Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 166 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
166
Dung lượng
389,58 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LÊ THẾ SẮC TÍNH HẦU TUẦN HỒN, HẦU TỰ ĐỒNG HÌNH VÀ DÁNG ĐIỆU TIỆM CẬN CỦA MỘT SỐ LUỒNG THỦY KHÍ TRÊN TỒN TRỤC THỜI GIAN LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LÊ THẾ SẮC TÍNH HẦU TUẦN HỒN, HẦU TỰ ĐỒNG HÌNH VÀ DÁNG ĐIỆU TIỆM CẬN CỦA MỘT SỐ LUỒNG THỦY KHÍ TRÊN TỒN TRỤC THỜI GIAN Ngành : Toán học Mã số : 9460101 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TSKH Nguyễn Thiệu Huy Hà Nội - 2022 L˝I CAM OAN Tỉi xin cam oan c¡c k‚t qu£ nghi¶n cøu lu“n ¡n T‰nh hƒu tuƒn ho n, hƒu tü çng h…nh v d¡ng i»u ti»m c“n cıa mºt sŁ luỗng thy kh trản to n trửc thới gian l cỉng tr…nh nghi¶n cøu cıa tỉi, ho n th nh dữợi sỹ hữợng dÔn ca PGS.TSKH Nguyn Thiằu Huy CĂc k‚t qu£ lu“n ¡n l ho n to n trung thüc v ch÷a tłng ÷ỉc t¡c gi£ kh¡c cỉng b bĐt ký mt cổng trnh nghiản cứu n o CĂc nguỗn t i liằu tham khÊo ữổc trch dÔn y theo úng quy nh H Ni, ng y 08 thĂng 01 nôm 2022 Ngữới hữợng dÔn Nghiản cøu sinh PGS TSKH Nguy„n Thi»u Huy L¶ Th‚ S›c i L˝IC MÌN Lu“n ¡n n y ÷ỉc thüc hi»n ti Trữớng i hồc BĂch khoa H Ni dữợi sỹ hữợng dÔn ca PGS.TSKH Nguyn Thiằu Huy Thy khổng ch l mt nh khoa hồc m cặn l mt ngữới vổ mÔu mỹc cổng viằc cụng nhữ cuc sng Thy  tn tnh ch bÊo, hữợng dÔn gióp tỉi ho n th nh lu“n ¡n Tỉi xin b y tọ lặng bit ỡn c biằt sƠu sc tợi thy Tổi cụng xin gòi lới cÊm ỡn sƠu sc tợi TS Phm Trữớng XuƠn, ngữới  hữợng dÔn, çng h nh v t“n t…nh gióp ï tỉi suŁt qu¡ tr…nh nghi¶n cøu v ho n th nh lu“n ¡n Trong suŁt thíi gian l m nghi¶n cøu sinh t⁄i Tr÷íng ⁄i håc B¡ch Khoa H Nºi, tỉi  nhn ữổc nhiãu tnh cÊm cụng nhữ sỹ giúp ï cıa c¡c thƒy cỉ bº mỉn To¡n Cì b£n, c¡c thƒy cỉ Vi»n To¡n Ùng dưng v Tin hồc c biằt, tổi  nhn ữổc nhng õng gâp, chia s·, ºng vi¶n cıa c¡c th nh vi¶n nhâm seminar D¡ng i»u ti»m c“n nghi»m cıa ph÷ìng trnh vi phƠn v ứng dửng ti Trữớng i hồc B¡ch Khoa H Nºi PGS.TSKH Nguy„n Thi»u Huy i•u h nh Tổi xin gòi lới cÊm ỡn chƠn th nh ‚n c¡c thƒy cỉ v c¡c th nh vi¶n nhâm seminar Nh¥n dàp n y, tỉi cơng b y tọ sỹ cÊm ỡn chƠn th nh tợi Ban GiĂm hiằu, cĂc Phặng, Ban liản quan, Khoa Cổng nghằ thỉng tin v Bº mỉn To¡n håc thuºc tr÷íng ⁄i hồc Thy lổi  to iãu kiằn thun lổi cho tỉi håc t“p v nghi¶n cøu CuŁi cịng, tỉi xin b y tä lỈng bi‚t ìn ‚n gia …nh v to n th” b⁄n b– ¢ ln khuy‚n kh‰ch, ºng viản chia sà nhng khõ khôn cuc sng, giúp tổi vng tƠm hồc v nghiản cứu Nghiản cứu sinh ii MệC LệC MáT Să K HI U DềNG TRONG LU N N M— U TŒng quan v• hữợng nghiản cứu v lỵ chồn ã t i Möc ch, i tữổng v phm vi nghiản cứu Phữỡng phĂp nghiản cứu K‚t qu£ cıa lu“n ¡n C§u tróc cıa lu“n ¡n Ch÷ìng KI N THÙC CHU N BÀ 1.1 Nßa nhâm 1.1.1 1.1.2 1.2 Khæng gian h m, khỉng gian nºi 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 Ch÷ìng SÜ T˙N T I V T NH ˚N ÀNH CếA MáT Să LP