Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
423,33 KB
Nội dung
PhântíchcácdạngAsentrongmẫumôitrường
bằng phươngphápphổhấpthụnguyêntửkết
hợp vớichemometrics
Nguyễn Thị Phương Thùy
Trường Đại học Khoa học Tự nhiên
Luận văn Thạc sĩ ngành: Hóa Phân tích; Mã số: 60 44 29
Người hướng dẫn: GS. TS. Trần Tứ Hiếu
Năm bảo vệ: 2012
Abstract: Ứng dụng các điều kiện đo phổhấpthụ As(III) để xây dựng đường chuẩn
đa biến xác định đồng thời cácdạng As trong dung dịch. Dựa trên đường chuẩn đa
biến xác định đồng thời cácdạngasenbằng HVG – AAS vừa xây dựng được, nghiên
cứu các điều kiện bảo quản mẫu: vật liệu bình chứa, pH, lượng oxi hòa tan, các ion
thường có trong thành phần mẫu, nhiệt độ và thời gian bảo quản mẫu. Đánh giá kết
quả của các điều kiện tối ưu và phươngphápphântích thông qua mẫu kiểm chứng.
Xác định hàm lượng cácdạngasentrong 5 mẫu thực tế ở khu vực Lâm Thao – Phú
Thọ.
Keywords: Asen; Phươngphápphổhấpthụnguyên tử; Hóa phântích
Content
MỞ ĐẦU
Cùng với sự phát triển mạnh mẽ của ngành toán học thống kê và tin học ứng dụng,
Chemometrics - một nhánh của hóa học phântích hiện đại - đã phát triển nhanh chóng và
được ứng dụng ngày một rộng hơn. Một mảng quan trọngtrongChemometricsđang được
nghiên cứu và sử dụng hiệu quả là kĩ thuật hồi qui đa biến – thuật toán xác định đồng thời
nhiều cấu tửtrong hỗn hợp mà không cần tách loại. Thuật toán này đã được ứng dụng rộng rãi
để giải quyết nhiều bài toán định dạng phức tạp. Đối với vấn đề xác định cácdạng As trong
hỗn hợp, hiện nay chưa có nhiều công trình nghiên cứu theo hướng này tuy ưu điểm của nó là
rất lớn so vớicác hướng nghiên cứu khác.
Trong dung dịch asen tồn tại ở cácdạng khác nhau. Trong đó, chúng ta quan tâm chủ
yếu đến bốn dạng là As(III), As(V), DMA, MMA. Tùy thuộc vào thành phần nền mẫu và
từng điều kiện cụ thể của quá trình bảo quản mẫu, cácdạngasen có thể chuyển hóa lẫn nhau.
Vì vậy một yêu cầu cấp thiết đặt ra là phải nghiên cứu quá trình bảo quản mẫu, tránh sự
chuyển đổi giữa cácdạngasentrong quá trình bảo quản từ đó mới xác định chính xác từng
dạng asen, đánh giá đúng mức độ ô nhiễm của môitrường nước để có biện pháp xử lí, hạn chế
sự ảnh hưởng của nó đến sức khỏe con người.
2
Vì vậy, chúng tôi đã lựa chọn đề tài : ‘‘ Phântíchcácdạngasentrongmẫumôi
trƣờng bằng phƣơng phápphổhấpthụnguyêntửkếthợpvới chemometrics’’ với mục tiêu
đặt ra là nghiên cứu quá trình chuyển cácdạngasen trên cơ sở những nghiên cứu trước đó về
xác định cácdạngasenbằng kĩ thuật HVG - AAS và hồi qui đa biến để định lượng cácdạng
asen trongmẫu nước.
CHƢƠNG 1. TỔNG QUAN
1.1. SƠ LƢỢC TÌNH HÌNH Ô NHIỄM ASEN TRÊN THẾ GIỚI VÀ Ở VIỆT NAM
Vấn đề ô nhiễm asenđang là một vấn đề thu hút sự quan tâm của nhiều nhà khoa học,
nhiều tổ chức trong và ngoài nước. Sự ô nhiễm asen đặc biệt là trong nước ngầm đã được phát
hiện ở nhiều nơi trên thế giới như Achentina, Mêhico, Chile, Mỹ, Canada, Trung Quốc, Đài
Loan, Ấn Độ, Băngladet và Việt Nam. Một phần lớn người dân đã bị nhiễm độc asen mãn
tính do sự có mặt của asentrong nước ngầm. Ở Mêhico, Chile, Đài Loan, Ấn Độ, Băngladet
hàm lượng Asentrong nước cao từ vài trăm đến hơn 1000 μg/L. Ở một số bang phía Tây
nước Mỹ, người dân đang phải sử dụng asen cao hơn giới hạn tối đa cho phép 50
g/L ( Tổ
chức Y tế Thế giới đã đưa ra giới hạn cho phép về hàm lượng asentrong nước ăn là 10
g/L
từ năm 1993).
