Phân tích các dạng asen trong mẫu môi trường bằng phương pháp phổ hấp thụ nguyên tử kết hợp với chemometrics

16 1.1K 0
Phân tích các dạng asen trong mẫu môi trường bằng phương pháp phổ hấp thụ nguyên tử kết hợp với chemometrics

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Phân tích các dạng Asen trong mẫu môi trường bằng phương pháp phổ hấp thụ nguyên tử kết hợp với chemometrics Nguyễn Thị Phương Thùy Trường Đại học Khoa học Tự nhiên Luận văn Thạc sĩ ngành: Hóa Phân tích; Mã số: 60 44 29 Người hướng dẫn: GS. TS. Trần Tứ Hiếu Năm bảo vệ: 2012 Abstract: Ứng dụng các điều kiện đo phổ hấp thụ As(III) để xây dựng đường chuẩn đa biến xác định đồng thời các dạng As trong dung dịch. Dựa trên đường chuẩn đa biến xác định đồng thời các dạng asen bằng HVG – AAS vừa xây dựng được, nghiên cứu các điều kiện bảo quản mẫu: vật liệu bình chứa, pH, lượng oxi hòa tan, các ion thường có trong thành phần mẫu, nhiệt độ và thời gian bảo quản mẫu. Đánh giá kết quả của các điều kiện tối ưu và phương pháp phân tích thông qua mẫu kiểm chứng. Xác định hàm lượng các dạng asen trong 5 mẫu thực tế ở khu vực Lâm Thao – Phú Thọ. Keywords: Asen; Phương pháp phổ hấp thụ nguyên tử; Hóa phân tích Content MỞ ĐẦU Cùng với sự phát triển mạnh mẽ của ngành toán học thống kê và tin học ứng dụng, Chemometrics - một nhánh của hóa học phân tích hiện đại - đã phát triển nhanh chóng và được ứng dụng ngày một rộng hơn. Một mảng quan trọng trong Chemometrics đang được nghiên cứu và sử dụng hiệu quả là kĩ thuật hồi qui đa biến – thuật toán xác định đồng thời nhiều cấu tử trong hỗn hợp mà không cần tách loại. Thuật toán này đã được ứng dụng rộng rãi để giải quyết nhiều bài toán định dạng phức tạp. Đối với vấn đề xác định các dạng As trong hỗn hợp, hiện nay chưa có nhiều công trình nghiên cứu theo hướng này tuy ưu điểm của nó là rất lớn so với các hướng nghiên cứu khác. Trong dung dịch asen tồn tại ở các dạng khác nhau. Trong đó, chúng ta quan tâm chủ yếu đến bốn dạng là As(III), As(V), DMA, MMA. Tùy thuộc vào thành phần nền mẫu và từng điều kiện cụ thể của quá trình bảo quản mẫu, các dạng asen có thể chuyển hóa lẫn nhau. Vì vậy một yêu cầu cấp thiết đặt ra là phải nghiên cứu quá trình bảo quản mẫu, tránh sự chuyển đổi giữa các dạng asen trong quá trình bảo quản từ đó mới xác định chính xác từng dạng asen, đánh giá đúng mức độ ô nhiễm của môi trường nước để có biện pháp xử lí, hạn chế sự ảnh hưởng của nó đến sức khỏe con người. 2 Vì vậy, chúng tôi đã lựa chọn đề tài : ‘‘ Phân tích các dạng asen trong mẫu môi trƣờng bằng phƣơng pháp phổ hấp thụ nguyên tử kết hợp với chemometrics’’ với mục tiêu đặt ra là nghiên cứu quá trình chuyển các dạng asen trên cơ sở những nghiên cứu trước đó về xác định các dạng asen bằng kĩ thuật HVG - AAS và hồi qui đa biến để định lượng các dạng asen trong mẫu nước. CHƢƠNG 1. TỔNG QUAN 1.1. SƠ LƢỢC TÌNH HÌNH Ô NHIỄM ASEN TRÊN THẾ GIỚI VÀ Ở VIỆT NAM Vấn đề ô nhiễm asen đang là một vấn đề thu hút sự quan tâm của nhiều nhà khoa học, nhiều tổ chức trong và ngoài nước. Sự ô nhiễm asen đặc biệt là trong