lim x 0 = lim x 0 x2 1 x 16 lim x ( x 16) x ( x 1) x 0 ( x 1)( x 1)( x 16) ( x 16)( x 16)( x 1) lim x 0 16 9 1 1 c/Ta có nhận xét : (2 1)(2 n n 1 2n 22 21 1) 2n => 2 n 1 2 n n Ta coù : x x x x x x Ta coù : x ( x 2).20 2 x ( x 2)( x ) 2 3 x ( x 2)( x 2.x ) 4 2 x ( x 2)( x x x ) x n 2n ( x 2)( x n 1 21 x n 22.x n 3 2n x 2n 1 ) => 2 n 1 DeThiMau.vn n n1 => x x 22 x3 23 x n 2n ( x 2)[20 21 22 2n 1 20 x n 1 (20 21 ).x n (20 21 22 ) x n 3 x(20 21 22 23 2n )] Ta lại có ( m x m x 3)( m (3 x 5) m 1 m (3 x 5) m (2 x 3)1 m 3x x m m (3 x 5)1.(2 x 3) m m (2 x 3) m 1 )( m x m x 3) m =m (3 x 5) m 1 m (3 x 5) m (2 x 3)1 m (2 x 3) m 1 x2 (3 x 5) m 1 m (3 x 5) m (2 x 3)1 m (2 x 3) m 1 Do doù x x x3 x n 2n 1 lim lim[ m (3 x 5) m 1 m (3 x 5) m 2 x m m x2 x 3x x (2 x 3) m 1 ].[20 21 22 2n 1 20.x n 1 (20 21 ) x n (20 21 22 2n ) x] [m][1 2n 20.2n 1 (20 21 ).2n (20 21 22 ).2n 3 = (20 21 22 23 ).2n (20 21 23 2n ).2] = m[21 22 2n 1 2n 21.2n (21 22 )2.n 3 (21 22 23 ).2n (21 22 2n ).2] m[2n 1 21.2n (23 2).2n 3 (24 2).2n (2n 1 2).2] m[2n 1 2n 2n 2n (22 23 2n 2n 1 )] n 1 n n n 1 n n = m[2 ( n 3).2 (2 ) m[2 ( n 3).2 ] x2 x x2 1 x d / lim lim x 0 x 0 x x2 x x2 x x2 lim x 0 ( x 1)( (1 x ) x 1) ( x x )( (1 x ) x 1) 2 DeThiMau.vn (1 x )(1 x )(1 (1 x) ) ( x x )(1 x )(1 (1 x) lim x 0 lim x 0 x2 x( x 1) (1 x ) x 1) (0 1) (0 12 )3 12 1) 2x x( x 1)( x 1)(1 (1 x) 2 (0 1)( 2.0 1)(1 (1 2.0) Baøi 3a/ lim x x lim x ( x x)( x x ( x 3x) x lim x x 3x 1 x x lim lim 0 TH1 : x x 3 x 3x x 1 x x 0 lim lim TH2 : x x 3 x 3x x b/ lim x lim x lim x x x x x x x x x x x x x lim x x x x x x x x x x x 1 x 1 x lim x 1 x 1 x 1 x 1 1 x x x x x 1 x x2 1 11 DeThiMau.vn c/ lim x( x x x x x) lim x x x x2 x x2 x x x2 x ( x x x x )( x x x x ) ( x x x )( x x x ) lim x 2 x x 2x x x x x x 1 lim x 2 x x 2x x x x x x x x2 x lim x x ( x x x x )( x x x ) ( x x x )( x x x ) lim x x ( x x x x )( x x x )( x x x ) = 2 x lim x ( x x x x )( x x x )( x x x ) =TH1 : lim x x lim x ( 2 x 1 1 2 x 1 x 1 x x x x 2 1 1)(1 1)(1 1) TH2 : lim x 1 x ( 1)(1 x 2 x3 1 1 2 x 1 x 1 x x x 1)(1 1) DeThiMau.vn Baøi : a/ cos x cos x(1 cos x) cos x(1 cos x)(1 cos x) lim lim x sin x.tan x x 0 x 0 sin x.sin x 2sin x.cos x.(1 cos x) lim cos x.sin x cos x.sin x(3 4sin x) lim lim x 2sin x.cos x (1 cos x ) x 2sin x.cos x (1 cos x ) cos x(3 4sin x) cos 0*(3 4sin 0*) 1.(3 4.0) lim = lim x cos x (1 cos x ) x 2.cos 0*(1 cos 0*) 2.1.(1 1) b/ sin(a x) 2sin(a x) sin a sin(a x) sin(a x) sin a sin(a x) lim x 0 x 0 x2 x2 2a x 2a x sin x cos 2a x cos 2a x x x sin cos sin cos 2 2 2 2 lim x 0 x2 x2 x x x sin 2sin(a x).sin sin 2 lim 2.sin(a x) sin a lim x 0 x x x2 lim c/Ta cần có toán phụ : *Tính cos5x ,sịn5x ,cos7x theo cosx Tính tana.tanb theo cosa cosb Ta có tan a.tan b sin a.sin b sin a.sin b cos a.cos b cos(a b) 1 1 cos a.cos b cos a.cos b cos a.cos b *Ta coù DeThiMau.vn sin x sin(3 x x) sin x.cos x cos x.sin x (3sin x 4sin x)(1 2sin