Ở Châu Á, những vùng nhiễm độc asen cao như Băngladet và Ấn Độ, nồng độ asentrong tóc
và nước tiểu được sử dụng phổ biến làm chỉ thị cho sự phơi nhiễm asen mãn tính và tạm thời
(Awanar et al, 2002).
Đặc biệt là ở Băngladet, qua khảo sát 8000 giếng khoan ở 60 tỉnh trên tổng số 64 tỉnh
ở nước này người ta thấy rằng có khoảng 51% số giếng khoan có hàm lượng asen lớn hơn
0,05 mg/L. Theo ước tính ở dây có khoảng 50 triệu dân sử dụng nước bị ô nhiễm Asen.
Ở Việt Nam, theo một vài báo cáo cho thấy, hàm lượng asen lấy từcác giếng khoan tại
vùng châu thổ sông Hồng khá cao. Nồng độ asen trung bình tìm thấy là 159
g/L. Hà Nội,
Hà Nam, Hưng Yên, Nam Định, Ninh Bình, Thái Bình, Hải Dương là những vùng bị ô nhiễm
asen nặng nề nhất. Ở đồng bằng sông Cửu Long, các nhà khoa học cũng đã phát hiện ra các
giếng khoan có hàm lượng asen cao ở các tỉnh Đồng Tháp và An Giang.
Hiện nay, ở các vùng đô thị mới và nông thôn tỉ lệ người dân sử dụng nước ngầm
(nước giếng khoan) có hàm lượng asen làm nước ăn vẫn còn nhiều. Vì vậy cần phải theo dõi
tiến hành điều tra tình trạng ô nhiễm asen và tác động của nó đến môitrường và sức khỏe
người dân, tìm biện pháp giảm thiểu.
1.2. CÁCDẠNG TỒN TẠI TRONGMÔI TRƢỜNG CỦA ASEN
1.2.1. Cácdạngasen tồn tại trongmôi trƣờng
Sau khi phát tán vào môi trường, As tồn tại ở nhiều dạng khác nhau tùy theo bản chất của
nguồn phát tán, điều kiện phát tán và điều kiện của môitrường tồn tại.
Bảng 1.1. Một số dạng As trongcác đối tượng sinh học và môitrường
STT
Tên gọi
Công thức
3
1.
Asin
AsH
3
2.
Asenit
AsO
3
3-
3.
Asenat
AsO
4
3-
4.
Axit dimetylasenic, DMAA
Me
2
AsO
2
H
5.
Axit metylasonic, MMAA
MeAsO
3
H
2
6.
Trimetylasin
Me
3
As
7.
Oxit trimetylasin, TMAO
Me
3
As
+
-O
-
8.
Ion tetrametylasoni
Me
4
As
+
9.
Trimetylasoniaxetat
Me
3
As
+
CH
2
COO
-
10.
Asenocholin (2-
trimetylasonietanol)
Me
3
As
+
CH
2
CH
2
OH
11.
Dimetylasinoyletanol
Me
3
As
+
(O
-
)CH
2
CH
2
OH
Các dạng chủ yếu của As trongmôitrường nước là bốn dạng As(III), As(V), DMA và
MMA, trong đó hai dạng vô cơ có độc tính cao hơn.
1.2.2. Độc tính cácdạngAsen
Độ độc của asen phụ thuộc vào trạng thái oxi hóa của asen, phụ thuộc vào dạng tồn tại
vô cơ hay hữu cơ. As(III) độc hơn nhiều so với As(V), asen vô cơ độc hơn rất nhiều so với
asen hữu cơ. Qua nhiều nghiên cứu người ta thấy rằng độ độc giảm dần theo thứ tự: Asin >
asenit > asenat > monometyl asenat > dimetyl asenat. Dạng xâm nhập chính vào cơ thể là
asen dạng vô cơ, đặc biệt là Asen(III) dễ hấpthụ vào cơ thể con người qua đường ăn uống.