nước ngầm đã được phát hiện ở nhiều nơi trên thế giới như Achentina, Mêhico, Chile, Mỹ, Canada, Trung Quốc, Đài Loan, Ấn Độ, Băngladet và Việt Nam. Một phần lớn người dân đã bị nhiễm độc asen mãn tính do sự có mặt của asen trong nước ngầm. Ở Mêhico, Chile, Đài Loan, Ấn Độ, Băngladet hàm lượng Asen trong nước cao từ vài trăm đến hơn 1000 μg/L. Ở một số bang phía Tây nước Mỹ, người dân đang phải sử dụng asen cao hơn giới hạn tối đa cho phép 50  g/L ( Tổ chức Y tế Thế giới đã đưa ra giới hạn cho phép về hàm lượng asen trong nước ăn là 10  g/L từ năm 1993). Ở Châu Á, những vùng nhiễm độc asen cao như Băngladet và Ấn Độ, nồng độ asen trong tóc và nước tiểu được sử dụng phổ biến làm chỉ thị cho sự phơi nhiễm asen mãn tính và tạm thời (Awanar et al, 2002). Đặc biệt là ở Băngladet, qua khảo sát 8000 giếng khoan ở 60 tỉnh trên tổng số 64 tỉnh ở nước này người ta thấy rằng có khoảng 51% số giếng khoan có hàm lượng asen lớn hơn 0,05 mg/L. Theo ước tính ở dây có khoảng 50 triệu dân sử dụng nước bị ô nhiễm Asen. Ở Việt Nam, theo một vài báo cáo cho thấy, hàm lượng asen lấy từ các giếng khoan tại vùng châu thổ sông Hồng khá cao. Nồng độ asen trung bình tìm thấy là 159  g/L. Hà Nội, Hà Nam, Hưng Yên, Nam Định, Ninh Bình, Thái Bình, Hải Dương là những vùng bị ô nhiễm asen nặng nề nhất. Ở đồng bằng sông Cửu Long, các nhà khoa học cũng đã phát hiện ra các giếng khoan có hàm lượng asen cao ở các tỉnh Đồng Tháp và An Giang. Hiện nay, ở các vùng đô thị mới và nông thôn tỉ lệ người dân sử dụng nước ngầm (nước giếng khoan) có hàm lượng asen làm nước ăn vẫn còn nhiều. Vì vậy cần phải theo dõi tiến hành điều tra tình trạng ô nhiễm asen và tác động của nó đến môi trường và sức khỏe người dân, tìm biện pháp giảm thiểu. 1.2. CÁC DẠNG TỒN TẠI TRONG MÔI TRƢỜNG CỦA ASEN 1.2.1. Các dạng asen tồn tại trong môi trƣờng Sau khi phát tán vào môi trường, As tồn tại ở nhiều dạng khác nhau tùy theo bản chất của nguồn phát tán, điều kiện phát tán và điều kiện của môi trường tồn tại. Bảng 1.1. Một số dạng As trong các đối tượng sinh học và môi trường STT Tên gọi Công thức 3 1. Asin AsH 3 2. Asenit AsO 3 3- 3. Asenat AsO 4 3- 4. Axit dimetylasenic, DMAA Me 2 AsO 2 H 5. Axit metylasonic, MMAA MeAsO 3 H 2 6. Trimetylasin Me 3 As 7. Oxit trimetylasin, TMAO Me 3 As + -O - 8. Ion tetrametylasoni Me 4 As + 9. Trimetylasoniaxetat Me 3 As + CH 2 COO - 10. Asenocholin (2- trimetylasonietanol) Me 3 As + CH 2 CH 2 OH 11. Dimetylasinoyletanol Me 3 As + (O - )CH 2 CH 2 OH Các dạng chủ yếu của As trong môi trường nước là bốn dạng As(III), As(V), DMA và MMA, trong đó hai dạng vô cơ có độc tính cao hơn. 1.2.2. Độc tính các dạng Asen Độ độc của asen phụ thuộc vào trạng thái oxi hóa của asen, phụ thuộc vào dạng tồn tại vô cơ hay hữu cơ. As(III) độc hơn nhiều so với As(V), asen vô cơ độc hơn rất nhiều so với asen hữu cơ. Qua nhiều nghiên cứu người ta thấy rằng độ độc giảm dần theo thứ tự: Asin > asenit > asenat > monometyl asenat > dimetyl asenat. Dạng xâm nhập chính vào cơ thể là asen dạng vô cơ, đặc biệt là Asen(III) dễ hấp thụ vào cơ thể