NGHI M CếA PHìèNG TR NH TI N H´A TR N KH˘NG GIAN N¸I SUY 2.1 Tnh chĐt nghiằm ca phữỡng tr 2.1.1 2.1.2 2.2 Tnh chĐt nghiằm ca phữỡng tr 2.2.1 2.2.2 iii 2.3 Mt sŁ øng döng 2.3.1 2.3.2 2.3.3 2.3.4 Chữỡng MáT Să LP NGHI M CÕA PH×ÌNG TR NH NAVIERSTOKES TR N KH˘NG GIAN LORENTZ C´ TR¯NG MUCKENHOUPT p q 3.1 C¡c ¡nh gi¡ L L giœa c¡c khæng gian enhoupt 3.2 Phữỡng trnh tuyn tnh trản khổng gia enhoupt 3.3 Phữỡng trnh nòa tuyn tnh tr¶n khỉ Muckenhoupt Chữỡng MáT Să LP NGHI M CÕA PH×ÌNG TR NH BOUSSINESQ TRONG MI N KH˘NG BÀ CH N 4.1 D⁄ng ma tr“n cıa h» ph÷ìng tr…nh Bous 4.2 L Tnh chĐt nghiằm ca phữỡng trnh tu p 4.2.1 4.2.2 4.3 Sỹ tỗn ti v tnh n ành nghi»m cıa ph÷ 4.3.1 4.3.2 K TLU NV KI NNGH Nhng kt quÊ Â t ữổc ã xuĐt mt s hữợng nghiản cứu tip theo DANH MệC C C CNG TR NHCNG Bă CếA LU N N T ILI UTHAMKH O iv MáT Să K HI U DÒNG TRONG LU N N N R R+ X L(X) AP(R; X) AA(R; X) p S AA(R; X) n R+ p L () L () p Lloc ( ) W k;p () k W ;1 () C(R; X) k 1 := fu L ( ) : D u L ( ); vỵi j j vỵi chu'n kukk;1 := max kD uk1: kg jjk := u : R ! X li¶n tưc := u : R ! X li¶n tưc v BC(R; X) BC(R+; X) := u : R+ ! X li¶n tưc v kuk1 = sup ku(t)k < t2R+ : U U PAA0(R; ) WPAP(R;X) := R WPAA( p ; R W S AA( K(t; x) (X ; X ) ;q (X0; X1) ;1 vỵi x := x kk (X0;X1) ;1 (X0; X1) C () C0 ( ) C0 ; ( ) p;q L () x (X ; X ) ;1 : t!0+ := : Khæng gian c¡c h m kh£ vi cĐp vổ hn trản : Khổng gian cĂc h m kh£ vi vỉ h⁄n vỵi gi¡ compact := fv C0 ( ) : divv = := u Lloc vỵi kukp;q = p L w( ) vỵi u := u p; M— U Tng quan vã hữợng nghiản cứu v lỵ chồn ã t i Nghiản cứu nghiằm tun ho n, hƒu tuƒn ho n v sü kh¡i qu¡t cıa chúng i vợi phữỡng trnh tin hõa l mt hữợng nghiản cứu quan trồng liản quan n t nh chĐt nghi»m cıa ph÷ìng tr…nh ti‚n hâa theo thíi gian Łi vợi trữớng hổp nghiằm tun ho n, mt s phữỡng phĂp thữớng ữổc sò dửng nhữ nguyản lỵ Massera [1, 2], nguyản lỵ im bĐt ng ca Tikhonov [3] hay h m Lyapunov [4] ÷ỉc ¡p dưng cho mºt sŁ lợp phữỡng trnh vi phƠn cử th CĂc phữỡng phĂp ph bin nhĐt cho viằc chứng minh sỹ tỗn ti nghi»m tuƒn ho n l t‰nh bà ch°n cıa nghi»m v t‰nh compact cıa ¡nh x⁄ Poincar† thæng qua c¡c php nhúng compact [3, 4, 5, 6] Tuy nhiản, vợi trữớng hổp phữỡng trnh o h m riảng cĂc miãn khổng b chn hay cĂc phữỡng trnh cõ nghiằm khỉng bà ch°n th… c¡c ph†p nhóng compact n y khổng cặn úng na v õ sỹ tỗn ti nghiằm b chn s khõ t ữổc iãu n y l c¡c i•u ki»n ban ƒu phị hỉp ” £m b£o t‰nh bà ch°n cıa nghi»m khæng d„ d ng t…m ÷ỉc Mºt ph÷ìng ph¡p ” gi£i quy‚t nhœng khõ khôn n y l sò dửng nguyản lỵ dng Massera, nghắa l nu mt phữỡng trnh vi phƠn cõ nghi»m bà ch°n th… nâ câ nghi»m tuƒn ho n Thỹc t, viằc kt hổp gia nguyản lỵ dng Massera v khổng gian ni suy  ữổc sò dửng chứng minh sỹ tỗn ti nghiằm tun ho n ca cĂc phữỡng trnh cỡ hồc chĐt lọng (cĂc dặng thy kh) v cĂc phữỡng trnh truyãn nhiằt vợi hằ s thỉ, ph÷ìng tr…nh Ornstein - Uhlenbeck [7, 8] Trong c¡c cỉng tr…nh n y, c¡c h m tß nºi suy ữổc