Các hợp chất asenit và asenat vô cơ bền, có khả năng hòa tan trong nước đều dễ dànghấpthụ
vào dạ dày và các tế bào của cơ thể. As(V) được bài tiết (chủ yếu qua nước tiểu) nhanh hơn
As(III) vì ái lực với nhóm thiol (-SH) kém hơn. As(III) cản trở nhóm (-SH) gắn vào các
enzym và giữ lại trongcác protein tế bào của cơ thể như keratin đisunfua trong tóc, móng và
da. As(V) không độc bằng As(III) và không gây ức chế đối với hệ enzym. Tuy nhiên As(V)
lại ngăn cản sự tổng hợp ATP.
* Cơ chế gây độc
Asen vô cơ phá hủy các mô trong hệ hô hấp, trong gan và thận, nó tác động lên các enzim tấn
công vào các nhóm hoạt động -SH của enzim làm vô hiệu hoá enzim:
4
As(III) ở nồng độ cao còn làm đông tụ protein, có lẽ do As(III) tấn công vào các liên
kết có nhóm sunfua. Trongmôitrường yếm khí As(III) có thể tạo hợp chất (CH
3
)
3
As rất độc.
As(V) ở dạng AsO
4
3-
có tính chất tương tự PO
4
3-
sẽ thay thế PO
4
2-
gây ức chế enzim,
ngăn cản quá trình tạo ATP là chất sản sinh ra năng lượng sinh học. Nó can thiệp và làm rối
loạn một số quá trình sinh hóa của cơ thể.
Asen hữu cơ tác động lên các tế bào sinh học.
Các dạng As hữu cơ có tính độc thấp hơn rất nhiều, một số hợp chất As(V) vô cơ thậm
chí không độc.
1.3. CÁC PHƢƠNG PHÁPPHÂNTÍCHDẠNGASEN
1.3.1. Các phƣơng pháp xác định Asen có sử dụng kĩ thuật hidrua hóa (HVG)
Phương pháp này dựa trên nguyên tắc khử cáchợp chất As về dạng asin và metylasin sau đó
định lượng sản phẩm sinh ra để tính ngược lại hàm lượng cáchợp chất ban đầu.
Số lượng công trình áp dụng kĩ thuật hidrua hoá xác định As rất lớn và đa dạng cho
thấy tính ưu việt vượt trội của kĩ thuật này, đặc biệt là khi kếthợp sử dụng một hệ sắc kí và bộ
phận hidrua hoá với một detector như MS hay các detector quang khác.
1.3.2. Phƣơng pháp sử dụng hệ tách HPLC kếthợpvới một detector
Nhiều công trình nghiên cứu theo hướng này đã đạt được những thành tựu nhất định
trong việc định lượng cácdạng As cũng như phát hiện và ghi nhận thời gian lưu của cácdạng
chưa biết. Việc sử dụng các hệ xác định này cho nhiều tiện ích trong việc xác định hàm lượng
As, đặc biệt là ưu thế sử dụng lượng mẫu nhỏ nên nó phù hợpvới yêu cầu xác định lượng vết
ở nhiều đối tượng khác nhau.
Tuy nhiên đối vớiphươngpháp này lại có một nhược điểm rất lớn đó là chi phí cho phép xác
định cao, trang thiết bị hiện đại.
1.4. ỨNG DỤNG CHEMOMETRICSTRONGPHÂNTÍCHDẠNGASEN
1.4.1. Thuật toán hồi qui đa biến tuyến tính
Một mảng lớn trongChemometrics gắn liền với toán học và tin học là hồi qui đa biến
– kỹ thuật đa biến được dùng rộng rãi trong phòng thí nghiệm hoá học giúp giải quyết các bài
toán xác định đồng thời nhiều cấu tử cùng có mặt trong hỗn hợp mà không cần tách loại
trước. Về nguyên tắc, chỉ cần xây dựng dãy dung dịch chuẩn có mặt tất cả các cấu tử cần xác
định với nồng độ biết trước trong hỗn hợp (các biến độc lập x), đo tín hiệu phântích của các
dung dịch này dưới dạng một hay nhiều biến phụ thuộc y và thiết lập mô hình toán học mô tả
quan hệ giữa hàm y (tín hiệu đo) và các biến độc lập x (nồng độ các chất trong hỗn hợp). Dựa
trên mô hình này có thể tìm được nồng độ của các cấu tửtrong cùng dung dịch định phân khi
có tín hiệu phântích của dung dịch đó.