x) 2sin x.cos x(4 cos3 x 3cos x) 3sin x 6sin x 4sin x 8sin x 8sin x(1 sin x) 6sin x(1 sin x) 3sin x 6sin x 4sin x 8sin x 8sin x 16sin x 8sin x 6sin x 6sin x 16sin x 20sin x 5sin x cos x cos(2 x x) cos x.cos x sin x.sin x (2 cos x 1)(4 cos3 x 3cos x) 2sin x.cos x(3sin x 4sin x) = 8cos5 x 6cos3 x 4cos3 x 3cos x 6cos x(1 cos x) 8cos x(1 cos x) 8cos5 x 6cos3 x 4cos3 x 3cos x 6cos x 6cos3 x 8cos x 16cos3 x 8cos5 x 16cos5 x 20cos3 x 5cos x cos x(16cos x 20cos x 5) cos x cos(5 x x) cos5 x.cos x sin x.sin x (2cos x 1)(16cos5 x 20cos3 x 5cos x) 2sin x.cos x(16sin x 20sin x 5sin x) 32cos x 40cos5 x 10cos3 x 16cos5 x 20cos3 x 5cos x 32cos x(1 cos x)3 40cos x(1 cos x) 10cos x(1 cos x) 32cos x 40cos5 x 10cos3 x 16cos5 x 20cos3 x 5cos x 32cos x(1 3cos x 3cos x cos x) 40cos x(1 2cos x cos x) 10cos x 10cos3 x 64cos x 112cos5 x 56cos3 x cos x = cos x(64cos x 112cos x 56cos x 7) p dụng toán ta coù : DeThiMau.vn tan x.tan x tan x.tan x cos x cos x 1 1 cos3 x.cos5 x cos x.cos9 x 1 cos x.cos9 x cos3 x.cos5 x cos x cos x cos3 x.cos5 x cos x.cos9 x cos3 x.cos5 x.cos x.cos9 x cos16 x cos x cos8 x cos x sin12 x.sin x 2 cos x cos x cos3 x cos5 x.cos x.cos9 x cos3 x.cos5 x.cos x.cos3 x(4cos x 3) cos x.sin x(3 4sin x) cos x.16sin x.cos x.cos 2 x(3 4sin x) cos x(4cos x 3).cos5 x.cos x cos x(4cos x 3) (4cos x 3).cos5 x.cos x 16cos x.sin x.cos 2 x.(3 4sin x) = (4cos x 3) (4cos x 3).cos5 x.cos x sin x cos x (1 sin x)(1 sin x)( cos x 1)( (cos x 1) 1) ( cos x 1)( cos x 1)( (cos x 1) 1)(1 sin x) cos x( cos x 1)( (cos x 1) 1) cos x(1 sin x) cos x(4cos x 3) ( cos x 1)( (cos x 1) 1) cos x(1 sin x) (4cos x 3) ( cos x 1)( (cos x 1) 1) = cos x(1 sin x) Do ta có : lim x = sin x ( cos x 1)(tan x.tan x tan x.tan x) lim x (4cos x 3) ( cos x 1)( (cos x 1) (4cos x 3) (4cos x 3).cos5 x.cos x cos x(1 sin x) 16cos x.sin x.cos 2 x.(3 4sin x) = DeThiMau.vn (4cos x 3) ( cos x 1)( (cos x 1) 1)(4cos x 3) (4cos x 3) cos x(16cos x 20cos x 5)(64cos x 112cos x 56cos x 7) lim cos x(1 sin x) 16.cos x.sin x.cos 2 x.(3 4sin x) x = (4cos 90 * 3) ( cos 90 * 1 1)( (cos 90 * 1) 1)(4cos 90 * 3) (4cos 270 * 3) (16cos 90 * 20cos 90 * 5)(64cos 90 * 112cos 90 * 56cos 90 * 7) lim 16.(1 sin 270*).cos180 *.sin 90 *.cos 180 *.(3 4sin 90*) x = (4.0 3) ( 1)( (0 1) 1)(4.0 3) (4.0 3).(16.0 20.0 5)(64.0 112.0 560 7) 16.(1 1) 1.12.(1) (3 4.12 ) = 945 118.125 DeThiMau.vn DeThiMau.vn ... x(1 2cos x cos x) 10cos x 10cos3 x 64cos x 112 cos5 x 56cos3 x cos x = cos x(64cos x 112 cos x 56cos x 7) p dụng toán ta có : DeThiMau.vn tan x.tan x tan x.tan x cos x cos... 2.sin(a x) sin a lim x 0 x x x2 lim c/Ta cần có toán phụ : *Tính cos5x ,sịn5x ,cos7x theo cosx Tính tana.tanb theo cosa cosb Ta có tan a.tan b sin a.sin b sin a.sin b cos a.cos b... 90 * ? ?112 cos 90 * 56cos 90 * 7) lim 16.(1 sin 270*).cos180 *.sin 90 *.cos 180 *.(3 4sin 90*) x = (4.0 3) ( 1)( (0 1) 1)(4.0 3) (4.0 3).(16.0 20.0 5)(64.0 112 .0