con người qua đường ăn uống. Các hợp chất asenit và asenat vô cơ bền, có khả năng hòa tan trong nước đều dễ dàng hấp thụ vào dạ dày và các tế bào của cơ thể. As(V) được bài tiết (chủ yếu qua nước tiểu) nhanh hơn As(III) vì ái lực với nhóm thiol (-SH) kém hơn. As(III) cản trở nhóm (-SH) gắn vào các enzym và giữ lại trong các protein tế bào của cơ thể như keratin đisunfua trong tóc, móng và da. As(V) không độc bằng As(III) và không gây ức chế đối với hệ enzym. Tuy nhiên As(V) lại ngăn cản sự tổng hợp ATP. * Cơ chế gây độc Asen vô cơ phá hủy cáctrong hệ hô hấp, trong gan và thận, nó tác động lên các enzim tấn công vào các nhóm hoạt động -SH của enzim làm vô hiệu hoá enzim: 4 As(III) ở nồng độ cao còn làm đông tụ protein, có lẽ do As(III) tấn công vào các liên kết có nhóm sunfua. Trong môi trường yếm khí As(III) có thể tạo hợp chất (CH 3 ) 3 As rất độc. As(V) ở dạng AsO 4 3- có tính chất tương tự PO 4 3- sẽ thay thế PO 4 2- gây ức chế enzim, ngăn cản quá trình tạo ATP là chất sản sinh ra năng lượng sinh học. Nó can thiệp và làm rối loạn một số quá trình sinh hóa của cơ thể. Asen hữu cơ tác động lên các tế bào sinh học. Các dạng As hữu cơ có tính độc thấp hơn rất nhiều, một số hợp chất As(V) vô cơ thậm chí không độc. 1.3. CÁC PHƢƠNG PHÁP PHÂN TÍCH DẠNG ASEN 1.3.1. Các phƣơng pháp xác định Asen có sử dụng kĩ thuật hidrua hóa (HVG) Phương pháp này dựa trên nguyên tắc khử các hợp chất As về dạng asin và metylasin sau đó định lượng sản phẩm sinh ra để tính ngược lại hàm lượng các hợp chất ban đầu. Số lượng công trình áp dụng kĩ thuật hidrua hoá xác định As rất lớn và đa dạng cho thấy tính ưu việt vượt trội của kĩ thuật này, đặc biệt là khi kết hợp sử dụng một hệ sắc kí và bộ phận hidrua hoá với một detector như MS hay các detector quang khác. 1.3.2. Phƣơng pháp sử dụng hệ tách HPLC kết hợp với một detector Nhiều công trình nghiên cứu theo hướng này đã đạt được những thành tựu nhất định trong việc định lượng các dạng As cũng như phát hiện và ghi nhận thời gian lưu của các dạng chưa biết. Việc sử dụng các hệ xác định này cho nhiều tiện ích trong việc xác định hàm lượng As, đặc biệt là ưu thế sử dụng lượng mẫu nhỏ nên nó phù hợp với yêu cầu xác định lượng vết ở nhiều đối tượng khác nhau. Tuy nhiên đối với phương pháp này lại có một nhược điểm rất lớn đó là chi phí cho phép xác định cao, trang thiết bị hiện đại. 1.4. ỨNG DỤNG CHEMOMETRICS TRONG PHÂN TÍCH DẠNG ASEN 1.4.1. Thuật toán hồi qui đa biến tuyến tính Một mảng lớn trong Chemometrics gắn liền với toán học và tin học là hồi qui đa biến – kỹ thuật đa biến được dùng rộng rãi trong phòng thí nghiệm hoá học giúp giải quyết các bài toán xác định đồng thời nhiều cấu tử cùng có mặt trong hỗn hợp mà không cần tách loại trước. Về nguyên tắc, chỉ cần xây dựng dãy dung dịch chuẩn có mặt tất cả các cấu tử cần xác định với nồng độ biết trước trong hỗn hợp (các biến độc lập x), đo tín hiệu phân tích của các dung dịch này dưới dạng một hay nhiều biến phụ thuộc y và thiết lập mô hình toán học mô tả quan hệ giữa hàm y (tín hiệu đo) và các biến độc lập x (nồng độ các chất trong hỗn hợp). Dựa trên mô hình này có thể tìm được nồng độ của các cấu tử trong cùng dung dịch định phân khi có tín hiệu phân tích của dung dịch đó. 5 Nếu các cấu tử có mặt trong hỗn hợp cho tín hiệu đo có tính chất cộng tính thì có thể sử dụng phương pháp hồi qui đa biến tuyến tính thông thường như phương pháp bình phương tối thiểu thông thường hoặc hiệu quả hơn như bình phương tối thiểu từng phần, phương pháp hồi qui cấu tử chính, …. Nhưng nếu trong hỗn hợp, các cấu tử có sự tương tác lẫn nhau làm mất tính chất cộng tính ở tín hiệu đo thì phải sử dụng mô hình hồi qui đa biến phi tuyến tính mà phổ biến là các phương pháp kết hợp với mạng nơron nhân tạo. Tùy thuộc vào đặc điểm của hàm phụ thuộc, có thể chia các phương pháp hồi qui đa biến tuyến tính thành 2 nhóm chính: Các phương pháp hồi qui đa biến tuyến tính sử dụng phổ toàn phần như phương pháp CLS, PLS, và phương pháp sử dụng dữ liệu phổ riêng phần như ILS. Trong luận văn này, tín hiệu của các dung dịch chứa các dạng As được đo ở 5 điểm rời rạc nên chúng tôi chọn sử dụng phương pháp hồi qui trên phổ riêng phần PCR. 1.4.2. Phân tích các dạng As bằng phƣơng pháp HVG – AAS sử dụng Chemometrics Dựa trên những ưu điểm nổi bật của việc sử dụng Chemometrics nhiều tác giả đã có những ứng dụng Chemometrics vào phân tích các hỗn hợp có nhiều cấu tử trong đó có phân tích dạng As. CHƢƠNG 2. THỰC NGHIỆM 2.1. NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1.1. Cơ sở của phƣơng pháp Cơ sở của phương pháp là dựa trên sự chênh lệch hiệu suất phản ứng khi khử các dạng As thành asin bằng NaBH 4 trong các môi trường có nồng độ H + khác nhau. Các phản ứng xảy ra khi khử 4 dạng As khảo sát (As(III) vô cơ, As(V) vô cơ, DMA(V) và MMA(V)) như sau: vô cơ hóa các dạng asen hữu cơ rồi khử thành asin theo phản ứng AsO 4 3- + BH 4 - + H + → AsO 3 3- + H 2 + BO 3 - AsO 3 3- + BH 4 - + H + → AsH 3 + H 2 + BO 3 - Dòng khí mang Ar sẽ dẫn AsH 3 khác sang vùng nguyên tử hóa: Định lượng As sinh ra bằng phương pháp phổ hấp thụ nguyên tử tại bước sóng đặc trưng của As là λ = 193,7nm. 2.1.2. Nội dung nghiên cứu Để xây dựng qui trình xác định đồng thời các dạng As bằng phương pháp phổ hấp thụ nguyên tử kết hợp với việc sử dụng thuật toán hồi qui đa biến, từ đó nghiên cứu một số điều kiện bảo quản mẫu Asen trên cơ sở kế thừa các nghiên cứu trước đó, trong luận văn này chúng tôi tập trung nghiên cứu các vấn đề sau: 1. Ứng dụng các điều kiện đo phổ hấp thụ As(III) để xây dựng đường chuẩn đa biến xác định đồng thời các dạng As trong dung dịch. 6 2. Dựa trên đường chuẩn đa biến xác định đồng thời các dạng asen bằng HVG – AAS vừa xây dựng được, nghiên cứu các điều kiện bảo quản mẫu: vật liệu bình chứa, pH, lượng oxi hòa tan, các ion thường có trong thành phần mẫu, nhiệt độ và thời gian bảo quản mẫu. 3. Đánh giá kết quả của các điều kiện tối ưu và phương pháp phân tích thông qua mẫu kiểm chứng. 