Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 32 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
32
Dung lượng
1,7 MB
Nội dung
Vận dụng phơng pháp quy nạp toán học để giải số dạng toán A Phần mở đầu Mụn Toỏn mơn học có tính thực tế cao, ảnh hưởng lớn đến đời sống người Các công trình nghiên cứu khoa học cho rằng: Tất mơn khoa học khác có liên quan mật thiết với Toán học Sự phát triển mạnh mẽ tất ngành khoa học ứng dụng vào ngành cơng nghiệp then chốt khơng thể thiếu Tốn học §ỉi míi phơng pháp dạy học yêu cầu tất yếu, đảm bảo cho phát triển giáo dục Ngày nỊn kinh tÕ trÝ thøc cïng víi sù bïng nổ thông tin, giáo dục đà thay đổi để phù hợp với phát triển khoa học kü tht, sù ph¸t triĨn cđa x· héi Néi dung tri thøc khoa häc cïng víi sù ®å sé vỊ lợng thông tin yêu cầu phải đổi phơng pháp dạy học Trong giai đoạn giáo dục không tạo ngời có tài, có đức mà giáo dục có thiên chức cao quý giáo dục thẩm mỹ, nhân văn, đào tạo ngời có kỹ sống học tập thời đại Mục tiêu giáo dục thay đổi kéo theo yêu cầu phải đổi phơng pháp dạy học cách phù hợp Nhằm giúp cho giáo viên tháo gỡ khó khăn trình đổi phơng pháp dạy học, đà có nhiều giáo s tiến sỹ, nhà khoa học chuyên tâm nghiên cứu, thí điểm triển khai đại trà đổi phơng pháp dạy học Một yêu cầu đặt cải cách phải đổi phơng pháp dạy học theo hớng tích cực hoá hoạt động học tập học sinh, dới tổ chức hớng dẫn giáo viên Học sinh tự giác, chủ động tìm tòi, phát giải nhiƯm vơ nhËn thøc vµ cã ý thøc vËn dơng linh hoạt, sáng tạo kiến thức đà học vào tập thực tiễn Trong có đổi dạy học môn toán, Trong trờng phổ thông, dạy toán dạy hoạt động toán học Ngời thực hiện: Nguyễn Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Đối với học sinh xem việc giải toán hình thức chủ yếu hoạt động toán học Quá trình giải toán đặc biệt giải toán hình học trình rèn luyện phơng pháp suy nghĩ, phơng pháp tìm tòi vận dụng kiến thức vào thực tế Thông qua việc giải toán thực chất hình thức để củng cố, khắc sâu kiến thức rèn luyện đợc kĩ môn toán Từ rút đợc nhiều phơng pháp dạy học hay, tiết lên lớp có hiệu nhằm phát huy hứng thú học tập học sinh, góp phần nâng cao chất lợng giáo dục toàn diện Trong chơng trình toán phổ thông cấp THCS có nhiều mảng kiến thức sách giáo khoa đề cập đến nhng trình học lại gặp nhiều, học sinh nắm vững kiến thức sách giáo khoa nhng gặp dạng toán lúng túng Vì với phạm vi đề tài muốn đề cập đến vấn đề mà không - ngời thầy trăn trở băn khoăn, Phơng pháp chứng minh quy nạp vận dụng phơng pháp để giải dạng toán khác nh Thật chơng trình toán phổ thông phơng pháp chứng minh quy nạp mảng kiến thức khó mà ứng dụng lại rộng rÃi, có mặt phân môn số học mà đóng góp vai trò quan trọng phân môn đại số, không dừng lại chơng trình THCS mà phần quan trọng chơng trình THPT Vì phơng pháp chứng minh quy nạp phần gây cho học sinh, học sinh giỏi nhiều khó khăn bối rối, nhiên phần quyến rũ học sinh say mê môn toán học giỏi toán đòi hỏi phải t lôgic, tìm tòi sáng tạo Qua nghiên cứu kỹ nội dung kiến thức, đọc nhiều tµi liƯu vµ qua thùc tÕ båi dìng häc sinh giỏi môn toán trờng THCS, đà rút đợc vài kinh nghiệm Tôi mạnh dạn lựa chọn đề tài: Vận dụng