Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
644,48 KB
Nội dung
Nghiêncứukhảnăngchuyểnđổibèotây
thành ethanolsinhhọc
Phạm Công Minh
Trường Đại học Khoa học Tự nhiên
Luận văn ThS. ngành: Khoa học môi trường; Mã số: 60 85 02
Người hướng dẫn: PGS.TS. Nguyễn Mạnh Khải
Năm bảo vệ: 2012
Abstract. Nghiêncứu một số điều kiện tối ưu trong quá trình thủy phân bèotây
thành đường đơn bằng tác nhân hóa học. Xác định hàm lượng Etanol tạo ra sau quá
trình lên men bởi vi khuẩn Klebsiella oxytoca THLC0109, phân lập từ quá trình ủ
phân cừu và cỏ Napiergrass khô. Đề xuất quy trình sản xuất Etanol từ bèotây và xây
dựng kịch bản áp dụng cho một thủy vực thiên nhiên.
Keywords. Khoa học môi trường; Ethanolsinh học; Bèotây
Content
MỞ ĐẦU
Ngày nay, thế giới đang đứng trước nguy cơ khủng hoảng năng lượng trầm trọng.
Theo dự báo của các nhà khoa học trên thế giới, nguồn năng lượng từ các sản phẩm hoá
thạch dầu mỏ sẽ bị cạn kiệt trong vòng 40- 50 năm nữa. Để ổn định và đảm bảo an ninh năng
lượng đáp ứng cho nhu cầu con người cũng như các ngành công nghiệp, các nhà khoa học
đang tập trung nghiêncứu tìm ra những nguồn nhiên liệu mới, trong đó nghiêncứu phát triển
nhiên liệu sinhhọc có nguồn gốc từ sinh khối động, thực vật là một hướng đi có thể tạo ra
nguồn nhiên liệu thay thế phần nào nguồn nhiên liệu hoá thạch đang cạn kiệt, đảm bảo an
ninh năng lượng cho từng quốc gia.
Sử dụng nhiên liệu sinhhọc có những ưu điểm như giảm thiểu ô nhiễm khí thải độc
hại từ động cơ, tiết kiệm nguồn nhiên liệu hóa thạch dầu mỏ, tăng hiệu suất của động cơ, mặt
khác nhiên liệu sinhhọc khi thải vào đất có tốc độ phân hủy sinhhọc cao nhanh hơn gấp 4
lần so với nhiên liệu hóa thạch.
Etanol sinhhọc (Bio-Etanol) là một loại nhiên liệu sinh học, được sản xuất chủ yếu
bằng phương pháp lên men và chưng cất các loại ngũ cốc chứa tinh bột có thể chuyển hóa
thành đường đơn, thường được sản xuất từ các loại cây nông nghiệp hàm lượng đường cao
như ngô (ở Mỹ), lúa mì, lúa mạch, mía (ở Brazil). Ngoài ra, Etanol sinhhọc còn được sản
xuất từ cây cỏ có chứa hợp chất cellulose. Etanol từ cellulose đã được sản xuất thành công và
đưa vào sử dụng làm nhiên liệu ở nhiều nước trên thế giới. Hiện nay, việc sản xuất Etanol từ
các loại cây lương thực đang gây ra sự lo ngại về vấn đề an ninh lương thực trên thế giới.
Chính vì vậy, thế giới đang đi theo hướng sản xuất Etanol từ các nguyên liệu chứa hợp chất
cellulose.
Việt Nam là một quốc gia nằm ở vùng khí hậu nhiệt đới gió mùa ẩm, điều kiện thuận
lợi cho sự phát triển của các loài tảo, bèo tây. Trên thế giới đã có những công trình nghiên
cứu ứng dụng khảnăng hấp thụ kim loại nặng của bèotây để làm sạch môi trường nước mặt.
Bên cạnh đó, bèotây cũng đã được nghiêncứu trong lĩnh vực sản xuất Etanol sinh học. Dựa
vào thành phần hóa học của bèotây chủ yếu là cellulose và hemicellulose, qua quá trình thủy
phân và lên men nhờ vi sinh vật, chuyển hoá cellulose trong bèotâythành Etanol sinh học.