4. Xác định hàm lượng các dạng asen trong 5 mẫu thực tế ở khu vực Lâm Thao – Phú Thọ. 2.2. HÓA CHẤT VÀ DỤNG CỤ THÍ NGHIỆM 2.2.1. Hóa chất Các loại hoá chất được sử dụng là loại tinh khiết phân tích (P.A) và các dung dịch được pha chế bằng nước cất 2 lần. 2.2.2. Dụng cụ và trang thiết bị đo - Bình định mức thủy tinh loại 10ml, 25ml, 50ml, 100ml, 250ml - Các loại pipet vạch, pipet bầu - Phễu, cốc, bình tam giác, đũa thủy tinh - Máy quang phổ hấp thụ nguyên tử (AAS) Model AA-6800 ghép nối hệ thống HVG, hãng Shimadzhu, Nhật Bản. - Cân phân tích và cân kĩ thuật. - Máy đo pH HANNA Instrument 211 2.2.3. Các phần mềm tính toán và xử lí - Xử lý thống kê trên phần mềm Origin 6.0 - Lập trình tính toán theo phương pháp hồi qui đa biến trên phần mềm Matlab 7.0 2.3. TIẾN HÀNH THÍ NGHIỆM 2.3.1. Các điều kiện đo phổ hấp thụ nguyên tử của Asen Dựa theo tài liệu tham khảo, chúng tôi lựa chọn các điều kiện tối ưu cho quá trình đo phổ xác định asen như sau: Bảng 2.1: Tóm tắt các điều kiện tối ưu xác định As(III) bằng phương pháp HVG-AAS Yếu tố Giá trị lựa chọn Yếu tố Giá trị lựa chọn Vạch phổ 193,7nm Tốc độ dòng NaBH 4 2ml/phút 7 Cường độ dòng đèn 7mA Tốc độ dòng mẫu 6ml/phút Chiều cao đèn nguyên tử hóa 16mm Tốc độ dòng axit 2ml/phút Tốc độ dòng khí C 2 H 2 1,8L/phút Khoảng tuyến tính của As(III) 0,2 – 10 ppb Tốc độ dòng không khí 8L/phút Khoảng tuyến tính của As(V) 1 – 40 ppb Môi trường khử HCl 6M Khoảng tuyến tính của DMA 0,5 – 30 ppb Nồng độ chất khử NaBH 4 1% Khoảng tuyến tính của MMA 0,5 – 15 ppb 2.3.3. Các thuật toán hồi qui đa biến Phƣơng pháp hồi qui cấu tử chính (PCR) Các bước tính toán PCR trong phần mềm Matlab: 1. Khởi động phần mềm MATLAB 2. Nhập các ma trận dữ liệu trong cửa sổ WORKSPACE + Nhập ma trận nồng độ X 0 (30x4) của 30 dung dịch chuẩn chứa 4 dạng Asen + Nhập ma trận tín hiệu phân tích Y 0 (30x5) (5 môi trường đo tín hiệu) + Nhập ma trận X0ktra(10x4), Y0ktra(10x5) +Nhập tín hiệu phân tích Y của mẫu cần định phân 1. Lưu các dữ liệu vừa nhập vào thành 1 file trong Matlab: PCR.mat 2. Mở một M-flie trong cửa sổ EDITOR( vào Matlab 7.6 chọn desktop , chọn editor và chọn New M-File) và viết các câu lệnh sau : load pcr.mat; D=Y0'*Y0; [V S]=svd(D); d=diag(S)/sum(diag(S))*100; f=V(:,1:5); Yj=Y0*f; F=inv(Yj'*Yj)*Yj'*X0; 8 Fj=f*F; Xktra=Yktra*Fj; Saiso=(X0ktra-Xktra)*100/X0ktra; X=Y*Fj; - Lưu lại M-file vừa thực hiện được: PCR.m 4. Gọi hàm M-file vừa viết được trong cửa sổ COMMAND WINDOW : >> PCR Khi đó chương trình sẽ chạy cho kết quả cần tìm. 9 CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN 3.1. XÂY DỰNG MÔ HÌNH HỒI QUY ĐA BIẾN TUYẾN TÍNH PHÂN TÍCH DẠNG ASEN 3.1.1. Đƣờng chuẩn xác định các dạng asen riêng rẽ trong môi trƣờng HCl 6M Sau khi khảo sát khoảng tuyến tính của các dạng As ta thu được két quả như sau: Bảng 3.1: Khoảng tuyến tính và đường chuẩn xác định riêng các dạng As Hợp chất Khoảng tuyến tính Phương trình hồi qui đầy đủ (C As : ppb) Giá trị hệ số tương quan R As(III) 0,2 – 10ppb A = (0,00875  0,00114) + (0,0124  0,00022)C As(III) R = 0,9989 As(V) 1 – 40ppb A = (0,01066  0,00123) + (0,00311  0,00005)C As(V) R = 0,9994 DMA 0,5 – 30ppb A = (0,00919  0,00118) + (0,00403  0,00007)C DMA R = 0,9991 MMA 0,5 – 15ppb A = (0,00732  