phơng pháp quy nạp toán học ®Ĩ gi¶i mét sè Ngêi thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com VËn dụng phơng pháp quy nạp toán học để giải số dạng toán dạng toán nhằm tìm biện pháp hay giúp cho công tác dạy học nói chung công tác bồi dỡng học sinh giỏi nói riêng đạt kết cao B Phần Nội dung I Cở sở lý luận: Trong hoạt động dạy học theo phơng pháp đổi mới, giáo viên cần giúp học sinh chuyển tõ thãi quen thơ ®éng sang thãi quen chđ ®éng Muốn giáo viên cần cho học sinh cách học, biết cách suy luận, biết tự tìm lại điều đà quên, biết cách tìm tòi để phát kiến thức Các phơng pháp thờng quy tắc, quy trình nói chung phơng pháp có tính chất thuật toán Tuy nhiên cần coi trọng phơng pháp có tính chất tìm đoán Học sinh cần đợc rèn luyện thao tác t nh phân tích, tổng hợp, đặc biệt hoá, khái quát hoá, tơng tự, quy lạ quen Việc nắm vững phơng pháp nói tạo điều kiện cho học sinh đọc hiểu đợc tài liệu, tự làm Ngời thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán đợc tập, nắm vững hiểu sâu kiến thức đồng thời phát huy đợc tiềm sáng tạo thân từ học sinh thấy đợc niềm vui học tập Trong trình dạy học, ngời giáo viên phải bám sát chơng trình sách giáo khoa, xem nh định hớng cho trình dạy học Tuy nhiên việc truyền thụ kiến thức cho học sinh không dừng lại sách giáo khoa mà ngời giáo viên phải có phơng pháp để từ kiến thức phát triển tìm kiến thức giúp học sinh lĩnh hội cách chủ động có hệ thống Trong việc dạy học toán việc tìm phơng pháp dạy học giải tập toán đòi hỏi ngời giáo viên phải chọn lọc, hệ thống tập, sử dụng phơng pháp dạy học để góp phần hình thành phát triển t học sinh Đồng thời qua việc học toán học sinh cần đợc bồi dỡng, rèn luyện phẩm chất đạo đức, thao tác t để giải tập toán có tập chứng minh quy nạp toán hay giúp học sinh phát huy cao độ tính t duy, trí tuệ cho học sinh, phát quy luật đẹp Toán học II Cở sở thực tiễn: Trong chơng trình toán phổ thông, áp dụng phơng pháp chứng minh quy nạp chiếm mảng lớn chứng minh chia hết, chứng minh đẳng thức, chứng minh bất đẳng thức Do phơng pháp chứng minh quy nạp góp phần vào việc thực chơng trình dạy học theo phơng pháp lấy học sinh làm trung tâm Đồng thời giúp ngời giáo viên nâng cao trình độ chuyên môn nghiệp vụ, tạo sở vững để phục vụ cho công tác bồi dỡng học sinh giỏi đạt kết tốt, góp phần vào mục tiêu đào tạo bồi dỡng nhân tài Qua kết khảo sát, kiểm tra trớc áp dụng đề tài với 26 học sinh thấy kết tiếp thu phơng pháp chứng minh quy n¹p nh sau: Ngêi thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com VËn dụng phơng pháp quy nạp toán học để giải số dạng toán Điểm dới SL 11 % 42,3 % §iĨm - SL 08 §iĨm - % 30,8 % SL % 19,2 05 % §iĨm 10 SL 02 % 7,7 % Nguyên nhân thực tế trên: Đây dạng toán tơng đối lạ khó với học sinh, học sinh cha đợc trang bị phơng pháp giải, nên việc suy luận hạn chế nhiều lối thoát dẫn đến kết thấp đặc biệt học sinh trung bình em khó giải Để giúp học sinh nắm đợc phơng pháp chứng minh quy nạp, đà nghiên cứu xây dựng thành chuyên đề, trang bị cho học sinh nắm đợc phơng pháp chứng minh quy nạp, vận dụng phơng pháp quy nạp để chứng minh quan hệ chia hết, chứng minh đẳng thức, chứng minh