5
Nếu các cấu tử có mặt trong hỗn hợp cho tín hiệu đo có tính chất cộng tính thì có thể
sử dụng phươngpháp hồi qui đa biến tuyến tính thông thường như phươngpháp bình phương
tối thiểu thông thường hoặc hiệu quả hơn như bình phương tối thiểu từng phần, phươngpháp
hồi qui cấu tử chính, …. Nhưng nếu trong hỗn hợp, các cấu tử có sự tương tác lẫn nhau làm
mất tính chất cộng tính ở tín hiệu đo thì phải sử dụng mô hình hồi qui đa biến phi tuyến tính
mà phổ biến là cácphươngphápkếthợpvới mạng nơron nhân tạo.
Tùy thuộc vào đặc điểm của hàm phụ thuộc, có thể chia cácphươngpháp hồi qui đa
biến tuyến tính thành 2 nhóm chính: Cácphươngpháp hồi qui đa biến tuyến tính sử dụng phổ
toàn phần như phươngpháp CLS, PLS, và phươngpháp sử dụng dữ liệu phổ riêng phần
như ILS. Trong luận văn này, tín hiệu của các dung dịch chứa cácdạng As được đo ở 5 điểm
rời rạc nên chúng tôi chọn sử dụng phươngpháp hồi qui trên phổ riêng phần PCR.
1.4.2. Phântíchcácdạng As bằng phƣơng pháp HVG – AAS sử dụng Chemometrics
Dựa trên những ưu điểm nổi bật của việc sử dụng Chemometrics nhiều tác giả đã có
những ứng dụng Chemometrics vào phântíchcác hỗn hợp có nhiều cấu tửtrong đó có phântích
dạng As.
CHƢƠNG 2. THỰC NGHIỆM
2.1. NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU
2.1.1. Cơ sở của phƣơng pháp
Cơ sở của phươngpháp là dựa trên sự chênh lệch hiệu suất phản ứng khi khử cácdạng
As thành asin bằng NaBH
4
trongcácmôitrường có nồng độ H
+
khác nhau. Cácphản ứng xảy
ra khi khử 4 dạng As khảo sát (As(III) vô cơ, As(V) vô cơ, DMA(V) và MMA(V)) như sau:
vô cơ hóa cácdạngasen hữu cơ rồi khử thành asin theo phản ứng
AsO
4
3-
+ BH
4
-
+ H
+
→ AsO
3
3-
+ H
2
+ BO
3
-
AsO
3
3-
+ BH
4
-
+ H
+
→ AsH
3
+ H
2
+ BO
3
-
Dòng khí mang Ar sẽ dẫn AsH
3
khác sang vùng nguyêntử hóa:
Định lượng As sinh ra bằng phương phápphổhấpthụnguyêntử tại bước sóng đặc
trưng của As là λ = 193,7nm.
2.1.2. Nội dung nghiên cứu
Để xây dựng qui trình xác định đồng thời cácdạng As bằngphươngphápphổhấpthụ
nguyên tửkếthợpvới việc sử dụng thuật toán hồi qui đa biến, từ đó nghiên cứu một số điều
kiện bảo quản mẫuAsen trên cơ sở kế thừa các nghiên cứu trước đó, trong luận văn này
chúng tôi tập trung nghiên cứu các vấn đề sau:
1. Ứng dụng các điều kiện đo phổhấpthụ As(III) để xây dựng đường chuẩn đa
biến xác định đồng thời cácdạng As trong dung dịch.
6
2. Dựa trên đường chuẩn đa biến xác định đồng thời cácdạngasenbằng HVG –
AAS vừa xây dựng được, nghiên cứu các điều kiện bảo quản mẫu: vật liệu
bình chứa, pH, lượng oxi hòa tan, các ion thường có trong thành phần mẫu,
nhiệt độ và thời gian bảo quản mẫu.
3. Đánh giá kết quả của các điều kiện tối ưu và phươngphápphântích thông
qua mẫu kiểm chứng.
4. Xác định hàm lượng cácdạngasentrong 5 mẫu thực tế ở khu vực Lâm Thao
– Phú Thọ.
2.2. HÓA CHẤT VÀ DỤNG CỤ THÍ NGHIỆM
2.2.1. Hóa chất
Các loại hoá chất được sử dụng là loại tinh khiết phântích (P.A) và các dung dịch
được pha chế bằng nước cất 2 lần.