Với những ưu điểm như rẻ tiền, phổ biến và có khảnăng phát triển rất nhanh, bèotây sẽ là
một nguồn nguyên liệu tiềm năng trong quá trình nghiêncứu sản xuất Etanol sinh học. Chính
vì ý nghĩa thiết thực đó, luận văn đã tiến hành nghiêncứu đề tài “Nghiên cứukhảnăng
chuyển đổibèotây (Eichnoria) thành Etanol sinh ho
̣
c”
Để đạt được mục tiêu nêu trên, đề tài đã tiến hành các nội dung nghiêncứu sau:
- Nghiêncứu một số điều kiện tối ưu trong quá trình thủy phân bèotâythành
đường đơn bằng tác nhân hóa học.
- Xác định hàm lượng Etanol tạo ra sau quá trình lên men bởi vi khuẩn Klebsiella
oxytoca THLC0109, phân lập từ quá trình ủ phân cừu và cỏ Napiergrass khô.
- Đề xuất quy trình sản xuất Etanol từ bèotây và xây dựng kịch bản áp dụng cho
một thủy vực thiên nhiên.
CHƢƠNG 1: TỔNG QUAN TÀI LIỆU
1.1 Sinh khối và nhiên liệu sinhhọc
1.1.1 Khái niệm
1.1.2. Các dạng nhiên liệu sinhhọc
1.1.3. Những lợi ích khi sử dụng nhiên liệu sinhhọc
1.2. Etanol sinhhọc
1.2.1. Tính chất lý hoá học của Etanol
1.2.2. Phương pháp sản xuất Etanol sinhhọc
1.2.3. Tình hình sản xuất và sử dụng Etanol sinhhọc
1.3. Vai trò của vi sinh vật trong việc phân giải hợp chất hữu cơ
1.3.1. Cellulosese và vi sinh vật phân giải cellulosese
1.3.2. Hemicellulosese và vi sinh vật phân giải hemicellulosese
1.4. Vai trò của vi sinh vật trong quá trình lên men rƣợu
1.4.1. Quá trình lên men rượu
1.4.2. Nấm men dùng trong sản xuất rượu etylic
1.5. Bèotây và thực trạng sử dụng bèotây ở Việt Nam
1.5.1. Đặc điểm của bèotây
1.5.2. Sự phân bố bèotây ở Việt Nam
1.5.3. Thực trạng sử dụng bèotây ở Việt Nam
CHƢƠNG 2: ĐỐI TƢỢNG VÀ PHƢƠNG PHÁP NGHIÊNCỨU
2.1. Đối tƣợng nghiêncứu
2.1.1 Đối tượng nghiêncứu
- Mẫu bèotây được lấy tại hồ khu vực Bắc Linh Đàm, quận Hoàng Mai, Hà Nội. Sau
khi rửa sạch bèo tây, cắt bỏ phần rễ, sau đó được sấy bằng tủ sấy đến khối lượng không đổi.
- Đề tài sử dụng loại khuẩn Klebsiella oxytoca THLC0109 do thạc sĩ Trần Đăng
Thuần phân lập từ quá trình ủ phân cừu và cỏ Napier khô tại Đài Loan.
2.2. Phƣơng pháp nghiêncứu
2.2.1. Phương pháp tiền xử lý
- Bèotây được sấy trong tủ sấy ở nhiệt độ 70
0
C đến khối lượng không đổi, sau đó
được cắt ngắn khoảng 2-3 cm và nghiền nhỏ bằng máy nghiềnthành dạng bột. Bột bèo được
bảo quản trong hộp kín, tránh bị ẩm mốc.