bất đẳng thức Đồng thời nêu lên số ví dụ minh họa giúp học sinh hiểu nắm kiến thức, biết áp dụng vào giải toán Từ yêu cầu học sinh giải tập tơng ứng từ dễ đến khó, học sinh đợc rèn luyện nắm kiến thức, phơng pháp giải, áp dụng thành thạo chất lợng giải toán đợc nâng cao III Mục đích nghiên cứu: a Đối với giáo viên: - Nâng cao trình độ chuyên môn phục vụ cho trình giảng dạy - Làm quen với công tác nghiên cứu khoa học nâng cao kiến thức b Đối với học sinh: Ngêi thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS Kiến download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán - Giúp học sinh học tập môn toán nói chung việc giải tập áp dụng phơng pháp chứng minh quy nạp nói riêng Trang bị cho học sinh số kiến thức nhằm nâng cao lực học môn toán giúp em tiếp thu cách chủ động, sáng tạo làm công cụ giải số tập có liên quan - Gây đợc hứng thú cho học sinh làm tập sách giáo khoa, sách tham khảo, giúp học sinh tự giải đợc số tập - Thông qua việc giải toán áp dụng quy nạp (để chứng minh chia hết, chứng minh đẳng thức, BĐT) gióp häc sinh thÊy râ mơc ®Ých cđa viƯc häc toán IV Phơng pháp nghiên cứu: - Nghiên cứu lý thuyết thông qua SGK, tài liệu tham khảo học sinh giáo viên - Sử dụng phơng pháp phân tích tổng hợp V Một số kiến thức phơng pháp chứng minh quy nạp: 1, phép quy nạp hoàn toàn phép quy nạp không hoàn toàn: Ví dụ Quan sát kết sau: 13 - chia hÕt cho 23 - chia hÕt cho 33 - chia hÕt cho 43 - chia hÕt cho H·y ®a dự đoán chứng minh dự đoán đó? Giải: Dự đoán: a3 - a chia hết cho với số nguyên dơng a Chứng minh: Gọi A = a3 - a = a.(a - 1)(a + 1) Xét ba khả xảy ra: Ngời thực hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán a) Nếu a = 3k (k N) th× A chia hÕt cho b) NÕu a = 3k + (k N) th× a - chia hÕt cho 3, ®ã A chia hÕt cho c) NÕu a = 3k +2 (k N) th× a + chia hÕt cho 3, ®ã A chia hÕt cho VËy a3 - a chia hÕt cho víi mäi số nguyên dơng a Ví dụ Quan sát kết qu¶ sau: 23 - chia hÕt cho 25 - chia hÕt cho 27 - chia hết cho Dự đoán sau hay sai? 2n - chia hÕt cho n víi mäi sè lẻ n? Giải: Dự đoán sai Chẳng hạn 29 - = 510 kh«ng chia hÕt cho Nhận xét: Trong hai ví dụ trên, ta đà thực hiƯn c¸c phÐp suy ln sau: 1, XÐt c¸c gi¸ trị a 1, 2, 3, 4, để kết luËn r»ng a - a chia hÕt cho với số nguyên dơng a 2, Xét giá trÞ cđa a b»ng 3k, 3k +1, 3k + (k N) ®Ĩ kÕt ln r»ng a3 - a chia hết cho với số nguyên dơng a 3, Xét giá trị n 3, 5, ®Ĩ kÕt ln r»ng n - chia hết cho n với số tự nhiên lẻ n Ba phép suy luận đợc gọi phép quy nạp, phép suy luận từ trờng hợp riêng biệt tới kết luận tổng quát Phép quy nạp gọi hoàn toàn ta xét tất trờng hợp riêng, chẳng hạn phép suy luận ta đà xét khả xảy chia số tự nhiên a cho (a = 3k, a = 3k + 1, a = 3k + 2) Ngêi thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com VËn dụng phơng pháp quy nạp toán học để giải số dạng toán Phép quy nạp gọi không hoàn toàn ta xét số trờng hợp riêng cha xét đầy đủ trờng hợp riêng Chẳng h¹n phÐp suy ln ta míi xÐt a b»ng 1, 2, 3, ®Ĩ kÕt ln cho mäi số nguyên dơng a, phép suy luận ta míi xÐt n b»ng 3, 5, ®Ĩ kÕt ln cho số tự nhiên lẻ n Nhờ phép quy nạp không hoàn toàn mà ta có dự đoán tính chất toán học đó, sở để tới