2.2.2. Dụng cụ và trang thiết bị đo
- Bình định mức thủy tinh loại 10ml, 25ml, 50ml, 100ml, 250ml
- Các loại pipet vạch, pipet bầu
- Phễu, cốc, bình tam giác, đũa thủy tinh
- Máy quang phổhấpthụnguyêntử (AAS) Model AA-6800 ghép nối hệ thống HVG,
hãng Shimadzhu, Nhật Bản.
- Cân phântích và cân kĩ thuật.
- Máy đo pH HANNA Instrument 211
2.2.3. Cácphần mềm tính toán và xử lí
- Xử lý thống kê trên phần mềm Origin 6.0
- Lập trình tính toán theo phươngpháp hồi qui đa biến trên phần mềm Matlab 7.0
2.3. TIẾN HÀNH THÍ NGHIỆM
2.3.1. Các điều kiện đo phổhấpthụnguyêntử của Asen
Dựa theo tài liệu tham khảo, chúng tôi lựa chọn các điều kiện tối ưu cho quá trình đo phổ xác
định asen như sau:
Bảng 2.1: Tóm tắt các điều kiện tối ưu xác định As(III) bằngphươngpháp HVG-AAS
Yếu tố
Giá trị lựa
chọn
Yếu tố
Giá trị lựa
chọn
Vạch phổ
193,7nm
Tốc độ dòng
NaBH
4
2ml/phút
7
Cường độ dòng
đèn
7mA
Tốc độ dòng
mẫu
6ml/phút
Chiều cao đèn
nguyên tử hóa
16mm
Tốc độ dòng axit
2ml/phút
Tốc độ dòng khí
C
2
H
2
1,8L/phút
Khoảng tuyến
tính của As(III)
0,2 – 10 ppb
Tốc độ dòng
không khí
8L/phút
Khoảng tuyến
tính của As(V)
1 – 40 ppb
Môi trường khử
HCl 6M
Khoảng tuyến
tính của DMA
0,5 – 30 ppb
Nồng độ chất khử
NaBH
4
1%
Khoảng tuyến
tính của MMA
0,5 – 15 ppb
2.3.3. Các thuật toán hồi qui đa biến
Phƣơng pháp hồi qui cấu tử chính (PCR)
Các bước tính toán PCR trongphần mềm Matlab:
1. Khởi động phần mềm MATLAB
2. Nhập các ma trận dữ liệu trong cửa sổ WORKSPACE
+ Nhập ma trận nồng độ X
0
(30x4) của 30 dung dịch chuẩn chứa 4 dạngAsen
+ Nhập ma trận tín hiệu phântích Y
0
(30x5) (5 môitrường đo tín hiệu)
+ Nhập ma trận X0ktra(10x4), Y0ktra(10x5)
+Nhập tín hiệu phântích Y của mẫu cần định phân
1. Lưu các dữ liệu vừa nhập vào thành 1 file trong Matlab: PCR.mat
2. Mở một M-flie trong cửa sổ EDITOR( vào Matlab 7.6 chọn desktop , chọn editor và
chọn New M-File) và viết các câu lệnh sau :
load pcr.mat;
D=Y0'*Y0;
[V S]=svd(D);
d=diag(S)/sum(diag(S))*100;
f=V(:,1:5);
Yj=Y0*f;
F=inv(Yj'*Yj)*Yj'*X0;
8
Fj=f*F;
Xktra=Yktra*Fj;
Saiso=(X0ktra-Xktra)*100/X0ktra;
X=Y*Fj;
- Lưu lại M-file vừa thực hiện được: PCR.m
4. Gọi hàm M-file vừa viết được trong cửa sổ COMMAND WINDOW :
>> PCR
Khi đó chương trình sẽ chạy cho kết quả cần tìm.