0,00126) + (0,0089  0,00015)C MMA R = 0,9999 Như vậy, với cả 4 dạng As ở các vùng nồng độ nhất định có tương quan tuyến tính cao giữa tín hiệu đo và nồng độ các dạng. Do tín hiệu của các dạngcác môi trường phản ứng khác có tỉ lệ xác định so với tín hiệu đo ở môi trường HCl 6M nên có thể cho rằng cũng có tương quan tuyến tính tương tựcác môi trường khử khác. Có thể kết luận rằng, hệ đo này đã thỏa mãn điều kiện của phương pháp hồi qui đa biến tuyến tính. 3.1.2. Giới hạn phát hiện(LOD) và giới hạn định lượng (LOQ) khi xác định đồng thời các dạng asen. Pha 8 mẫu trắng, đo phổ hấp thụ nguyên tử 1M, Đệm xitrat pH = 2, 3. Áp dụng công thức tính LOD, LOQ theo của asen trong 8 mẫu này ở 5 môi trường phản ứng là HCl 6M, HCl 2M, HCl phương pháp đa biến theo câu lệnh LOD = 3*norm(Z)/norm(M) ; LOQ = 10*norm(Z)/norm(M) , với Z là ma trận phổ hấp thụ nguyên tử của asen trong các mẫu trắng, M là ma trân hệ số hồi qui tính theo phương pháp PCR. Kết quả thu được như sau Bảng 3.2: Giá trị LOD và LOQ khi phân tích đồng thời các dạng As Dạng As As(III) As(V) DMA MMA LOD, ppb 0,11 0,43 0,33 0,15 10 LOQ, ppb 0,36 1,44 1,09 1,09 3.1.3. Kiểm tra tính cộng tính của các dạng As Để kiểm tra, chúng tôi tiến hành xác định mối quan hệ giữa tín hiệu đo và nồng độ một dạng As khi có mặt lượng xác định các dạng khác trong dung dịch và so sánh với đường biểu diễn quan hệ giữa hai đại lượng này khi trong dung dịch không có mặt các dạng khác. Kết quả cho thấy các dạng asen có khả năng cộng tính cao, có thể sử dụng mô hình đa biến tuyến tính. 3.1.2.5. Đƣờng chuẩn đa biến Chuẩn bị dãy dung dịch chuẩn gồm 40 dung dịch có nồng độ thay đổi đo độ hấp thụ ở 5 môi trường phản ứng bao gồm: HCl 6M, HCl 2M, HCl 1M, dung dịch đệm xitric-xitrat 1M có pH = 2, 3, các điều kiện đo tối ưu đã xác định ở trên với dung dịch so sánh là mẫu trắng. Tín hiệu đo được chuyển vào matlab làm đường chuẩn xác định các dạng asen. 3.2. NGHIÊN CỨU CÁC YẾU TỐ ẢNH HƢỞNG ĐẾN QUÁ TRÌNH CHUYỂN DẠNG ASEN 3.2.1. Khảo sát ảnh hƣởng của vật liệu bình chứa đến sự chuyển dạng As Khi khảo sát ảnh hưởng của vật liệu bình chứa chúng tối thấy, đối với những mẫu đựng trong chai thủy tinh và chai nhựa đều có sự thay đổi nồng độ các dạng của asen đồng thời có sự mất asen. Tuy nhiên, với mẫu đựng trong chai thủy tinh sự mất mát trong tổng lượng asen lớn hơn nhiều so với những mẫu đựng trong chai nhựa. Cụ thể sau 3 tuần bảo quản, tổng nồng độ asen trong chai nhựa còn lại là 87(%), trong chai thủy tinh tổng nồng độ các dạng còn lại là 68% . Điều đó có nghĩa là, đối với mẫu đựng trong bình chứa là thủy tinh đã có sự hấp thụ của các dạng asen lên thành bình thủy tinh làm tổng nồng độ các dạng asen giảm. Do đó, để bảo quản mẫu ta phải đựng trong chai nhựa. Mặt khác, ánh sáng là yếu tố làm tăng tốc độ phản ứng oxi hóa – khử do xảy ra quá trình quang phân làm cho quá trình chuyển dạng của asen xảy ra với tốc độ cao hơn. Vì vậy quá trình bảo quản mẫu ta phải đựng mẫu trong chai nhựa tối mầu hoặc để trong bóng tối. 3.2.2. Khảo sát ảnh hƣởng của pH đến sự chuyển dạng của As