phát minh Phép quy nạp cho khẳng định đúng, kết luận đà đợc chứng minh phép quy nạp (quy nạp hoàn toàn) Phép quy nạp cho kết luận sai, ta bác bỏ phản ví dụ Nh phép quy nạp hoàn toàn phép chứng minh chặt chẽ, phép quy nạp không hoàn toàn dẫn tới sai lầm, nhà toán học có tên tuổi dới đây: - Nhà toán học Pháp Fecma nhận xét công thức n + cho ta sè nguyªn tè víi n b»ng 0, 21, 22, 23, 24 (thËt vËy 21+ = 3; 22 + = 5; 24 + = 17; 28 + = 257; 216 + = 65537; tÊt c¶ số nguyên tố ) Với n = 25 = 32 th× 2n + = 232 + = 4294967297, Fecma không phân tích đợc thừa số nguyên tố, ông cho số nguyên tố đa giả thuyết tổng quát công thức 2n + với n luỹ thừa cho ta số nguyên tố - Một kỉ sau, năm 1732, Ơle bác bỏ giả thuyết cách 232 + hợp số, chia hết cho 641 Có thể kể thêm hai mệnh đề sai nhng lại với số lớn trờng hợp đầu tiên: - Nhà toán học Gravơ đa dự đoán: Víi mäi sè nguyªn tè p ta cã: 2p-1 - không chia hết cho p Dự đoán với số nguyên tố nhỏ 1000, nhng chẳng sau ngời ta tồn số nguyên tố 1093 mà 21093 - chia hÕt cho 10932 Ngêi thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com VËn dông phơng pháp quy nạp toán học để giải số dạng toán - Một dự đoán khác: Số 911n2+ không số phơng với số nguyên dơng n Số n nhỏ để mệnh đề sai n = 12055735790331359447442538767 (có 29 chữ số) Vận dụng phép quy nạp hoàn toàn giúp nhà toán học tìm phơng pháp chứng minh hiệu nghiệm giúp khẳng định đắn số tự nhiên, phơng pháp quy nạp toán học 2, Nội dung phơng pháp quy nạp Toán học: Trong toán học, phép quy nạp hoàn toàn đợc áp dụng hạn chế Nhiều mệnh đề Toán học đáng ý bao gồm số vô hạn trờng hợp riêng, nhng ngời kiểm tra đợc tất trờng hợp riêng Phép quy nạp hoàn toàn, nh đà biết thờng dẫn tới kết luận sai lầm Trong nhiều trờng hợp để tránh khó khăn nh ngời ta áp dụng phơng pháp suy luận đặc biệt, đợc gọi phơng pháp quy nạp Toán học * Nội dung phơng pháp quy nạp Toán học đợc trình bày nh sau: Một mệnh đề phụ thuộc vào số nguyên dơng n đợc xem đà đợc chứng minh hai điều kiện sau đợc thỏa mÃn: 1, Mệnh ®Ị ®óng víi n = 2, Tõ gi¶ thiÕt mƯnh ®Ị ®óng víi n = k (k N) suy đợc mệnh đề với n = k + Nh vËy ®Ĩ chøng minh mét mƯnh đề với số nguyên dơng n phơng pháp quy nạp Toán học, ta phải tiến hành ba bíc sau: Bíc 1: KiĨm tra mƯnh ®Ị ®óng víi n = Bớc 2: Giả sử mệnh đề với n = k (ta gọi giả thiết quy nạp), chứng minh mệnh đề với n = k +1 Ngêi thùc hiƯn: Ngun Minh Thanh Giang Trêng THCS KiÕn download by : skknchat@gmail.com VËn dơng ph¬ng pháp quy nạp toán học để giải số dạng toán Bớc 3: Kết luận mệnh đề với số nguyên dơng n Trong phạm vi nghiên cứu mình, đề cập đến việc vận dụng phơng pháp chứng minh quy nạp Toán học để giải ba dạng toán là: Chứng minh chia hết, chứng minh đẳng thức chứng minh bất đẳng thức Hy väng víi mét sè kinh nghiƯm nhá nµy sÏ gãp phần vào phơng pháp dạy học, đặc biệt công t¸c båi dìng häc sinh giái, gióp häc sinh rÌn luyện đợc kỹ giải toán t giải toán có hiệu 3, Vận dụng phơng pháp quy nạp toán học vào chứng minh: 3.1, Dạng Chøng minh quan hƯ chia hÕt: Bµi 1: Chøng minh tổng lập phơng ba số nguyên dơng liên tiếp chia hết cho Giải: Gọi ba số nguyên dơng liên tiếp là: n; n +1 n + Ta phải chứng minh: [n3 + (n + 1)3 + (n + 2)3] (1) + Víi n =1, ta cã: 13 + 23 + 33 = + + 27 = 36 9 VËy (1) với n = + Giả sử (1) ®óng víi n = k (k N) tøc lµ: [k3 + (k + 1)3 + (k + 2)3] Ta phải chứng minh (1) với n = k + 1, tức phải chứng minh: [(k + 1)3 + (k + 2)3 + (k + 3)3] ThËt vËy ta cã: (k + 1)3 + (k + 2)3 + (k + 3)3 9k2 +27k + 27 = (k + 1)3 + (k + 2)3 + k3 + = [k3 + (k + 1)3 + (k + 2)3] + 9(k2 + 3k + 3) Theo gi¶ thiÕt quy n¹p: k3 + (k + 1)3 + (k + 2)3 9(k3 + 3k + 3) Do [(k + 1)3 + (k + 2)3 + (k + 3)3] Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang víi k 10 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán + Với n = 1, vế phải đẳng thức = vế trái đẳng thức VT = VP = = Vậy đẳng thức với n = + Giả sư Sn ®óng víi n = k (k N, k 1) Tức là: Sk Ta phải chứng minh đẳng thức Sn với n = k + Tøc lµ: Sk + ThËt vËy: Sk + Theo giả thiết quy nạp: Do đó: Sk + VËy Sn ®óng víi n = k + (k N, k Sk + 1) + Kết luận: Vậy với số nguyên dơng n đẳng thức Sn Bài 5: Chứng minh với số tự nhiên thì: (1) Giải: + Víi a = 1, VT = ; VP = VT = VP = Vậy đẳng thức (1) với a = + Giả sử a = k, đẳng thức (1) đúng, tức Ngời thực hiện: Nguyễn Minh Thanh KiÕn Giang 18 Trêng THCS download by : skknchat@gmail.com VËn dụng phơng pháp quy nạp toán học để giải số dạng toán Ta phải chứng minh đẳng thức (1) ®óng víi a = k + (k N, k 1) Tức là: Thật vậy: Vậy đẳng thøc (1) ®óng víi a = k + + Kết luận: Vậy với số tự nhiên a thì: * Một số tập giải tơng tự: Bài Chứng minh với số nguyên dơng n thì: a, Sn = 1.2 + 2.3 + 3.4 + + n(n + 1) = b, Sn = 1.2 + 2.3 + 3.4 + + n(3n + 1) = n(n + 1)2 c, Sn = 1.2.3 + 2.3.4 + 3.4.5 + + n(n + 1).(n+2) = Bµi Chứng minh với số nguyên dơng n thì: víi n Bµi 3: Chøng minh r»ng víi số tự nhiên n N thì: a, Sn = 1.4 + 2.5 + 3.6 + 4.7 + + n(n + 3) = b, Sn = 1.2 + 2.5 + 3.8 + + n.(3n - 1) = n2.(n + 1) c) Sn = 1.4 + 2.7 + 3.10 + + n.(3n + 1) = n.(n + 1)2 Bài 4: a, Chứng minh tổng n số tự nhiên liên tiếp là: Ngời thực hiƯn: Ngun Minh Thanh KiÕn Giang 19 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán S = + + + + + n = b, Chứng minh tổng n số chẵn liên tiếp là: S = + + + + + 2n = c, Chứng minh tổng n số lẻ liên tiếp là: S = + + + + + (2n - 1) = n2 3.3, Dạng Chứng minh bất đẳng thức: Bài 1: Chứng minh với số nguyên dơng n thì: 2n > 2n + (1) Giải: + Với n = th× VT = 23 = 8; VP = 2n + = 2.3 + = VT > VP VËy (1) ®óng víi n = + Giả sử (1) với n = k (k N, k 3), tøc lµ 2k > 2k + Ta phải chứng minh (1) với n = k + 1, tøc lµ: 2k + 2k + > (2) ThËt vËy: 2k + = 2k.2 Theo giả thiết quy nạp 2k > 2k + Do ®ã: 2k + > 2(2k + 1) = (2k + 3).(2k - 1) > 2k + (V× 2k - > víi k VËy (2) ®óng víi k 3) + KÕt ln: 2n > 2n + với số nguyên dơng n Bài 2: Chứng minh bất đẳng thức Côsi với n số không âm với a1, a2, , an CM: + Hiển nhiên mệnh đề với n = 2, tức + Giả sử mệnh ®Ị ®óng víi n = k, tøc lµ: Ta ®i chøng minh mƯnh ®Ị ®óng víi n = k + Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 20 Trờng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Giả sử a1 Đặt a2 ak ak + Th× ak + = x th× x ak + = x + y víi y vµ kx = a1, a2, , ak (Do giả thiết quy nạp) Ta có: = VËy mƯnh ®Ị ®óng víi mäi sè tù nhiên n Xảy đẳng thức chØ khi: a1 = a2 = = an Bµi 3: Chứng minh với số nguyên dơng n ta có: Giải: + Với n = đẳng thức vì: VT = VP = + Vớí n = 2, theo khai triĨn Niu t¬n ta cã: Do: Do đó: Với n số nguyên dơng Ngời thùc hiƯn: Ngun Minh Thanh KiÕn Giang 21 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Bài 4: CMR với số nguyên dơng n thì: Giải: + Với n = 1, vế trái bất đẳng thức là: Vậy bất đẳng thức với n = + Giả sử bất đẳng thức với n = k, tức là: Ta phải chứng minh bất đẳng thức (1) ®óng víi n = k + 1, tøc lµ: ThËt vậy: Do giả thiết quy nạp: Vậy bất đẳng thức ®óng víi n = k + + KÕt ln: Với số nguyên dơng n ta có bất đẳng thức: Bài 5: CMR với số nguyên dơng n thì: Giải: + Với n = 1, ta có: VT = 1; VP = VT > VP VËy bất đẳng thức (1) với n = + Giả sử bđt với n = k, tức là: Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 22 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán (k Z+ , k 1) Ta ph¶i chøng minh bÊt ®¼ng thøc ®óng víi n = k + Tøc lµ ThËt vËy: ( ) Víi A = Ta nhËn thấy A tổng 2 phân thức mà phân thức lớn Do đó: A > Tõ ( ) vµ ( + +…+ =2 ) suy Sk + = Sk + A > (víi k Z+ , k L¹i cã: ( ) Sk + > 1) Vậy bất đẳng thøc ®óng víi n =k+1 + KÕt ln: VËy víi số nguyên dơng n bất đẳng thức sau đúng: Bài 6: Tìm số nguyên dơng n cho: 2n > 5n Gi¶i: + Víi n = 1; 2; 3; vế trái nhỏ vế phải + Víi n = th× 25 = 32 > 25 = 5.5 Vậy bất đẳng thức n=5 + Giả sử bất đẳng thức với n = k (Víi k N , k 5); Tøc lµ: 2k > 5k Ta phải chứng minh bất đẳng thức ®óng víi n = k + 1; Tøc lµ: k +1 > 5(k + 1) ThËt vËy: 2k + = 2k.2 mà 2k > 5k (Theo giả thiết quy nạp) Nên 2k.2 > 2.5k = 10k = 5k + 5k theo ®iỊu kiƯn k Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 23 nªn 5k > Trờng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán V× vËy: 2k + > 5k + = 5(k + 1) th× ta cã 2n > + Kết luận: Vậy với số nguyên dơng n, n 5n *Một số tập giải tơng tự: Bài Chứng minh với số nguyên dơng n thì: (n 2) Bµi Chøng minh r»ng víi mäi sè tự nhiên n > thì: a b Bài Chứng minh với n số tự nhiên n tổng: Không phải số tự nhiên Bài Chứng minh rằng: Bài Cho S víi n N* vµ: Chøng minh r»ng S < Bµi Chøng minh r»ng víi mäi sè tự nhiên n có: Bài Chứng minh bất đẳng thức: a b c Bài Chứng minh bất đẳng thức sau: Ngời thực hiện: Nguyễn Minh Thanh KiÕn Giang 24 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán với số tự nhiên n a) víi mäi sè tù nhiªn n b) Bµi Chøng minh r»ng víi n số tự nhiên ta có: VI Một số giải pháp vận dụng phơng pháp quy nạp để giải toán: 1, Đối với giáo viên: - Trớc hết ngời giáo viên phải xây dựng đợc sở lí thuyết phơng pháp quy nạp toán học việc vận dụng để giải dạng toán cụ thể Nội dung phải chuyển tải đến học sinh, với dạng toán giáo viên đa ví dụ mẫu, hớng dẫn học sinh dựa sở lý thuyết để tìm cách giải, giáo viên chốt lại giải mẫu Sau yêu cầu học sinh giải tập áp dụng - Phân loại tập từ dễ ®Õn khã phï hỵp víi tõng ®èi tỵng häc sinh, tạo điều kiện cho đối tợng học sinh đợc làm việc, chủ động nắm đợc kiến thức sở phơng pháp giải - Rèn luyện nâng cao khả t sáng tạo học sinh thông qua qua việc tìm tòi chọn lọc, tham khảo kiến thức nghiên cứu, giải toán - Trong trình giảng dạy, phải ý tìm vớng mắc, sai sót mà học sinh