9
CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN
3.1. XÂY DỰNG MÔ HÌNH HỒI QUY ĐA BIẾN TUYẾN TÍNH PHÂNTÍCHDẠNG
ASEN
3.1.1. Đƣờng chuẩn xác định cácdạngasen riêng rẽ trongmôi trƣờng HCl 6M
Sau khi khảo sát khoảng tuyến tính của cácdạng As ta thu được két quả như sau:
Bảng 3.1: Khoảng tuyến tính và đường chuẩn xác định riêng cácdạng As
Hợp chất
Khoảng
tuyến tính
Phương trình hồi qui đầy
đủ
(C
As
: ppb)
Giá trị hệ số
tương quan R
As(III)
0,2 – 10ppb
A = (0,00875 0,00114) +
(0,0124 0,00022)C
As(III)
R = 0,9989
As(V)
1 – 40ppb
A = (0,01066 0,00123) +
(0,00311 0,00005)C
As(V)
R = 0,9994
DMA
0,5 – 30ppb
A = (0,00919 0,00118) +
(0,00403 0,00007)C
DMA
R = 0,9991
MMA
0,5 – 15ppb
A = (0,00732 0,00126) +
(0,0089 0,00015)C
MMA
R = 0,9999
Như vậy, với cả 4 dạng As ở các vùng nồng độ nhất định có tương quan tuyến tính cao
giữa tín hiệu đo và nồng độ các dạng. Do tín hiệu của cácdạng ở cácmôitrườngphản ứng
khác có tỉ lệ xác định so với tín hiệu đo ở môitrường HCl 6M nên có thể cho rằng cũng có
tương quan tuyến tính tương tự ở cácmôitrường khử khác. Có thể kết luận rằng, hệ đo này đã
thỏa mãn điều kiện của phươngpháp hồi qui đa biến tuyến tính.
3.1.2. Giới hạn phát hiện(LOD) và giới hạn định lượng (LOQ) khi xác định đồng thời các
dạng asen.
Pha 8 mẫu trắng, đo phổhấpthụnguyêntử 1M, Đệm xitrat pH = 2, 3. Áp dụng công thức tính
LOD, LOQ theo của asentrong 8 mẫu này ở 5 môitrườngphản ứng là HCl 6M, HCl 2M, HCl
phương pháp đa biến theo câu lệnh
LOD = 3*norm(Z)/norm(M) ;
LOQ = 10*norm(Z)/norm(M) ,
với Z là ma trận phổhấpthụnguyêntử của asentrongcácmẫu trắng, M là ma trân hệ số hồi
qui tính theo phươngpháp PCR. Kết quả thu được như sau
Bảng 3.2: Giá trị LOD và LOQ khi phântích đồng thời cácdạng As
Dạng As
As(III)
As(V)
DMA
MMA
LOD, ppb
0,11
0,43
0,33
0,15
10
LOQ, ppb
0,36
1,44
1,09
1,09
3.1.3. Kiểm tra tính cộng tính của cácdạng As
Để kiểm tra, chúng tôi tiến hành xác định mối quan hệ giữa tín hiệu đo và nồng độ một dạng
As khi có mặt lượng xác định cácdạng khác trong dung dịch và so sánh với đường biểu diễn
quan hệ giữa hai đại lượng này khi trong dung dịch không có mặt cácdạng khác. Kết quả cho
thấy cácdạngasen có khả năng cộng tính cao, có thể sử dụng mô hình đa biến tuyến tính.
3.1.2.5. Đƣờng chuẩn đa biến
Chuẩn bị dãy dung dịch chuẩn gồm 40 dung dịch có nồng độ thay đổi đo độ hấpthụ ở 5 môi
trường phản ứng bao gồm: HCl 6M, HCl 2M, HCl 1M, dung dịch đệm xitric-xitrat 1M có pH
= 2, 3, các điều kiện đo tối ưu đã xác định ở trên với dung dịch so sánh là mẫu trắng. Tín hiệu
đo được chuyển vào matlab làm đường chuẩn xác định cácdạng asen.
3.2. NGHIÊN CỨU CÁC YẾU TỐ ẢNH HƢỞNG ĐẾN QUÁ TRÌNH CHUYỂN DẠNG
ASEN
3.2.1. Khảo sát ảnh hƣởng của vật liệu bình chứa đến sự chuyển dạng As
Khi khảo sát ảnh hưởng của vật liệu bình chứa chúng tối thấy, đối với những mẫu
đựng trong chai thủy tinh và chai nhựa đều có sự thay đổi nồng độ cácdạng của asen đồng
thời có sự mất asen. Tuy nhiên, vớimẫu đựng trong chai thủy tinh sự mất mát trong tổng
lượng asen lớn hơn nhiều so với những mẫu đựng trong chai nhựa. Cụ thể sau 3 tuần bảo
quản, tổng nồng độ asentrong chai nhựa còn lại là 87(%), trong chai thủy tinh tổng nồng độ
các dạng còn lại là 68% .
