1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN mới NHẤT) SKKN hướng dẫn học sinh sử dụng lượng giác để chứng minh bất đẳng thức đại số

21 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 3,95 MB

Nội dung

Mục lục Phần I : Mở đầu trang Phần II : Nội dung .trang Cơ sở lý luận .trang 2 Thực trạng vấn đề trước áp dụng sáng kiến trang Các giải pháp .trang Hiệu sáng kiến………………………………………………trang 16 Phần III : Kết luận trang 17 Tài liệu tham khảo trang 19 Phụ lục trang 20 download by : skknchat@gmail.com PHẦN I: MỞ ĐẦU 1-Lí chọn đề tài: Nhiệm vụ trọng tâm trường học THPT hoạt động dạy thầy hoạt động học trò, xuất phát từ mục tiêu: “Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài” Giúp học sinh củng cố nâng cao kiến thức phổ thơng, đặc biệt mơn Tốn học cần thiết thiếu đời sống người Mơn Tốn mơn học tự nhiên quan trọng khó với kiến thức rộng, đa phần em ngại học môn Trong hoạt động dạy học nhà trường, vấn đề tìm tịi đúc kết nâng tầm giải toán theo hướng tổng quát, từ làm rõ nội dung tốn dạng đặc biệt, giúp cho việc dạy có định hướng cụ thể, logic, người học dễ tiếp thu có nhiều hội sáng tạo, đổi phương pháp dạy học Qua thực tế giảng dạy, việc chứng minh bất đẳng thức cách sử dụng kiến thức lượng giác học sinh mẻ, chưa thành thạo Tuy nhiên với số toán bất đẳng thức đại số ta sử dụng kiến thức lượng giác vào giải lại dễ dàng.Với lý đó, tơi nghiên cứu thực đề tài: ‘ Hướng dẫn học sinh sử dụng lượng giác để chứng minh bất đẳng thức đại số’’ Mục đích nghiên cứu Nghiên cứu ứng dụng lượng giác việc chứng minh bất đẳng thức đại số Đối tượng nghiên cứu Hướng dẫn học sinh sử dụng lượng giác việc chứng minh bất đẳng thức đại số Phương pháp nghiên cứu Phương pháp: - Nghiên cứu lý luận chung - Khảo sát điều tra từ thực tế dạy học - Tổng hợp so sánh, đúc rút kinh nghiệm Cách thực hiện: - Trao đổi với đồng nghiệp, tham khảo ý kiến giáo viên môn, tham khảo tài liệu liên quan - Liên hệ thực tế nhà trường, áp dụng đúc rút kinh nghiệm qua trình giảng dạy - Thơng qua việc giảng dạy trực tiếp năm học 2017-2018 2018-2019 PHẦN II: NỘI DUNG SÁNG KIẾN Cơ sở lý luận sáng kiến 1.1 Tập xác định, tập giá trị, chu kỳ hàm số lượng giác Hàm số y = sinx : -Tập xác định : R -Tập giá trị : -Chu kì : download by : skknchat@gmail.com Hàm số y = cosx : -Tập xác định : R -Tập giá trị : -Chu kì: Hàm số y = tanx -Tập xác định: -Tập giá trị: R -Chu kì: Hàm số y = cotx -Tập xác định: -Tập giá trị: R -Chu kì: Chú ý: Áp dụng BĐT Bunhiacơpski, ta có kết sau Vậy ta có: Kết (*) áp dụng nhiều đề tài 1.2 Các dấu hiệu: Dựa vào số dấu hiệu sau để ứng dụng lượng giác vào giải số toán đại số 