2.2.2. Phương pháp thủy phân
Bèo tây được thủy phân trong 120ml dung dịch axit H
2
SO
4
loãng 2,5%, sau đó đun ở
100
0
C bằng máy điều nhiệt trong 35 phút. Làm lạnh đưa về nhiệt độ phòng, trung hòa dung
dịch sau thủy phân bằng NaOH sau đó lọc bằng giấy lọc băng xanh. Xác định hàm lượng
đường khử của dung dịch thu được bằng phương pháp so màu.
Trong quá trình thủy phân, mục tiêu của đề tài là tìm ra được các thông số tối ưu có
ảnh hưởng trực tiếp đến sản phẩm thủy phân bèo tây: thời gian, nồng độ axit, tỷ lệ rắn lỏng.
2.2.3. Phương pháp xác định hàm lượng đường khử
Xác định đường khử bằng phương pháp axit dinitro-salicylic (DNS)
- Nguyên tắc: Phương pháp này dựa trên cơ sở phản ứng tạo màu giữa đường khử với
thuốc thử axit dinitrosalicylic (DNS). Ban đầu dung dịch axit dinitro – salicylic (DNS) có
màu vàng nhạt, sau khi phản ứng với đường khử chuyển sang màu da cam – đỏ đậm. Cường
độ màu của hỗn hợp phản ứng tỉ lệ thuận với nồng độ đường khử trong một phạm vi nhất
định. Tiến hành so màu ở bước sóng 550nm. Dựa vào đồ thị đường chuẩn của D-glucose với
thuốc thử DNS sẽ tính được hàm lượng đường khử của mẫu.
Phương trình phản ứng tạo màu giữa đường khử và DNS axit:
2.2.4. Phương pháp lên men
Nhân giống vi khuẩn lên men:
Môi trường nhân giống gồm (pepton 5g/l; NaCl 5g/l). Lấy 100ml dung dịch môi
trường nhân giống đưa vào bình thủy tinh có nút cao su. Khử trùng trong nồi hấp ở nhiệt độ
60-70
0
C trong 15 phút.
Cấy vi sinh vật vào dung dịch: Công việc được tiến hành trong tủ khuấy vô khuẩn để
tránh bị nhiễm các vi sinh vật khác có ảnh hưởng xấu đến vi khuẩn và quá trình lên men sau
này. Dùng que cấy vòng và được vô khuẩn trên đèn cồn chấm vào lọ đựng vi sinh vật sau đó
từ từ đưa vào bình thủy tinh chứa dung dịch môi trường nhân giống. Tiến hành nuôi cấy ở
nhiệt độ phòng trong 24h.
Lên men mẫu:
Lấy 100ml dung dịch nước lọc bèo của quá trình thủy phân cho vào bình có nút cao
su. Khử trùng trong nồi hấp ở nhiệt độ 60-70
0
C trong 60 phút. Sử dụng kim tiêm lấy 1ml
dung dịch từ bình nuôi cấy cho vào bình lên men. Nuôi ở nhiệt độ phòng. Cứ 24h tiến hành
lấy mẫu 1 lần, mỗi lần lấy 6ml.
2.2.5. Phương pháp xác định hàm lượng Etanol
Dung dịch sau khi lên men được phân tích hàm lượng Etanol trên máy sắc khí GC tại
phòng thí nghiệm của Khoa Môi trường, trường Đại học Khoa học Tự nhiên.
Thiết bị sử dụng phân tích Etanol là máy sắc ký khí Detector cộng kết điện tử GC-
ECD 2010 của hãng Shimazhu, Nhật Bản.
Điều kiện phân tích đã lựa chọn:
- Cột mao quản chiều dài 30m, đường kính trong 0,25 mm;
- Nhiệt độ cổng bơm mẫu: 1200C;
- Nhiệt độ detector ECD: 2800C;
- Khí mang N
2
tốc độ dòng 1ml/phút;
- Phương pháp bơm mẫu Splitless
- Chương trình nhiệt độ cột: Nhiệt độ ban đầu là 120
0
C (giữ trong 1 phút), sau đó tăng lên
150
0
C với tốc độ 10
0
C/phút và giữ ở 150
0
C trong 4 phút.
- Tổng thời gian chạy mẫu là 8 phút.