hay mắc phải làm tập phải có biện pháp hớng dẫn sửa sai kịp thời - Động viên, khuyến khích học sinh nghiên cứu tìm cách giải cho toán Qua giúp học sinh nhớ lâu, nắm toán đà giải 2, Đối với học sinh: - Đây dạng toán liên quan đến hầu hết kiến thức cấp học, học sinh cần phải trang bị cho kiến thức bản, toàn diện chơng trình THCS Đồng thời nắm sở lý thuyết dạng toán mà giáo viên cung cấp để Ngời thực hiện: Nguyễn Minh Thanh KiÕn Giang 25 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán hiểu đợc chất phơng pháp quy nạp toán học Từ vận dụng để giải đợc dạng toán chứng minh chia hết, chứng minh đẳng thức bất đẳng thức - Với tập cần nhận dạng đợc dạng toán để từ vận dụng phơng pháp hợp lý dạng vào giải toán - Phát huy khả t sáng tạo giải toán, biết suy luận từ dễ đên khó với cách giải hay hơn, tìm đợc nhiều cách giải cho toán VII Kết thu đợc: Qua qua trình triển khai áp dụng nội dung phơng pháp đà nêu trên, nhận thấy häc sinh cã høng thó h¬n häc tËp, häc sinh đà nắm đợc chất phơng pháp quy nạp toán học, cách vận dụng vào giải toán đà rèn luyện đợc kỹ trình bày giải theo phơng pháp quy nạp Sau học xong chuyên đề vận dụng phơng pháp quy nạp toán học để giải số dạng toán, tiến hành kiểm tra khảo sát mức độ hiểu, nắm kiến thức vận dụng 26 học sinh đà khảo sát ban đầu Kết thu đợc nh sau: Điểm díi §iĨm - §iĨm - §iÓm 10 SL % SL % SL % SL % 02 7,7% 06 23,1 % 10 38,4 % 08 30,8 % Trên số nội dung việc vận dụng phơng pháp quy nạp toán học đẻ giải số dạng toán mà đà áp dụng giảng dạy thực tế trờng THCS cho học sinh đại trà nh trình «n lun, båi dìng häc sinh giái T«i cïng c¸c đồng nghiệp đà thu đợc kết sau: + Học sinh tiếp thu nhanh, dễ hiểu hơn, hứng thú tích cực học tập yêu thích môn to¸n Häc sinh cã thĨ vËn Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 26 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán dụng để giải đợc số toán nâng cao dành cho hoc sinh giỏi + Học sinh tránh đợc sai sót bản, có kĩ vận dụng thành thạo nh phát huy đợc tính tích cực học sinh Kỹ trình bày giải theo phơng pháp quy nạp tốt Tuy nhiên để đạt đợc kết nh mong muốn, đòi hỏi ngời giáo viên cần hệ thống, phân loại tập thành dạng, giáo viên xây dùng tõ kiÕn thøc cị ®Õn kiÕn thøc míi, tõ cụ thể đến tổng quát, từ dễ đến khó phức tạp phù hợp với trình độ nhận thức học sinh Ngời thầy cần phát huy tính chủ động tích cực sáng tạo học sinh từ em có nhìn nhận bao quát, toàn diện định hớng giải toán đắn Làm đợc nh đà góp phần nâng cao chất lợng giáo dục nhà trờng Phần III: Kết luận Toán học kho tàng kiến thức vô tận, việc nghiên cứu tìm phơng pháp giải toán công việc mà ngời dạy toán phải thờng xuyên làm Một mặt để nâng cao lực chuyên môn nghiệp vụ thân, đồng thời giúp cho tìm phơng pháp giảng dạy hay, có hiệu quả, Ngời thực hiện: Nguyễn Minh Thanh KiÕn Giang 27 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán giúp học sinh có hứng thú học tập, rèn luyện đợc kỹ giải toán Việc đổi phơng pháp dạy học phụ thuộc nhiều vào trình độ chuyên môn nghiệp vụ, lực s phạm giáo viên Nhng bên cạnh đó, hứng thú môn học học sinh rÊt quan träng Theo t«i viƯc høng thó víi m«n học có đợc em có tự tin, tự giải