trong quá trình bảo quản mẫu. Kết quả thu được cho thấy ở pH >2 xảy ra sự giảm tổng nồng độ asentrong mẫu, sau 3 tuần bảo quản tổng nồng độ asen giảm từ 15 - 18%. Ở pH <2 tổng nồng độ các dạng asen khá ổn định, tổng nồng độ asen thay đổi không đáng kể, do ở khoảng pH này ngăn cản được sự kết tủa của sắt dưới dạng oxit hoặc hiđroxit và như vậy asen sẽ không bị cộng kết, không làm mất asen trong dung dịch mẫu. Như vậy để bảo quản các mẫu asen ta phải giữ các mẫu ở pH <2. Ở các thí nghiệm sau chúng tôi sử dụng pH này để bảo quản các mẫu trong các nghiên cứu tiếp theo. 3.2.3. Khảo sát ảnh hƣởng của nhiệt độ và thời gian bảo quản mẫu đến quá trình chuyển dạng Ở nhiệt độ thường tốc độ chuyển dạng của asen lớn hơn ở nhiệt độ dưới 5 0 C. Điều này là do nhiệt độ ảnh hưởng đến tốc độ phản ứng oxi hóa khử. Hầu hết các phản ứng khi tăng nhiệt độ thì tốc độ của phản ứng tăng làm cho sự chuyển dạng của asen xảy ra nhanh hơn. Đồng thời ở [...]... phương pháp này có hiệu suất thu hồi cao, độ đúng và độ chụm cao, có thể áp dụng phân tích các đối tượng thực tế 6 Phân tích hàm lượng các dạng As trong 5 mẫu nước ngầm ở khu vực huyện Lâm Thao – Phú Thọ theo phương pháp HVG – AAS sử dụng mô hình PCR Kết quả phân tích các mẫu đó cũng cho thấy, độc tính của As trong phần lớn các mẫu đều không cao do hàm lượng As vô cơ thấp và tổng hàm lượng các dạng As trong. .. Lấy mẫu nƣớc ngầm và xử lí sơ bộ mẫu Qui trình lấy mẫu nước ngầm: Tiến hành lấy mẫu theo quy trình lấy mẫu vừa nghiên cứu trên Địa điểm lấy mẫu: Khảo sát hàm lượng các dạng As trong nước ngầm ở khu vực huyện Lâm Thao – Phú Thọ Bảo quản trong điều kiện tối ưu sau 2 ngày đem phân tích 3.4.2 Xác định hàm lƣợng các dạng As trong mẫu thực Xác định nồng độ các dạng As trong 5 mẫu nước ngầm theo phương pháp. .. hóa học môi trường cơ sở, Hà Nội, 1999 9 Phạm Luận, Phạm Thị Chung (2001), Nghiên cứu tối ưu hóa các điều kiện tạo hợp chất hyđrua asin để xác định lượng nhỏ asen trong quặng địa chất bằng phép đo phổ hấp thụ nguyên tử với kỹ thuật hyđrua hóa, Tạp chí Phân tích : Hóa, L‎ Sinh học, tập 6, số 1 , 10 Lê Tùng Linh(2006) Nghiên cứu điện cực đã tàng và ứng dụng Phân tích lượng vết asen bằng phương pháp von-ampe... chuyển dạng của các dạng As và tìm điều kiện tối ưu cho quá trình bảo quản Cụ thể: Bảo quản mẫu trong chai nhựa tối màu, đậy kín tránh tiếp xúc với oxi không khí, ở nhiệt độ dưới 50C, mẫu được bảo quản ở pH dưới 2 và có thêm EDTA để ngăn cản quá trình chuyển dạng của asen, thời gian bảo quản mẫu trong quá trình phân tích không quá 4 tuần 5 Tiến hành đánh giá phương pháp phân tíchkết quả cho thấy phương. .. tiêu đặt ra cho luận văn là tối ưu hóa các điều kiện xác định đồng thời các dạng As bằng phương pháp HVG – AAS sử dụng chemometrics, áp dụng phương pháp đó nghiên cứu quá trình chuyển dạng của asen, sau một thời gian nghiên cứu, chúng tôi thu được một số kết quả chính sau: 1 Lựa chọn các điều kiện tối ưu cho quá trình xác định đồng thời các dạng As bằng phương pháp HVG – AAS 2 Đã xác định được khoảng... 