- Bơm mẫu theo kiểu heat-spray: Gồm 3 bước theo thứ tự (1), (2) và (3):
Mẫu ban đầu (1) được gia nhiệt đến trạng thái bão hòa (2), sau đó hút như ở (3) và
bơm vào cổng bơm mẫu của máy sắc ký khí.
(1) (2) (3)
CHƢƠNG 3: KẾT QUẢ NGHIÊNCỨU VÀ THẢO LUẬN
3.1. Thành phần và khảnăng phát triển của bèotây
3.1.1. Thành phần lý hóa học của bèotây
Phần thân bèotây ban đầu có màu xanh lá cây, sau khi sấy khô bằng tủ sấy chuyển
sang màu nâu nhạt.
Khối lượng bèotây ban đầu: 1kg phơi khô tự nhiên, sấy khô ở 70
0
C đến khối lượng
không đổi là 0,115 kg
Như vậy trong bèotâynghiêncứu có chứa lượng nước:
(1 - 0,115) * 100% = 88,5%
Kết quả phân tích thành phần mẫu bèotây của Viện Chăn nuôi Việt Nam theo 3 yếu
tố cellulose, hemicellulose và lignin:
Bảng 7. Thành phần khối lượng bèotây
Thành phần
% Khối lượng (khô)
Cellulose
34
Hemicellulose
43
Lignin
8
Khác
15
Trên thế giới, các nghiêncứu về bèotây đã chỉ ra rằng: hầu hết hàm lượng cellulose
và hemicellulose tập trung tại thân và lá của bèo tây; bộ phận rễ của bèotây là nơi phân giải
các chất ô nhiễm và tích luỹ kim loại nặng, thành phần chủ yếu là lignin. Chính vì vậy, đề tài
này cũng chỉ sử dụng phần thân và lá của bèotây để nghiêncứukhảnăng sản xuất Etanol.
Đây cũng là xu hướng nghiêncứu phù hợp với thế giới trong lĩnh vực sản xuất Etanol từ
nguyên liệu bèo tây.
3.1.2. Khảnăng phát triển của bèotây
Bèo tây là một trong mười loài cây có tốc độ sinh trưởng mạnh nhất trên thế giới.
Tỷ lệ tăng trưởng của bèotây khoảng 10,33 – 19,15 kg/ha/ ngày (Reddy and DeBusk,
1987). Chúng có khảnăng tăng gấp đôisinh khối trong vòng 14 ngày, sinh khối trung
bình lớn nhất của bèotây là 49,6 kg/m
2
. Trong điều kiện bình thường, bèotây có thể bao
phủ mặt nước với mật độ 10 kg/m
2
, mật độ tối đa có thể đạt được là 50 kg/m
2
.
Theo Yount & Crossman, 1970, năng suất của bèotây trong môi trường nước tự
nhiên tại trung tâm và phía Nam Florida, Mỹ là 2 – 29 g bèo khô/m
2
/ngày. Đặc biệt, trong
môi trường nước giàu chất dinh dưỡng, năng suất bèotây có thể đạt tới mức 5 – 52g bèo
khô/ m
2
/ngày.
Nhóm các nhà khoa học Mexico, E.L. Gutiérrez, E.F. Ruiz, E.G. Uribe và J.M.
Martínez nghiêncứu về sinh khối và năng suất bèotây tại các thuỷ vực, kết quả trong
bảng 8 cho thấy sự phát triển của bèotây tại các đầm và hồ:
Bảng 8. Sản lượng và độ che phủ của bèotây
Địa điểm
Sản lượng (khô)
Độ che phủ
Tổng sinh
khối (tấn)
TB
(kg/m
2
)
Lớn nhất
(kg/m
2
)
Trung bình
(ha)
% diện tích
Đầm Chairel
39,5
50,5
376
10
148.520
Đập Cruz Pintada
49,6
76
7,5
75
3.720
Đập Sanalona
42,6
57
790
33
336.540
Đập Solis
38,8
63
3.378
59
1.130.664
Đập Requena
35,74
51
498
70
175.803
Đập Endho
33,5
51
818
80
220.000
Đập Valle de Bravo
45,7
67
109
6
50.000
Theo nghiêncứu của Penfound and Earle, trên lưu vực sông Mê Kông, từ 10 cá thể
bèo tây sau khoảng thời gian 8 tháng đã hình thành một quần thể bèotây với số lượng
655.000 cá thể, che phủ diện tích mặt nước 0,4 ha.