1) Nếu có điều kiện , ta đặt: với Trong trường hợp riêng:  Nếu với ta đặt: với  Nếu với ta đặt : với 2) Nếu có điều kiện với 3) Nếu với , ta đặt: với , ta đặt: download by : skknchat@gmail.com với với Trong trường hợp riêng: Nếu , ta đặt: với  Nếu với , ta đặt : với 4) Nếu hoặc thỏa mãn điều kiện với với , ta được : đặt với Trong trường hợp cần sử dụng tới dấu ta hạn chế góc Ngồi học sinh cần nắm vững cách giải phương trình lượng giác Chú ý : Vì hàm lượng giác tuần hồn nên đặt điều kiện biểu thức lượng giác thật khéo léo cho lúc khai khơng có giá trị tuyệt đối, có nghĩa ln ln dương 5) Các biểu thức thường lượng giác hóa Biểu thức Cách lượng giác hóa biểu thức với với với hoặc với với với Thực trạng vấn đề trước áp dụng sáng kiến Hầu hết học sinh kể với học sinh giỏi em cảm thấy “ngại” gặp toán chứng minh bất đẳng thức hay tìm giá trị lớn nhỏ nhất.Quá trình giảng dạy trường THPT Lê Viết Tạo giúp thấy thực trạng đáng buồn gần 100% học sinh xem “khơng có” bất đẳng thức việc học tập ơn luyện mơn tốn Qua tìm hiểu khảo sát với câu hỏi “Bất download by : skknchat@gmail.com đẳng thức gì? Có quan tâm đến tốn bất đẳng thức kỳ thi hay không?” nhận kết sau: Trả lời Số HS hỏi 100 Khơng biết, Biết chút Có quan tâm Biết, quan tâm không quan không thấy muốn tâm quan tâm khó nghiên cứu 81 11 Từ thực tế “đáng buồn” dẫn đến việc giáo viên học sinh thường hay bỏ qua chủ đề bất đẳng thức việc ôn luyện, ảnh hưởng không nhỏ đến kết cuối việc thi cử Với mong muốn phần khắc phục vấn đề thực thí điểm đề tài lớp 11A, 11C tiết tự chọn sẵn có Các giải pháp Để thay đổi hình thức tốn từ việc chứng minh bất đẳng thức đại số thành việc chứng minh bất đẳng thức lượng giác, ta thực theo bước sau đây: -Bước 1: Từ toán với cách đặt hợp lý, ta chuyển từ toán bất đẳng thức đại số toán bất đẳng thức lượng giác -Bước 2: Thực việc chứng minh bất đẳng thức lượng giác Chú ý: Để thực đề tài cách hiệu quả, ta phân loại thành dạng cụ thể, qua cách phân loại áp dụng đề tài giảng dạy cho học sinh học sinh dễ dàng tiếp thu hình thành kỹ sử dụng lượng giác vào chứng minh số toán bất đẳng thức đại số cách rõ ràng Trong khuôn khổ đề tài phân thành số dạng sau: 1- Dạng 1: Nếu cho Ta đặt: với ( đặt với ) Các ví dụ minh họa dạng 1: Ví dụ 1: Chứng minh Giải Điều kiện: – x2 ³ Û ½x½ £ Đặt x = cosa với a Ỵ [0; p] Khi bất đẳng thức (1) biến đổi dạng: Û ½4(cos3a - sin3a) – (cosa - sina)½ £ download by : skknchat@gmail.com Û ½(4cos3a - 3cosa) + (3sina - 4sin3a)½£ Û Û½cos3a + sin3a½£ (đúng) Vậy (1) chứng minh Nhận xét: Qua ví dụ 1, từ toán bất đẳng thức đại số (1) với cách đặt , ta chuyển chứng minh bất đẳng thức