Điều đó có nghĩa là, đối vớimẫu đựng trong bình chứa là thủy tinh đã có sự hấpthụ của các
dạng asen lên thành bình thủy tinh làm tổng nồng độ cácdạngasen giảm. Do đó, để bảo quản
mẫu ta phải đựng trong chai nhựa.
Mặt khác, ánh sáng là yếu tố làm tăng tốc độ phản ứng oxi hóa – khử do xảy ra quá
trình quang phân làm cho quá trình chuyển dạng của asen xảy ra với tốc độ cao hơn. Vì vậy
quá trình bảo quản mẫu ta phải đựng mẫutrong chai nhựa tối mầu hoặc để trong bóng tối.
3.2.2. Khảo sát ảnh hƣởng của pH đến sự chuyển dạng của As trong quá trình bảo quản
mẫu.
Kết quả thu được cho thấy ở pH >2 xảy ra sự giảm tổng nồng độ asen có trong mẫu,
sau 3 tuần bảo quản tổng nồng độ asen giảm từ 15 - 18%. Ở pH <2 tổng nồng độ cácdạng
asen khá ổn định, tổng nồng độ asen thay đổi không đáng kể, do ở khoảng pH này ngăn cản
được sự kết tủa của sắt dưới dạng oxit hoặc hiđroxit và như vậy asen sẽ không bị cộng kết,
không làm mất asentrong dung dịch mẫu.
Như vậy để bảo quản cácmẫuasen ta phải giữ cácmẫu ở pH <2. Ở các thí nghiệm sau
chúng tôi sử dụng pH này để bảo quản cácmẫutrongcác nghiên cứu tiếp theo.
3.2.3. Khảo sát ảnh hƣởng của nhiệt độ và thời gian bảo quản mẫu đến quá trình chuyển
dạng
Ở nhiệt độ thường tốc độ chuyển dạng của asen lớn hơn ở nhiệt độ dưới 5
0
C. Điều này là
do nhiệt độ ảnh hưởng đến tốc độ phản ứng oxi hóa khử. Hầu hết cácphản ứng khi tăng nhiệt độ
thì tốc độ của phản ứng tăng làm cho sự chuyển dạng của asen xảy ra nhanh hơn. Đồng thời ở
[...]... phươngpháp này có hiệu suất thu hồi cao, độ đúng và độ chụm cao, có thể áp dụng phântíchcác đối tượng thực tế 6 Phântích hàm lượng cácdạng As trong 5 mẫu nước ngầm ở khu vực huyện Lâm Thao – Phú Thọ theo phươngpháp HVG – AAS sử dụng mô hình PCR Kết quả phântíchcácmẫu đó cũng cho thấy, độc tính của As trongphần lớn cácmẫu đều không cao do hàm lượng As vô cơ thấp và tổng hàm lượng cácdạng As trong. .. Lấy mẫu nƣớc ngầm và xử lí sơ bộ mẫu Qui trình lấy mẫu nước ngầm: Tiến hành lấy mẫu theo quy trình lấy mẫu vừa nghiên cứu trên Địa điểm lấy mẫu: Khảo sát hàm lượng cácdạng As trong nước ngầm ở khu vực huyện Lâm Thao – Phú Thọ Bảo quản trong điều kiện tối ưu sau 2 ngày đem phântích 3.4.2 Xác định hàm lƣợng cácdạng As trongmẫu thực Xác định nồng độ cácdạng As trong 5 mẫu nước ngầm theo phương pháp. .. hóa học môitrường cơ sở, Hà Nội, 1999 9 Phạm Luận, Phạm Thị Chung (2001), Nghiên cứu tối ưu hóa các điều kiện tạo hợp chất hyđrua asin để xác định lượng nhỏ asentrong quặng địa chất bằng phép đo phổhấpthụnguyêntử với kỹ thuật hyđrua hóa, Tạp chí Phântích : Hóa, L Sinh học, tập 6, số 1 , 10 Lê Tùng Linh(2006) Nghiên cứu điện cực đã tàng và ứng dụng Phântích lượng vết asenbằngphươngpháp von-ampe... chuyển dạng của cácdạng As và tìm điều kiện tối ưu cho quá trình bảo quản Cụ thể: Bảo quản mẫutrong chai nhựa tối màu, đậy kín tránh tiếp xúc với oxi không khí, ở nhiệt độ dưới 50C, mẫu được bảo quản ở pH dưới 2 