Các nghiêncứu trên đã cho ta thấy được khảnăngsinh sản cực nhanh của bèo tây. Vì
vậy, nếu không sử dụng nguồn sinh khối này sẽ rất lãng phí và bèotây còn có thể gây ra tác
dụng tiêu cực với đời sống.
3.2. Kết quả thí nghiệm thủy phân chuyển hóa bèotâythành đƣờng
3.2.1. Ảnh hưởng của thời gian
Tiến hành thủy phân 2,5g bèotây với dung dịch 120ml H
2
SO
4
2,5% trong các khoảng
thời gian 35 – 60 phút ở 100
0
C. Kết quả được thể hiện trong bảng 8:
Bảng 9. Ảnh hưởng của yếu tố thời gian đến khảnăng thủy phân
Thời gian thủy phân (phút)
Khối lượng đường (g)
Tỷ lệ thủy phân (g/g)
35
1,315
0.526
40
1,738
0.695
45
1,945
0.778
50
2,203
0.881
55
1,126
0.450
60
1,063
0.425
0
0.5
1
1.5
2
2.5
35 40 45 50 55 60
Thời gian (phút)
Khối lượng (g)
0
0.5
1
1.5
2
Khối lượng đường Tỷ lệ thủy phân
Hình 8. Ảnh hưởng của yếu tố thời gian đến khảnăng thủy phân
Từ biểu đồ hình 8, có thể thấy trong khoảng khảo sát 35 – 60 phút thì lượng đường
tạo ra chủ yếu trong 50 phút đầu tiên. Tại thời điểm 50 phút lượng đường tạo ra đạt giá trị lớn
nhất (2,203 g) tương ứng với tỷ lệ thủy phân cao nhất (0,881 g/g). Do vậy đề tài lựa chọn thời
gian thủy phân là 50 phút là thời gian tối ưu.
3.2.2. Ảnh hưởng của nồng độ axit
Tiến hành thủy phân 3g bèotây với dung dịch 120ml H
2
SO
4
, nồng độ axit khảo sát
trong khoảng 3% - 8% trong 50 phút ở 100
0
C. Kết quả thu được thể hiện trong bảng 9:
Bảng 10. Ảnh hưởng của nồng độ axit đến khảnăng thủy phân
Nồng độ axit H
2
SO
4
(%)
Khối lượng đường (g)*
Tỷ lệ thủy phân (g/g)
3%
2,096
0.699
4%
2224
0.741
5%
2,275
0.758
6%
2,416
0.805
7%
2,754
0.918
8%
1,784
0.595
(*): Tính cho 120ml dung dịch axit
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3% 4% 5% 6% 7% 8%
Nồng độ axit (%)
Khối lượng đường (g)
0.0
0.5
1.0
1.5
2.0
Khối lượng đường Tỷ lệ thủy phân
Hình 9. Ảnh hưởng của nồng độ axit đến khảnăng thủy phân
Từ biểu đồ hình 9, thấy được trong khoảng khảo sát nồng độ axit H2SO4 thủy phân
3% - 8% thì lượng đường tạo ra ở nồng độ 7% là lớn nhất (2,754 g) tương ứng với tỷ lệ thủy
phân cao nhất (0,918 g/g). Do vậy đề tài lựa chọn nồng độ axit H2SO4 7% là nồng độ tối ưu
để sử dụng cho thí nghiệm tiếp theo.