sò dửng kt hổp vợi phữỡng phĂp Ergodic [8] i vợi trữớng hổp cĂc dặng thy kh, sỹ tỗn t⁄i cıa nghi»m tuƒn ho n cıa ph÷ìng tr…nh Navier-Stokes v cĂc phữỡng trnh dng Navier-Stokes tr th nh hữợng nghiản cứu quan trồng Trong miãn b chn, Serrin  sß dưng t‰nh Œn ành cıa nghi»m bà ch°n ” ch sỹ tỗn ti nghiằm tun ho n ca phữỡng tr nh Navier-Stokes [9] Sau õ, sỹ tỗn ti, nh§t, t‰nh Œn ành v n d¡ng i»u ti»m c“n nghi»m tuƒn ho n tr¶n to n khỉng gian R , trản miãn khổng n b chn R v trản to n trửc thới gian R ữổc m rng nghiản cứu Nghiản cứu sỹ tỗn ti cıa c¡c nghi»m ti»m c“n hƒu tuƒn ho n v tiằm cn hu tỹ ỗng hnh ca phữỡng trnh Navier-Stokes miãn khổng b chn Nghiản cứu tnh nhĐt to n cửc cho nghiằm ca phữỡng trnh Navier-Stokes trản miãn khổng b chn Nghiản cứu cĂc loi nghiằm ca phữỡng trnh Navier-Stokes v phữỡng trnh Boussineq trản khổng gian Mourey y‚u v c¡c khæng gian nºi suy kh¡c 91 DANH MÖC C C C˘NG TR NH N N CNG Bă CếALU Nguyen Thieu Huy, Le The Sac and Pham Truong Xuan (2018), On Al-most Automorphic Solutions to Incompressible Viscous Fluid Flow Prob-lems , International Journal of Evolution Equations, Volume 11, Number 3, pp 501-516 Nguyen Thieu Huy, Vu Thi Ngoc Ha, Le The Sac and Pham Truong Xuan (2021), Weighted Stepanov-Like Pseudo Almost Automorphic Solutions for Evolution Equations and Applications , Acta Math Vietnam 46, 103 122 (ESCI/SCOPUS) Nguyen Thieu Huy, Pham Truong Xuan, Le The Sac and Vu Thi Ngoc Ha (2021), Periodic and Almost Periodic Solutions to NavierStokes Equa-tions in Interpolation Spaces with Muckenhoupt Weight , Accepted for Publication in Ukrainian Mathematical Journal (SCIE) Vu Thi Ngoc Ha, Nguyen Thieu Huy, Le The Sac and Pham Truong Xuan (2021), Interpolation Spaces and Weighted Pseudo Almost Automorphic Solutions to Parabolic Equations and Application to Fluid Dynamics , Ac-cepted for Publication in Czechoslovak Mathematical Journal (SCIE) Thieu Huy Nguyen, Truong Xuan Pham, Thi Ngoc Ha Vu and Le The Sac, Existence and Stability of Periodic and Almost Periodic Solutions to Boussinesq Systems in Unbounded Domains , Submitted 92 T ILI UTHAMKH O [1] J Massera (1950), The existence of periodic solutions of systems of differ-ential equations , Duke Math J., 17, 457-475 [2] O Zubelevich (2006), A note on theorem of Massera , Regul Chao Dyn., 11, 475-481 [3] J Pruss (1979), Periodic solutions of semilinear evolution equations , Non-linear Anal., 3, 601-612 [4] T.Yoshizawa (1975), Stability theory and the existence of periodic solutions and almost periodic solutions , Applied Mathematical Sciences, Springer-Verlag New York-Heidelberg, 14 [5] J.H Liu, G.M N’Gu†r†kata, N.V Minh (2008), Topics on Stability and Periodicity in Abstract Differential Equations , Series on Concrete and Ap-plicable Mathematics, World Scientific Publishing, Singapore, [6] J Pruss (1986), Periodic solutions of the thermostat