và có thêm EDTA để ngăn cản quá trình chuyển dạng của asen, thời gian bảo quản mẫutrong quá trình phântích không quá 4 tuần 5 Tiến hành đánh giá phương phápphântích và kết quả cho thấy phương. .. tiêu đặt ra cho luận văn là tối ưu hóa các điều kiện xác định đồng thời cácdạng As bằngphươngpháp HVG – AAS sử dụng chemometrics, áp dụng phươngpháp đó nghiên cứu quá trình chuyển dạng của asen, sau một thời gian nghiên cứu, chúng tôi thu được một số kết quả chính sau: 1 Lựa chọn các điều kiện tối ưu cho quá trình xác định đồng thời cácdạng As bằngphươngpháp HVG – AAS 2 Đã xác định được khoảng... 0,25M/lít mẫu, đậy kín, đánh số và chuyển về phòng thí nghiệm, bảo quản ở nhiệt độ dưới 5 0C trong bóng tối 3.3 ĐÁNH GIÁ PHƢƠNG PHÁP PHÂNTÍCHphươngpháp có độ ổn định cao, độ lệch chuẩn và hệ số biến động nhỏ Vì vậy có thể kết luận rằng, đối với cả 4 dạng As này, phươngpháp HVG-AAS sử dụng mô hình PCR cho kết quả tương đối tốt, có thể áp dụng vào thực tế phântích 3.4 ỨNG DỤNG PHÂNTÍCHMẪU THỰC... không quá cao so với giới hạn cho phép nên có thể sử dụng trong sinh hoạt References Tiếng Việt: 1 Đỗ Văn Ái, Mai Trọng Nhuận, Nguyễn Khắc Vinh (2000), Một số đặc điểm phân bố Asentrongtự nhiên và vấn đề ô nhiễm Asentrongmôitrường ở Việt Nam, Hội thảo Asen quốc tế 2 Bách khoa toàn thư mở Wikipedia (2007), Phântích As bằngphươngpháp AAS 3 Bùi Thị Bích (2003) nghiên cứu phươngpháp động học xúc... As(III) có mặt trongmẫu là lớn hơn cả, dạng DMA có hàm lượng rất thấp thậm chí có những mẫu không phát hiện như mẫu 1 và 3 Phần lớn cácmẫu đều có tổng hàm lượng As dưới 10ppb Có thể thấy độc tính As trongphần lớn cácmẫu này không cao, tổng hàm lượng As nằm trong giới hạn cho phép theo tiêu chuẩn của WHO Như vậy, cácmẫu đều có hàm lượng As trong giới hạn an toàn cho nước sinh hoạt 4 KẾT LUẬN Với mục tiêu... thuật phântích ly, hóa, sinh học Việt Nam 6 Nguyễn Thị Thu Hằng(2008), Nghiên cứu các điều kiện xác định cácdạngAsenbằng phương phápphổhấpthụnguyên tử, Luận văn thạc sĩ, Khoa hóa học, Đại học Khoa Học Tự Nhiên-Đại học Quốc Gia Hà Nội 13 7 Nguyễn Hoàng Hải, Nguyễn Việt Anh (2005), Lập trình Matlab và ứng dụng, NXB KHKT, Hà Nội 8 Trần Tứ Hiếu, Phạm Hùng Việt, Nguyễn Văn Nội, Giáo trình hóa học môi. ..nhiệt độ thường, các vi sinh vật trong nước hoạt động mạnh hơn, điều này cũng làm ảnh hưởng đến quá trình chuyển dạng Về thời gian bảo quản mẫu, mặc dù khi bảo quản trong điều kiện dưới 5 0C nhưng từkết quả thu được ta thấy, bước sang tuần thứ 5 tốc độ chuyển dạng của asen lại tăng nhanh đồng thời có sự mất asentrong dung dịch Như vậy quá trình bảo quản mẫuphântích không nên để quá thời . Phân tích các dạng Asen trong mẫu môi trường
bằng phương pháp phổ hấp thụ nguyên tử kết
hợp với chemometrics
Nguyễn Thị Phương Thùy
Trường. dạng asen trong mẫu môi
trƣờng bằng phƣơng pháp phổ hấp thụ nguyên tử kết hợp với chemometrics ’ với mục tiêu
đặt ra là nghiên cứu quá trình chuyển các dạng