3.2.3. Ảnh hưởng của tỷ lệ rắn/lỏng
Bèo tây được thủy phân trong 120ml axit H2SO4 7% theo các tỷ lệ rắn/ lỏng là 1:120,
1:60, 1:40, 1:30, 1:24, 1:20 ở 1000C trong 50 phút. Kết quả được thể hiện trong bảng 10:
Bảng 11. Ảnh hưởng của tỷ lệ rắn/lỏng đến khảnăng thủy phân
Tỷ lệ rắn/ lỏng
Khối lượng bèo
tây (g)
Khối lượng đường
Tỷ lệ thủy phân
(g/g)
1:120
1
0,409
0,409
1:60
2
0,965
0,482
1:40
3
2,187
0,729
1:30
4
2,861
0,715
1:24
5
3,296
0,659
1:20
6
3,593
0,599
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
1 2 3 4 5 6
Khối lượng bèotây (g)
Khối lượng đường (g)
0.0
0.5
1.0
1.5
2.0
Khối lượng đường Tỷ lệ thủy phân
Hình 10. Ảnh hưởng của tỷ lệ rắn/lỏng đến khảnăng thủy phân
Từ biểu đồ 10, trong khoảng khảo sát khối lượng bèotây thay đổi 1 – 6(g), lượng
đường tạo ra tỉ lệ thuận với khối lượng bèotây đem thủy phân thì khối lượng đường thu được
càng lớn. Vì ở 6g lượng đường tạo ra đạt giá trị lớn nhất 3,593 (g) nhưng tỷ lệ thủy phân chỉ
đạt 0,599 (g/g) thấp hơn so với tỷ lệ thủy phân ở 3g (0,729 g/g). Vì vây, xét cả yếu tố sử dụng
nguyên liệu hiệu quả, đề tài lựa chọn khối lượng bèotây thủy phân ở 3g (tỷ lệ 1: 30) là tối ưu
để sử dụng cho các thí nghiệm tiếp theo.
Từ 3 thông số đã khảo sát (thời gian thủy phân, nồng độ axit và tỷ lệ rắn/ lỏng), đề tài
đã lựa chọn ra điều kiện tối ưu của quá trình thủy phân bèotây bằng dung dịch axit H
2
SO
4
loãng là:
Thể tích axit H
2
SO
4
V = 120ml
Khối lượng bèo: 3g
Nồng độ axit H
2
SO
4
: 7%
Thời gian thủy phân: 50 phút
Nhiệt độ: 100
0
C
3.2.4. Thành phần của bã bèo sau quá trình thuỷ phân
Sau khi đã lựa chọn được bộ thông số tối ưu cho quá trình thuỷ phân, ta tiến hành
thuỷ phân bèotây với các thông số tối ưu. Quá trình thuỷ phân được tiến hành. Sản phẩm
dung dịch đường được chuẩn bị cho quá trình lên men, còn bã bèo sẽ được phân tích thành
phần các chất rắn còn lại.
Bảng 12. Thành phần chất rắn còn lại sau quá trình thuỷ phân
STT
Hợp chất
Nguyên liệu
ban đầu (g)
Sau quá trình
thuỷ phân (g)
1
Cellulose
1,02
0,692
2
Hemicellulose
1,29
0,593
3
Lignin
0,24
0,218
4
Khác
0.45
0,415
Tổng cộng
3,0
1,685
Từ số liệu về thành phần chất rắn còn lại sau quá trình thuỷ phân ở bảng 12, tính được
khả năngchuyển hoá hydrocacbon trong quá trình thuỷ phân bằng axit như sau:
Bảng 13. Khảnăngchuyển hoá hydratcacbon trong quá trình thuỷ phân
STT
Hợp chất
Nguyên liệu
ban đầu (g)
% chuyển hoá
hydrocacbon
1
Cellulose
1,02
32,20
2
Hemicellulose
1,29
54,08
3
Lignin
0,24
9,21
4
Khác
0.45
7,78
Kết quả trong bảng 13 cho thấy hemicelluloses là hợp chất có khảnăngchuyển hoá
hydrocacbon tốt nhất 54,08 % trong quá trình thuỷ phân bằng axit H
2
SO
4
, tiếp đến là
cellulose 32,2 %, ligini 9,21%. Kết quả này chỉ ra rằng: lignin là hợp chất rất khó chuyển hoá
trong quá trình thuỷ phân bằng axit. Điều này phù hợp với các nghiêncứu trên thế giới về
quá trình thuỷ phân nguy
3.3. Khảnăngchuyển hóa sản phẩm thủy phân thành Etanol
3.3.1. Xây dựng đường chuẩn Etanol
Các dung dịch Etanol được pha theo nồng độ định trước và được đo trên máy sắc ký
khí GC. Từ kết quả đo được, vẽ được đồ thị biểu diễn mối quan hệ giữa nồng độ Etanol và
diện tích peak – xác định đường chuẩn Etanol.