lượng giác (2) Sử dụng kiến thức lượng giác ta chứng minh bất đẳng thức (2), có nghĩa bất đẳng thức (1) chứng minh Ta xét tiếp ví dụ sau Ví dụ 2: Chứng minh : (1) Giải Điều kiện: Đặt: x = cos với Khi (1) trở thành: (ln đúng) Thật theo BĐT Bunhiacopxki Vậy (1) chứng minh Ví dụ 3: Chứng minh : Giải Điều kiện: Đặt: x = cos với Khi (1) trở thành: (1) (2) Theo BĐT Bunhiacơpski (2) ln đúng, (1) chứng minh Ví dụ 4: Chứng minh : Nếu (1) Giải Từ giả thiết: nên ta đặt với Khi (1) trở thành: download by : skknchat@gmail.com (luôn đúng) Vậy (1) chứng minh 2- Dạng 2: Nếu cho Ta đặt: ( đặt với với ) Các ví dụ minh họa dạng 2: Ví dụ 1: Chứng minh : (1) Giải Điều kiện: Đặt x = 3sin với Khi (1) trở thành : (ln ) Vậy (1) chứng minh Ví dụ 2: Chứng minh rằng: với a >0 (1) Giải Điều kiện: Đặt: với Khi (1) trở thành: (ln đúng) Vậy (1) chứng minh Ví dụ 3: Với a > Chứng minh (1) Giải Điều kiện: Đặt: với Khi (1) trở thành: download by : skknchat@gmail.com Vậy (1) chứng minh Ví dụ 4: Chứng minh : Với a > 0, ta có (1) Giải Điều kiện: Đặt: x = a sin Khi , y = a sin với (1) trở thành: (ln ) Vậy (1) chứng minh 3- Dạng 3: Nếu cho Ta đặt: ( đặt Các ví dụ minh họa dạng 3: Ví dụ 1: Chứng minh rằng: Nếu x2+y2 = Giải Vì x2+y2 = 1, nên ta đặt: ) Khi đó, ta có: = Ví dụ 2: Cho x2 + y2 = ; u2 + v2 = Chứng minh a) ½xu + yv½£ b) ½xv + yu½£ c) –2 £ (x – y) (u + v) + (x + y) (u – v) £ Giải Đặt x = cosa ; y = sina ; u = cosb ; v = sinb £ a, b £ 2p Khi a) ½xu + yv½=½cos(a – b)½£ b) ½xv + yu½=½sin(a + b)½£ c) (x – y)(u + v) + (x + y) (u – v)=(cosa – sina)(cosb+sinb)+(cosa + sina)(cosb – sinb) download by : skknchat@gmail.com = 2cos(a + b) Rõ ràng –2 £ 2cos(a + b) £ nên –2 £ (x – y) (u + v) + (x + y) (u – v) £ Ví dụ 3: Chứng minh rằng: Với a, b ta có (1) Giải Ta có : ( Nên đặt: ta (ln đúng) Vậy (1) chứng minh Ví dụ 4: Chứng minh rằng: Với x , y ta có : (1) Giải Ta có : ( , ( Nên ta đặt: Khi (1) trở thành : (ln đúng) Vậy (1) chứng minh Ví dụ 5: Cho Chứng minh : (1) Giải (1) (2) download by : skknchat@gmail.com Ta có: ( , nên ta đặt: ( , Khi (2) trở thành: Vậy (2) nên (1) chứng minh 4- Dạng 4: Nếu cho Ta đặt: ( đặt Các ví dụ minh họa dạng 4: Ví dụ 1: Cho Chứng minh (luôn đúng) và ) (1) Giải Đặt: Khi (1) trở thành : (ln đúng) Vậy (1) chứng minh Ví dụ 2: Cho Chứng minh (1) Giải Đặt: Khi (1) trở thành: (ln đúng) Vậy (1) chứng minh Ví dụ 3: Cho Chứng minh : (1) Giải Đặt: download by : skknchat@gmail.com 10 Khi (1) trở thành : (ln đúng) Vậy (1) chứng minh 5- Dạng 5: Nếu cho (ax) + (by) = Ta đặt: ax = sin , by = cos ( đặt ax = cos , by = sin Các ví dụ minh họa dạng 5 : Ví dụ 1: Cho 4x + 9y = 25 Chứng minh (1) Giải 4x + 9y = 25 Đặt: ) , Khi (1) trở thành : (ln đúng) Vậy (1) chứng minh Ví dụ 2: Cho Chứng minh (1) Giải Đặt: Khi (1) trở thành: Vậy (1) chứng minh Ví dụ 3: Cho Chứng minh : Giải Đặt : 2x = cos , 3y = sin Khi (1) trở thành : (ln đúng) (1) (luôn đúng) Vậy (1) chứng minh download by : skknchat@gmail.com 11 Ví dụ 4: Cho Chứng minh : (1) Giải Đặt: ax = cos , by = sin Khi (1) trở thành: ( ln ) Vậy (1) chứng minh 6- Dạng 6: Nếu cho Ta đặt: x= với ( đặt x = với ) Các ví dụ minh họa dạng 6: Ví dụ 1: Cho Chứng minh : (1) Giải Vì giả thiết nên ta đặt Ta có = = cos (tan + )= (luôn đúng) Vậy (1) chứng minh Ví dụ 2: Cho Chứng minh rằng: (1) Giải Vì nên ta đặt download by : skknchat@gmail.com 12 (ln đúng) Vậy (1) chứng minh Ví dụ 3: Cho Chứng minh rằng: (1) Giải Vì nên ta đặt = = (luôn đúng) Vậy (1) chứng minh Ví dụ 4: Cho Chứng minh rằng: (1) Giải (1) Vì (2) nên ta đặt với Khi (2) trở thành : (luôn đúng) Vậy (2) nên (1) chứng minh Ví dụ 5: Chứng minh rằng: Giải Điều kiện: x2 – ³ Û ½x½ ³ download by : skknchat@gmail.com 13  , với a Ỵ [0; ) cos  Khi bất đẳng thức (1) biến đổi dạng: 2     tg    cos  cos  cos  Û sina + cosa £ Û sina + cosa £ 2  Û sin (a + ) £ (luôn đúng) Vậy (1) chứng minh Ví dụ 6: Cho Chứng minh : Đặt: ½x½ = Giải Đặt Khi A= (1+cos2t) 6sin2t = Vì = cos2t 6sin2t Nên Ví dụ 7: Cho Chứng minh Giải Vì nên đặt : x = Khi A = = , với t = [ = download by : skknchat@gmail.com 14 Vì nên 7- Dạng 7: Nếu cho Ta đặt: x = tan với (hoặc ta đặt x = cot với ) Các ví dụ minh họa dạng 7: Ví dụ 1: Chứng minh rằng: Với x ta có (1) Giải Ta có (1) Đặt x (2) = tan với Khi (2) trở thành Vậy (2) nên (1) chứng minh Ví dụ 2: Chứng minh : Với x ta có (1) Giải (1) (2) Đặt x = k tan với Khi (2) trở thành: Vậy (2) nên (1) chứng minh Ví dụ 3: Chứng minh (a + b)4 £ 8(a4 + b4) Giải *Với a = 0: bất đẳng thức hiển nhiên *Với a ¹ 0: chia hai vế cho a4 (1) (2) đặt tan = với –   < < 2 download by : skknchat@gmail.com 15 Bất đẳng thức (2) trở thành: (1 + tan )4 £ 8(1 + tan4 ) Û (cos + sin )4 £ 8(cos4 + sin4 ) Û 8(cos4 + sin4 ) – (cos + sin )4³ Vì sin4 (sin + cos4 = (sin2 + cos2 )2 – 2sin2 cos2 (3) = + cos )4 = (1 + sin2 )2 =  cos4 – 2sin2 ³ 2 Điều hiển nhiên cos4 ³ –1 –2sin2 ³ –2 nên (3) Vậy (1) chứng minh Hiệu sáng kiến Qua việc thực đề tài với em học sinh, thấy đề tài: + Ngoài phương pháp chứng minh bất đẳng thức biết, đề tài trang bị cho học sinh thêm phương pháp chứng minh bất đẳng thức đại số cách sử dụng kiến thức lượng giác Đơi số tốn giải theo cách khác việc giải phức tạp sử dụng kiến thức lượng giác vào giải tốn trở nên dễ dàng Tuy nhiên để áp dụng lượng giác vào chứng minh bất đẳng thức đại số đòi hỏi học sinh phải nắm vững kiến thức lượng giác, kiến thức bất đẳng thức + Với việc ứng dụng lượng giác việc chứng minh bất đẳng thức đại số truyền cho học sinh sáng tạo cách học toán, truyền thêm say mê toán học + Với việc ứng dụng lượng giác việc chứng minh bất đẳng thức đại số đề tài, từ cách tương tự ta vận dụng vào giải số toán đại số khác: chứng minh đẳng thức, tìm giá trị lớn nhất-giá trị nhỏ nhất, giải phương trình, giải hệ phương trình… vận dụng lượng giác giải số tốn hình học Nói cách khác đề tài cịn gợi ý cho ta giải nhiều tốn đại số, hình học dựa vào lượng giác + Thực đề tài với em học sinh lớp 11A, 11C dạy, thấy em hứng thú học tập trang bị cho em thêm phương pháp giải toán bất đẳng thức đề tài thật có ích học sinh Đề tài áp dụng việc bồi dưỡng học sinh khá, giỏi; bồi dưỡng đội tuyển, ôn thi Đại học Tuy nhiên để đạt hiệu cao giảng dạy cho học sinh giáo viên cần nhấn mạnh cho học sinh là: gặp tốn có dấu hiệu dùng phương pháp lượng giác, đề tài tơi phân loại số dạng tốn nhằm tạo cho học sinh nhận biết cách làm dễ dàng, qua hình thành kỹ dùng lượng giác để giải toán V KẾT LUẬN, KIẾN NGHỊ Nên: 8(cos4 + sin4 ) – (sin + cos )4 = download by : skknchat@gmail.com 16 Trên số suy nghĩ sau viết nên đề tài này, đề tài mà tơi thực mong đóng góp đồng nghiệp để giúp học sinh thấy mối liên hệ đại số lượng giác với quan trọng có thêm phương pháp chứng minh bất đẳng thức đại số, qua áp dụng giải dạng tốn khác nhau, mục đích mà muốn vươn tới đề tài Tuy nhiên q trình thực đề tài khơng tránh khỏi thiếu sót, mong đóng góp đồng nghiệp để đề tài tơi hồn thiện * Kiến nghị đề xuất: - Với nhà trường: Đề nghị cấp lãnh đạo tạo điều kiện để học sinh giáo viên có nhiều tài liệu, sách tham khảo để nghiên cứu học tập nâng cao kiến thức chuyên môn nghiệp vụ Nhà trường tổ chức nhiều chuyên đề bồi dưỡng học sinh giỏi, tổ chức buổi trao đổi chuyên môn với trường bạn, mời chuyên viên Sở giáo dục truyền đạt lại số kinh nghiệm dạy học - Với Sở giáo dục đào tạo: Tổ chức đợt tập huấn chuyên môn cho giáo viên để nâng cao trình độ Trên đề tài tơi rút q trình tìm tịi tự học qua thực dạy Rất mong đóng góp ý kiến bạn quan tâm đồng nghiệp để đề tài đầy đủ hoàn thiện Xin chân thành cảm ơn! XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 16 tháng 03 năm 2018 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác Lê Thị Thu Huyền download by : skknchat@gmail.com 17 TÀI LIỆU THAM KHẢO [1] Trần Phương (2009), Những viên kim cương bất đẳng thức toán học, NXB Tri thức [2] G Polya (1978), Sáng tạo Toán học, NXB Giáo dục [3] Lê Hồng Đức, Đào Thiện Khải, Lê Ngọc Bích, Lê Hữu Trí (2006), Các phương pháp giải phép lượng giác hóa, NXN Hà Nội [4] Võ Thanh Vân, Lê Ngọc Sơn, Nguyễn Ngọc Thủy (2010), Chuyên đề ứng dụng hàm số lượng giác phương trình lượng giác giải tốn THPT, NXB Đại học sư phạm [5] Phan Đức Chính(1997), Một số phương pháp chọn lọc giải toán sơ cấp , NXB Giáo dục [6] Ngô Long Hậu, Trần Thanh Phong, Nguyễn Đình Thọ (2011), Giới thiệu đề thi tuyển sinh vào đại học cao đẳng toàn quốc, NXB Hà Nội [7] Tạp chí tốn học tuổi trẻ năm 2014-2015, NXB Giáo dục download by : skknchat@gmail.com 18 PHỤ LỤC MỘT SỐ BÀI TẬP TỰ LUYỆN Bài 1 : Cho Chứng minh rằng : Bài 2: Chứng minh Bài 3: Cho ab + bc + ca = Chứng minh rằng: 4abc = a(1- b2)(1 – c2) + b(1 – c2)(1 – a2) + c(1 – a2)(1 – b2) 49 29 Bài 5: Cho hai số thực x, y dương thỏa: x+y=2 Chứng minh rằng: (India MO 2003) Bài 6: Cho a, b, c cạnh tam giác, x y thoả mãn ax + by = c c2 Chứng minh rằng: x2 + y2 ³ a  b2 Bài 7: Cho x2 + y2 = Chứng minh rằng : £ x6 + y6 £ 2 Bài 8: Cho x + y = Chứng minh rằng: ½16 (x5 + y5) – 20 (x3 + y3) + 5(x + y)½ £ Bài 4: Cho x, y thoả mãn 2x + 5y = Chứng minh rằng: x2 + y2 ³ download by : skknchat@gmail.com 19 2 Bài 9: Cho x + y = Chứng minh rằng: Bài 10: Cho xy + yz + zx = Chứng minh rằng: x y z 3    2 2 1 x 1 y 1 z Bài 11: Cho ½a½ ³ Chứng minh rằng: Bài 12: Cho số –2 £ a 1  £ a thoả mãn Chứng minh rằng : Bài 13: Cho liên hệ Chứng minh Bài 14: Cho a, b, c > thỏa mãn Bài 15: Cho Bài 16: Cho Chứng minh (Poland 1999) Chứng minh thỏa mãn Chứng minh rằng: Bài 17: Cho £ £ , i = 1, 2, …, n Chứng minh (1 + a12)(1 + a22)… (1 + an2) + (1 – a12) (1 – a22)… (1 – an2) £ 22 Bài 18: Cho số dương a 1, a2, a3, a4 phân biệt Chứng minh chọn số cho:  a j 0£ 0 thỏa mãn a+b+c=1 Chứng minh rằng: (Ukraine 2005) download by : skknchat@gmail.com 21 ... Hướng dẫn học sinh sử dụng lượng giác để chứng minh bất đẳng thức đại số? ??’ Mục đích nghiên cứu Nghiên cứu ứng dụng lượng giác việc chứng minh bất đẳng thức đại số Đối tượng nghiên cứu Hướng dẫn. .. vào chứng minh bất đẳng thức đại số đòi hỏi học sinh phải nắm vững kiến thức lượng giác, kiến thức bất đẳng thức + Với việc ứng dụng lượng giác việc chứng minh bất đẳng thức đại số truyền cho học. .. (1) chứng minh Nhận xét: Qua ví dụ 1, từ tốn bất đẳng thức đại số (1) với cách đặt , ta chuyển chứng minh bất đẳng thức lượng giác (2) Sử dụng kiến thức lượng giác ta chứng minh bất đẳng thức

Ngày đăng: 29/03/2022, 20:22

HÌNH ẢNH LIÊN QUAN

3. Các giải pháp - (SKKN mới NHẤT) SKKN hướng dẫn học sinh sử dụng lượng giác để chứng minh bất đẳng thức đại số
3. Các giải pháp (Trang 5)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w