KÌ THI CHỌN HSG TỐN LỚP VỊNG Năm học: 2011-2012 Mơn: Tốn Thời gian làm bài: 150 phút Đề thi gồm 01 trang UBND HUYỆN TAM DƯƠNG PHỊNG GD&ĐT ĐỀ CHÍNH THỨC Lưu ý: Học sinh khơng sử dụng máy tính cầm tay Câu 1: (2,5 điểm) a) Tính giá trị biểu thức: A x3 y 3( x y ) 2011 Biết rằng: x 3 2 3 2 ; y 17 12 17 12 b) Rút gọn biểu thức: S 1 1 + + 2 2 33 2012 2011 2011 2012 Câu 2: (2 điểm) a) Giải phương trình: x x x b) Giải phương trình nghiệm nguyên: x 3x y 4 Câu 3: (2 điểm) a) Cho a, b, c số hữu tỉ khác thoả mãn: 1 1 a b c abc Chứng minh rằng: P (1 a )(1 b )(1 c ) số hữu tỉ b) Cho a, b, c > thoả mãn: a b c abc Chứng minh biểu thức: B a (1 b)(1 c) b(1 c)(1 a ) c(1 a)(1 b) abc 2011 số Câu 4: (2,5 điểm) Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với cạnh BC, CA, AB điểm D, E, F Đường trịn tâm O’ bàng tiếp góc A tam giác ABC tiếp xúc với cạnh BC P phần kéo dài cạnh AB, AC tương ứng điểm M, N BC CA AB BP = CD b) Trên đường thẳng MN ta lấy điểm I K cho CK // AB, BI // AC Chứng minh rằng: BICE hình bình hành c) Gọi (S) đường trịn qua điểm I, K, P Chứng minh rằng: (S) tiếp xúc với đường thẳng BC, BI, CK Câu 5: (1 điểm) Cho a, b, c số thực không âm abc = Chứng minh rằng: a) Chứng minh rằng: BP 1 1 2 a 2b b 2c c 2a 2 HẾT Cán coi thi khơng giải thích thêm Họ tên thí sinh SBD: ThuVienDeThi.com HƯỚNG DẪN CHẤM MƠN TỐN KÌ THI CHỌN HSG LỚP VÒNG Năm học: 2011-2012 UBND HUYỆN TAM DƯƠNG PHỊNG GD&ĐT ĐỀ CHÍNH THỨC Câu 1: (2,5 điểm) Câu a) (1,5đ) Nội dung trình bày Điểm Ta có x3 3 2 3 2 2 2 3 2 3 2 3 2 3 2 0,5 3x y3 17 12 17 12 0,5 17 12 17 12 17 12 3 17 12 17 12 17 12 0,5 34 y Khi A = + 3x + 34 + 3y – 3(x + y) + 2011 = 2051 b) (1đ) b) Ta có: (n 1) n n n n(n 1) n(n 1) n n 1 n n n 1 n 1 n n 1 n 1 n 1 n(n 1) n n 1 0,5 Do đó: 1 1 1 + 2 3 S 1 2012 S Câu 2: (2 điểm) Câu 0,25 1 2011 2012 0,25 Nội dung trình bày a)(1đ) §iỊu kiƯn: x 3 Phương trình tương đương với 0,25 x x x x x 1 x 1 x x 1 x x x x x x 1 Điểm x3 2 1 2 x 1 x 1 Ta cã 1 x x x x ThuVienDeThi.com 0,25 (tho¶ m·n) 0,25 3 x x x (tho¶ m·n) 2 x 3 x x 7x 0,25 Vậy phương trình đà cho cã mét nghiÖm x = b)(1đ) - Nếu x = y = 1, -1 - Nếu x ≠ 0, ta có 0,25 x 2x x 3x y x 4x Hay (x 1) x 3x ( y ) (x 2) (loại) 2 2 2 Vậy PT có nghiệm nguyên (x, y) (0; 1), (0; -1) Câu 3: (2 điểm) Câu Nội dung trình bày a)(1đ) Từ đề suy ab + bc + ca = Ta có + a2 = ab + bc + ca + a2 = (a + b)(a + c) + b2 = ab + bc + ca + b2 = (b + c)(a + b) + c2 = ab + bc + ca + c2 = (c + a)(b + c) Do P (a b)(b c)(c a) (a b)(b c)(c a ) Vì a, b, c số hữu tỉ nên P số hữu tỉ b)(1đ) Theo ta có a b c abc a abc b a Do 0,5 0,25 Điểm 0,25 0,25 0,25 0,25 0,25 a (1 b)(1 c) a (1 b c bc) a (a abc bc) (a abc ) a abc Tương tự b(1 c)(1 a ) b abc 0,5 0,25 c(1 a )(1 b) c abc Khi B a b c abc abc 2011 a b c abc 2011 2012 Câu 4: (2,5 điểm) Câu Nội dung trình bày a)(1đ) A F O D B E C P M I O’ K N Ta có 2BP = 2BM = 2AM – 2AB = AM + AN – 2AB = AB + BM +AC + CN – 2AB ThuVienDeThi.com Điểm = AB + BP + CP + AC – 2AB = BC + CA – AB Tương tự 2CD = CD + CE = CB – DB + CA – EA = CB + CA – FB – FA = CB + CA – AB Vậy BP = CD b)(0,75đ) c)(0,75đ) Vì BI // AN (gt) BIM ANM AMN BIM cân B BM = BI = BP Mà BP = CE ( = CD) BI = CE mà BI // CE Vậy BICE hình bình hành Theo chứng minh ta có BI = BP; CP = CK; BIP; CPK cân đỉnh B; C Gọi BI CK = Q, phân giác góc IBP cắt phân giác góc PCK S S tâm đường trịn nội tiếp BCQ Vì BIP cân B BS trung trực PI CPK cân C CS trung trực PK S tâm đường tròn ngoại tiếp PIK Đường tròn (S) ngoại tiếp PIK tiếp xúc với BC, BI, CK Câu 5: (1 điểm) Câu Nội dung trình bày Ta có a b 2ab; b 2b a 2b 2(ab b 1) 1 a 2b 2(ab b 1) 1 1 Tương tự ; 2 b 2c 2(bc c 1) c 2a 2(ac a 1) Khi đó: 1 1 1 2 2 a 2b b 2c c 2a ab b bc c ac a 1 ab b = ( abc = 1) = ab b b ab ab b 0,5 0,5 0,25 0,25 0,25 0,25 0,25 0,25 Điểm 0,25 0,25 0,25 0,25 Lưu ý: - HDC cách giải HS giải theo cách khác, giám khảo vào làm cụ thể HS điểm - Điểm phần, câu khơng làm trịn Điểm tồn làm trịn đến 0,25 - Bài hình khơng vẽ hình vẽ hình sai khơng chấm ThuVienDeThi.com ... 3x y3 17 12 17 12 0,5 17 12 17 12 17 12 3 17 12 17 12 17 12 0,5 34 y Khi A = + 3x + 34 + 3y – 3(x + y) + 2 011 = 20 51 b) (1? ?) b) Ta có: (n 1) n n... n(n 1) n(n 1) n n ? ?1 n n n ? ?1 n ? ?1 n n ? ?1 n ? ?1 n 1 n(n 1) n n ? ?1 0,5 Do đó: 1 1 1 + 2 3 S 1? ?? 2 012 S Câu 2: (2 điểm) Câu 0,25 1 2 011 2 012 0,25...HƯỚNG DẪN CHẤM MƠN TỐN KÌ THI CHỌN HSG LỚP VÒNG Năm học: 2 011 -2 012 UBND HUYỆN TAM DƯƠNG PHỊNG GD&ĐT ĐỀ CHÍNH THỨC Câu 1: (2,5 điểm) Câu a) (1, 5đ) Nội dung trình bày Điểm Ta có x3