y = 3158.6x
R
2
= 0.9976
0
50000
100000
150000
200000
250000
0 10 20 30 40 50 60 70 80
Nồng độ Etanol (mg/l)
Diện tích Peak
Hình 11. Đường chuẩn Etanol
3.3.2. Phân tích nồng độ Etanol trong các mẫu
Sau khi thủy phân bèotây ở các điều kiện tối ưu, dịch thu được tiến hành lên men nhờ
vi khuẩn Klebsiella oxytoca THLC0109. Cứ sau 24h lấy mẫu 1 lần đem phân tích hàm lượng
Etanol trên máy sắc ký khí GC, thu được các sắc ký đồ như sau:
Ngày 1: S = 3426 Ngày 2: S = 13447
Ngày 3: S = 22795 Ngày 4: S = 15188
[...]... Biên 25,5 7650 879,8 190,91 7 Tây Hồ 508,5 152550 17543,3 3806,89 8 Thanh Xuân 19,6 5880 676,2 146,74 Kết quả ước tính như trong bảng 14 cho thấy, bèotây là một nguồn nguyên liệu để sản xuất Etanol trong tương lai KẾT LUẬN VÀ KHUYẾN NGHỊ KẾT LUẬN Sau quá trình nghiên cứu, đề tài Nghiên cứukhảnăng chuyển đổibèotâythành cồn sinhhọc đã thu được một số kết quả: 1 Bèotây sau khi được phơi tự nhiên,... từ bèotây Xây dựng kịch bản ứng dụng quy trình sản xuất Etanol từ bèotây Dựa trên các kết quả nghiêncứu về khảnăngsinh trưởng của bèotây và sản lượng Etanol, đề tài này xây dựng một kịch bản ứng dụng quy trình sản xuất Etanol từ bèotây trên diện tích mặt nước của các hồ trong khu vực thành phố Hà Nội Đề tài đã ước tính sản lượng bèotây thu được trên diện tích mặt nước của các quận trong thành. .. triển năng lượng bền vững ở Việt Nam, Những vấn đề phát triển năng lượng SK của Việt Nam 4 Nguyễn Đức Lượng (1996), Nghiêncứu tính chất một số vi sinh vật có khảnăng tổng hợp xenluloza cao, Luận án PTSKHKT, Hà Nội 5 Trần Diệu Lý (2008), Nghiêncứu sản xuất ethanol nhiên liệu từ rơm rạ, khóa luận tốt nghiệp, Thành phố Hồ Chí Minh 6 Nguyễn Thị Hằng Nga (2009), Nghiên cứukhảnăng sản xuất ethanol sinh. .. nghiêncứu trên, đề tài đề xuất quy trình điều chế Etanol từ bèotây như sau: Bèotây Xử lý sơ bộ (phơi khô, nghiền nhỏ) Thủy phân bằng axit (3g bèo, H2SO4 7% ở 1000C, 50 phút) Trung hòa bằng NaOH Lọc bằng giấy lọc Klebsiella oxytoca THLC0109 Lên men trong 3 ngày Bã ủ làm phân bón Chưng cất Ethanol Hình 15 Quy trình sản xuất Etanol từ bèotây 3.5 Đánh giá về khảnăng phát triển sản xuất Etanol sinh học. .. khoa học khác gồm Kumar A, Singh LK, Ghosh S sử dụng một loại nấm men Pichia stipitis thuộc họ ascomycetous để sản xuất Etanol từ nguyên liệu bèotâyBèotây được tiền xử lý bằng axit loãng để tận dụng tối đa hàm lượng hemicelluloses trong bèotây cho quá trình lên men Etanol sau này Kết quả của nghiêncứu là sản lượng