0,25M/lít mẫu, đậy kín, đánh số và chuyển về phòng thí nghiệm, bảo quản ở nhiệt độ dưới 5 0C trong bóng tối 3.3 ĐÁNH GIÁ PHƢƠNG PHÁP PHÂN TÍCH phương pháp có độ ổn định cao, độ lệch chuẩn và hệ số biến động nhỏ Vì vậy có thể kết luận rằng, đối với cả 4 dạng As này, phương pháp HVG-AAS sử dụng mô hình PCR cho kết quả tương đối tốt, có thể áp dụng vào thực tế phân tích 3.4 ỨNG DỤNG PHÂN TÍCH MẪU THỰC... không quá cao so với giới hạn cho phép nên có thể sử dụng trong sinh hoạt References Tiếng Việt: 1 Đỗ Văn Ái, Mai Trọng Nhuận, Nguyễn Khắc Vinh (2000), Một số đặc điểm phân bố Asen trong tự nhiên và vấn đề ô nhiễm Asen trong môi trường ở Việt Nam, Hội thảo Asen quốc tế 2 Bách khoa toàn thư mở Wikipedia (2007), Phân tích As bằng phương pháp AAS 3 Bùi Thị Bích (2003) nghiên cứu phương pháp động học xúc... As(III) có mặt trong mẫu là lớn hơn cả, dạng DMA có hàm lượng rất thấp thậm chí có những mẫu không phát hiện như mẫu 1 và 3 Phần lớn các mẫu đều có tổng hàm lượng As dưới 10ppb Có thể thấy độc tính As trong phần lớn các mẫu này không cao, tổng hàm lượng As nằm trong giới hạn cho phép theo tiêu chuẩn của WHO Như vậy, các mẫu đều có hàm lượng As trong giới hạn an toàn cho nước sinh hoạt 4 KẾT LUẬN Với mục tiêu... thuật phân tích ly, hóa, sinh học Việt Nam 6 Nguyễn Thị Thu Hằng(2008), Nghiên cứu các điều kiện xác định các dạng Asen bằng phương pháp phổ hấp thụ nguyên tử, Luận văn thạc sĩ, Khoa hóa học, Đại học Khoa Học Tự Nhiên-Đại học Quốc Gia Hà Nội 13 7 Nguyễn Hoàng Hải, Nguyễn Việt Anh (2005), Lập trình Matlab và ứng dụng, NXB KHKT, Hà Nội 8 Trần Tứ Hiếu, Phạm Hùng Việt, Nguyễn Văn Nội, Giáo trình hóa học môi. ..nhiệt độ thường, các vi sinh vật trong nước hoạt động mạnh hơn, điều này cũng làm ảnh hưởng đến quá trình chuyển dạng Về thời gian bảo quản mẫu, mặc dù khi bảo quản trong điều kiện dưới 5 0C nhưng từ kết quả thu được ta thấy, bước sang tuần thứ 5 tốc độ chuyển dạng của asen lại tăng nhanh đồng thời có sự mất asen trong dung dịch Như vậy quá trình bảo quản mẫu phân tích không nên để quá thời . Phân tích các dạng Asen trong mẫu môi trường bằng phương pháp phổ hấp thụ nguyên tử kết hợp với chemometrics Nguyễn Thị Phương Thùy Trường. dạng asen trong mẫu môi trƣờng bằng phƣơng pháp phổ hấp thụ nguyên tử kết hợp với chemometrics ’ với mục tiêu đặt ra là nghiên cứu quá trình chuyển các dạng

Ngày đăng: 10/02/2014, 20:47

Hình ảnh liên quan

3.1. XÂY DỰNG MÔ HÌNH HỒI QUY ĐA BIẾN TUYẾN TÍNH PHÂN TÍCH DẠNG ASEN  - Phân tích các dạng asen trong mẫu môi trường bằng phương pháp phổ hấp thụ nguyên tử kết hợp với chemometrics

3.1..

XÂY DỰNG MÔ HÌNH HỒI QUY ĐA BIẾN TUYẾN TÍNH PHÂN TÍCH DẠNG ASEN Xem tại trang 9 của tài liệu.
Bảng 3.3: Hàm lượng các dạng As trong các mẫu tính theo phương pháp  đường chuẩn (đã tính đến hệ số pha loãng)  - Phân tích các dạng asen trong mẫu môi trường bằng phương pháp phổ hấp thụ nguyên tử kết hợp với chemometrics

Bảng 3.3.

Hàm lượng các dạng As trong các mẫu tính theo phương pháp đường chuẩn (đã tính đến hệ số pha loãng) Xem tại trang 12 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan