UBND TỈNH HÀ NAM SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ DỰ BỊ ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUN NĂM HỌC 2015 - 2016 Mơn: Tốn (Chun Tin) Thời gian làm bài: 150 phút, không kể thời gian phát đề Câu (2,0điểm) a) Cho a, b hai số thực dương thỏa mãn a ab 6b Tính giá trị biểu thức: A ab a ab b b) Cho xy x y Tìm giá trị lớn biểu thức: P x y xy Câu (2,5điểm) 2 a) Giải phương trình x x x x 24 xy x y b) Giải hệ phương trình 1 x2 x y y Câu (2,0điểm) a) Cho ba số a, b, c thỏa mãn: 1 a, b, c a b c Chứng minh: ab bc ca 3 b) Tìm tất cặp hai số nguyên x; y thỏa mãn: x x3 y Câu 4.(3,5điểm) Trên nửa đường trịn (O) đường kính AB = 2R (R độ dài cho trước) lấy hai điểm M N (M N khác A B) cho M thuộc cung AN tổng khoảng cách từ A, B đến đường thẳng MN R a) Tính độ dài đoạn thẳng MN theo R b) Gọi I giao điểm AN BM, K giao điểm AM BN Chứng minh bốn điểm M, N, I, K nằm đường trịn Tính bán kính đường trịn theo R c) Tìm giá tri lớn diện tich tam giác KAB theo R M, N thay đổi nửa đường trịn (O) thỏa mãn giả thiết tốn -HẾT Họ tên thí sinh: Số báo danh: Giám thị 1: Giám thị 2: ThuVienDeThi.com HƯỚNG DẪN UBND TỈNH HÀ NAM SỞ GIÁO DỤC VÀ ĐÀO TẠO CHẤM THI TUYỂN SINH LỚP 10 THPT CHUYÊN NĂM HỌC 2015 - 2016 Mơn: Tốn (Chun Tin) ĐỀ DỰ BỊ ( Bản Hướng dẫn chấm thi gồm có 04 trang ) Nội dung Câu Câu a) 1,0 Điểm a ab 6b a ab ab 6b 0.25 a 0.25 a b b a b a b a b Vì a, b dương nên a b a b a 9b Thay a 9b vào P ta P 10 13 Ta có x + y = suy x3 + y3 + xy = (x+y)(x2 + y2 –xy) + xy = x2 + y2 x 1 x b) 1,0 điểm 2 1 x x x 0.25 0.25 0.25 0.25 0.25 Câu 2 x x x 24 x 1x x x 3 24 x x 3x x 24 b) 1,5 điểm 0.25 1 1 x3 y xy x 2 2 1 Đẳng thức xảy x y Vậy x3 y xy nhỏ 2 x y 1 Suy P 3 lớn x y x y xy x a) 1,25 điểm Điểm 0.25 Đặt y = x x Phương trình trở thành y(y-5) = 24 y 3 y y 24 y x x 3 x2 x x 0; x 2 x 1 x 2x x x 11 x 1( y 1) Hệ cho 1 ( x 1) y Đặt u x 1, v y Hệ cho trở thành ThuVienDeThi.com 0.5 0.5 0.25 uv u 1 (*) , ĐK : v 1 u v uv uv uv 2 2 2 2 u v 4 u v 3 u v u v u v 1 u v ( TM(*)Từ suy nghiệm hệ phương trình là: u v 2 x x 3 ; y y 3 a) 1,0 điểm Câu Từ giả thiết a, b, c 1; 2 ta có a 0; a Do (a 1)(a 2) a a Tương tự b b 0; c c Suy a b c (a b c) a b c (a b c 0) 0,25 0.5 0.25 0.25 0.25 0.25 a b c 2(ab bc ca ) 2(ab bc ca ) 2 0.25 a b c 2(ab bc ca ) ab bc ca 3 +) Nếu x thay vào phương trình ta y 1 +) Nếu x 1 y vô nghiệm 0.25 +) Nếu x y y 1 +) Nếu x ta có y x x3 2 x x 1 2 y 2 x x 1 b) 1,0 điểm 2 2 y 2 x x x x3 x x x3 x (do x ) 2 0.25 y 3 +) Nếu x 2 , đặt t x Khi ta có y t t y 4t 4t 2t t 1 2 y 2t t 1 2 2 y 2t t 4t 4t 4t 4t t t (do t ) 2 4 0.25 y 5 Kết luận ( x ; y ) (0;1);(0; 1);(1;1);(1; 1);(2;3);(2; 3);(2;5);(2 ; 5) Câu ThuVienDeThi.com 0.25 K O' A' M H N B' I A a) 1,0 điểm O P B Gọi A’, B’ hình chiếu vng góc A, B lên đường thẳng MN Gọi H trung điểm đoạn thẳng MN OH MN Xét hình thang AA’B’B có OH đường trung bình nên OH R AA ' BB ' 2 0.5 3R R MN MH R Ta có AMB ANB 90 KMI KNI 900 MH OM OH R 0.25 Suy bốn điểm M, N, I, K nằm đường trịn đường kính KI Vì MN = R nên tam giác OMN b) 1,25 điểm 1 KAN MAN MON 300 AKN 600 Gọi O’ trung điểm IK O’ tâm đường tròn qua bốn điểm M, N, I, K R’ = O’M bán kính đường trịn 0.25 0.5 R ' N MKN Do MO AKN 1200 MN R ' R ' 0.25 Gọi P giao điểm IK AB, I trực tâm tam giác KAB nên KI AB , nên KP đường cao tam giác KAB hạ từ K Do O, O’ nằm trung trực đoạn MN, nên O, O’, H thẳng hàng ' O 600 ' 900 MOO ' 300 ; MO Xét tam giác MOO’ có OMO 0.25 c) 1,0 điểm 0.5 Suy OO ' 2MO ' 2R Tam giác KAB có AB khơng đổi nên có diện tích lớn KP lớn ThuVienDeThi.com R 2R R 3 Đẳng thức xảy P O OO ' AB MN // AB KAB cân K KAB (do AKB 600 ) Ta có KP KO ' OO ' 0.25 0.25 Do S KAB AB.KP R.KP 3R Kết luận diện tích tam giác KAB lớn 3R MN//AB (hay KAB đều) Chú ý: Mọi cách làm khác mà cho điểm tương đương -HẾT - ThuVienDeThi.com 0.5 ...HƯỚNG DẪN UBND TỈNH HÀ NAM SỞ GIÁO DỤC VÀ ĐÀO TẠO CHẤM THI TUYỂN SINH LỚP 10 THPT CHUYÊN NĂM HỌC 2015 - 2016 Mơn: Tốn (Chun Tin) ĐỀ DỰ BỊ ( Bản Hướng dẫn chấm thi gồm có 04 trang ) Nội... y 1) Hệ cho 1 ( x 1) y Đặt u x 1, v y Hệ cho trở thành ThuVienDeThi.com 0.5 0.5 0.25 uv u 1 (*) , ĐK : v 1 u v uv uv uv... thẳng hàng ' O 600 ' 900 MOO ' 300 ; MO Xét tam giác MOO’ có OMO 0.25 c) 1,0 điểm 0.5 Suy OO ' 2MO ' 2R Tam giác KAB có AB khơng đổi nên có diện tích lớn KP lớn ThuVienDeThi.com