Etanol 0,425 g/g 3.4 Đề xuất quy trình sản xuất Etanol từ bèotây Từ các kết quả nghiên. .. này 3 Trong quá trình nghiên cứu, đề tài mới chỉ xác định được tổng hàm lượng đường khử dựa tính theo glucoza làm cơ sở đánh giá mà chưa xác định rõ được hàm lượng của từng loại đường 5 Cacbon và 6 Cacbon, cần nghiên cứu thêm vấn đề này 4 Nghiên cứu, thử nghiệm quá trình lên men dịch thủy phân bèotây bằng một số vi sinh vật khác để so sánh hiệu suất lên men 5 Đề tài chưa nghiêncứu sự ảnh hưởng của... của Naoto Urano (2007) bèotây sau khi thủy phân bằng axit và lên men thì từ 1kg bèotây khô có thể tạo ra 22,4 ml Etanol tương ứng 17,67g Tuy nhiên, vi sinh vật sử dụng trong nghiêncứu này là nấm men được phân lập và phát triển trên môi trường có chứa bèotây Do đó nó sẽ phù hợp với môi trường lên men và cho hiệu suất sản xuất Etanol lớn hơn Nấm men được xác định trong nghiêncứu này là Candida intermedi... http://www.ovsclub.com.vn/show_article.php?aid=17844&lg=vn, Nhiên liệu sinhhọc Etanol: hy vọng hay ảo vọng 16 http://tailieu.vn, Nhiên liệu sinhhọc - nguồn năng lượng tái tạo quan trọng trong tương lai 17 http://tailieu.vn/view-document/vi-sao-nhien-lieu -sinh- hoc-chua-duoc-quan-tam-onuoc-ta.14940.html?lang=en, 2007, Vì sao nhiên liệu sinhhọc chưa được quan tâm ở nước ta, Sinhhọc Việt Nam Tiếng Anh 18 Anjanabha Bhattacharya... đến quá trình sinh trưởng và phát triển của chủng vi sinh vật dùng để lên men như axit acetic, phenol, andehit aromatic (furfural_OC4H3CHO) References Tiếng Việt 1 Nguyễn Thị Ngọc Bích (2003), Kỹ thuật cellulose và giấy, Nhà xuất bản Đại học Quốc gia thành phố Hồ Chí Minh 2 Nguyễn Lân Dũng (1982), Thực hành Vi sinh vật học, Nxb Đại học và Trung họcChuyên nghiệp, Hà Nội 3 Nguyễn Quang Khải, Hội thảo... lượng Etanol sinh ra ít Khi hàm lượng đường giảm mạnh (độ dốc đường quá trình tăng) thì lượng Etanol sinh ra tăng vọt Sau khi hàm lượng Etanol đạt đến giá trị cực đại thì bắt đầu giảm dần, còn hàm lượng đường khử vẫn tiếp tục giảm, gần đến 0 3.3.3 So sánh với các nghiêncứu trước đây Kết quả cho thấy lượng Etanol tạo ra từ quá trình lên men dịch thủy phân bèotây không cao Theo kết quả nghiêncứu của Naoto . Nghiên cứu khả năng chuyển đổi bèo tây
thành ethanol sinh học
Phạm Công Minh
Trường Đại học Khoa học Tự nhiên
Luận văn ThS. ngành: Khoa học. LUẬN
Sau quá trình nghiên cứu, đề tài Nghiên cứu khả năng chuyển đổi bèo tây thành cồn
sinh học đã thu được một số kết quả:
1. Bèo tây sau khi được phơi