đợc số toán, dạng toán Do trình dạy học, ngời giáo viên cần phải cung cấp cho học sinh hệ thống phơng pháp học tập nh phơng pháp giải toán, học sinh nắm đợc hệ thống kiến thức phơng pháp em có đủ tự tin, tự tìm tòi, nghiên cứu từ em thấy hứng thú môn học Trong khuôn khổ sáng kiến đề cập đến việc vận dụng phơng pháp quy nạp Toán học để giải dạng toán: Chứng minh chia hết, chứng minh đẳng thức, chứng minh bất đẳng thức Tuy nhiên, thực tế phơng pháp quy nạp Toán học đợc vận dụng để giải nhiều dạng toán khác đa dạng Theo phơng pháp có nhiều hiệu vận dụng vào công tác bồi dỡng học sinh giỏi, đào tạo nhân tài Hy vọng với nội dung nghiên cứu góp phần nhỏ vào trình giảng dạy giáo viên học tập học sinh, giúp học sinh nắm đợc kiến thức phơng pháp học tập, từ có hứng thú học tập môn Toán Xin chân thành cảm ơn! Ngời thùc hiƯn: Ngun Minh Thanh KiÕn Giang 28 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Tài liệu tham khảo Bài tập nâng cao số chuyên đề Toán - NXB Giáo Dục năm 2003 Đại số sơ cấp thực hành giải toán - Hoàng Kỳ - Hoàng Thanh Hà NXB Đại học s phạm năm 2005 Nâng cao phát triển Toán - Vũ Hữu Bình NXB Giáo Dục năm 2007 Nâng cao phát triển Toán - Vũ Hữu Bình NXB Giáo Dục năm 2004 Toán nâng cao chuyên đề Đại Số - Nguyễn Ngọc Đạm - Nguyễn Việt Hải - Vũ Dơng Thụy NXB Giáo Dục năm 1997 Toán bồi dỡng học sinh lớp - Vũ Hữu Bình - Đỗ Thân - Đỗ Quang Thiều NXB Giáo Dục năm 1999 Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 29 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Mục lục a phần mở đầu B PhÇn Néi dung .3 I Cë së lý luËn: II Cë së thùc tiÔn: III Mục đích nghiên cøu: IV Phơng pháp nghiên cứu: .5 V Một số kiến thức phơng pháp chứng minh quy nạp: 1, PhÐp quy nạp hoàn toàn phép quy nạp không hoàn toµn 2, Nội dung phơng pháp quy nap toám học: 3, Vận dụng phơng pháp quy nạp toán học vào chứng minh: 3.1, D¹ng 1: Chøng minh quan hƯ chia hÕt: .8 3.2, Dạng 2: Chứng minh đẳng thức: 12 3.3, Dạng 3: Chứng minh bất đẳng thức: .16 VI Một số giải pháp vận dụng phơng pháp quy nạp để giải toán: 20 1, Đối với giáo viên: .20 2, §èi víi häc sinh: 20 VII KÕt qu¶ thu ®ỵc: 20 Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 30 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán C Phần KÕt luËn 22 Tài liệu tham khảo 23 NhËn xÐt cđa héi ®ång khoa häc nhµ trêng Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 31 Trêng THCS download by : skknchat@gmail.com Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Ngêi thùc hiƯn: Ngun Minh Thanh KiÕn Giang 32 Trêng THCS download by : skknchat@gmail.com .. .Vận dụng phơng pháp quy nạp toán học để giải số dạng toán Đối với học sinh xem việc giải toán hình thức chủ yếu hoạt động toán học Quá trình giải toán đặc biệt giải toán hình học trình... VËn dụng phơng pháp quy nạp toán học để giải số dạng toán với số tự nhiên n a) víi mäi sè tù nhiªn n b) Bµi Chøng minh r»ng víi n lµ sè tự nhiên ta có: VI Một số giải pháp vận dụng phơng pháp. .. đợc chất phơng pháp quy nạp toán học Từ vận dụng để giải đợc dạng toán chứng minh chia hết, chứng minh đẳng thức bất đẳng thức - Với tập cần nhận dạng đợc dạng toán để từ vận dụng phơng pháp