problem Differential equations in Banach spaces (Book’s Chapter), Lecture Notes in Math., Springer, Berlin, 1223, 216-226 [7] M Geissert, M Hieber, Nguyen Thieu Huy (2016), A general approach to time periodic incompressible viscous fluid flow problems , Arch Rational Mech Anal., 220, 1095-1118 [8] N.T Huy (2014), Periodic motions of Stokes and Navier-Stokes flows around a rotating obstacle , Arch Ration Mech Anal., 213, 689703 [9] J Serrin (1959), A note on the existence of periodic solutions of the Navier-Stokes equations , Arch Ration Mech Anal., 3, 120-122 [10] H Kozono and M Nakao (1996), Periodic solution of the NavierStokes equations in unbounded domains , Tæhoku Math J., 48, 33-50 93 [11] S Kaniel, M Shinbrot (1967), A reproductive property of the Navier-Stokes equations , Arch Rational Mech Anal., 24, 363-369 [12] P Maremonti (1991), Existence and stability of time periodic solutions to the Navier-Stokes equations in the whole space , Nonlinearity, 4, 503-529 [13] T Miyakawa, Y Teramoto (1982), Existence and periodicity of weak so-lutions to the Navier-Stokes equations in a time dependent domain , Hi-roshima Math J., 12, 513-528 [14] J G Heywood (1980), The Navier-Stokes equations: On the existence, regularity and decay of solutions , Indiana Univ Math J., 29, 639-681 [15] G Prodi (1960), Qualche risultato riguardo alle equazioni di NavierStokes nel caso bidimensionale , Rend Sem Mat Univ Padova, 30, 1-15 [16] G Prouse (1963), Soluzioni periodiche dell’equazione di NavierStokes , Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur., 35, 443447 [17] V Yudovich (1960), Periodic motions of a viscous incompressible fluid , Sov Math Dokl., 1, 168-172 [18] M Yamazaki (2000), The Navier-Stokes equations in the weak L space with time-dependent external force , Math Ann., 317, 635-675 n [19] G.P Galdi and H Sohr (2004), Existence and uniqueness of timeperiodic physically reasonable Navier Stokes flows past a body , Arch Ration Mech Anal., 172, 363-406 [20] G.P Galdi and A.L Silvestre (2006), Existence of time-periodic solutions to the Navier Stokes equations around a moving body , Pac J Math., 223, 251-267 [21] Y Taniuchi (1999), On stability solutions of periodic solutions in un-bounded domains , Hokkaido Math J., 28, 147-173 [22] Y Taniuchi (2009), On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains , Math Z., 261, 597615 94 [23] H Bohr (1925), Zur Theorie der fastperiodische Funktionen, I and II Eine Verallgemeinerung der Theorie der Fourierreihen , Acta Math., 45, 29-127 and 46, 101-214 [24] C Corduneanu (1968), Almost Periodic Functions , Wiley, New York [25] T Diagana (2013), Almost automorphic type and almost periodic type fun-tions in abstract spaces , Springer Cham Heidelberg New York Dordrecht London [26] B.M Levitan, V.V Zhikov (1982), Almost Periodic Functions and Differ-ential Equations , Cambridge Univ Press, Cambridge [27] M Hieber, N.T Huy and A Seyfert (2017), On periodic and almost pe-riodic solutions to incompressible vicous fluid flow problems on the whole line , Mathematics for Nonlinear Phenomena: Analysis and Computation, 51-81 [28] Thieu Huy Nguyen, Viet Duoc Trinh, Thi Ngoc Ha Vu, Thi Mai Vu (2017), Boundedness, almost periodicity and stability of certain Navier Stokes flows in unbounded domains , Journal of Differential Equations, 263(12), 8979-9002 [29] R Farwig and Y Tanuichi (2011), Uniqueness of almost periodic in time solutions to Navier-Stokes equations in unbounded domains , J.Evol.Equ., 11, 485-508 [30] Vu, T.N.H., Nguyen, T.H and Vu, T.M (2020) Parabolic evolution equa-tions in interpolation spaces: boundedness, stability, and applications , Z Angew Math Phys., 71(39) [31] C.Y Zhang (1994), Pseudo almost periodic solutions of some differential equations , J Math Anal Appl., 181(1), 62-76 [32] T Diagana (2008), Weighted pseudo almost periodic solutions to some dif-ferential equations , Nonlinear Anal., 68, 2250-2260 [33] E Alvarez and C Lizama (2015), Weighted pseudo almost periodic so-lutions to a class of semilinear integro-differential equations in Banach spaces , Advances in Difference Equations, 31 95 [34] T Diagana, RP Agarwal and E.M Harna¡ndez (2008), Weighted pseudo almost periodic solutions to some partial neutral functional differential equa-tions , Journal of Nonlinear and Convex Analysis, 8(3), 397 [35] T Diagana (2009), Existence of weighted pseudo almost periodic solutions to some classes of hyperbolic evolution equations , Journal of mathematical analysis and applications, 350(1), 18-28 [36] L L Zhang and H X Li (2011), Weighted pseudo almost periodic solu-tions of second order neutral differential equations with piecewise constant argument , Nonlinear Analysis, 74(17), 6770-6780 [37] Y Li, G Lu and X Meng (2019), Weighted pseudo-almost periodic solu-tions and global exponential synchronization for delayed QVCNNs , Journal of Inequalities and Applications, 231 [38] S Bochner (1961), Uniform convergence of monotone sequences of func-tions , Proceedings of the American Mathematical Society, 47, 582585 [39] S Bochner (1962), A new approach to almost periodicity , Proc Natl Acad Sci USA, 48, 2039-2043 [40] G M N’Gu†r†kata (2001), Almost Automorphic and Almost Periodic Functions in Abstract Spaces , Kluwer Acad/Plenum, New York-Boston-Moscow-London [41] N Van-Minh, T Naito, and G M N’Gu†r†kata (2006), A spectral count-ability condition for almost automorphy of solutions of differential equa-tions , Proceedings of the American Mathematical Society, 139(1), 3257-3266 [42] G M N’Gu†r†kata (2005), Topics in Almost Automorphy , Springer Sci-ence + Business Media, New York-Boston-DordrechtLondon-Moscow [43] N Van-Minh and T Tat Dat (2007) On the almost automorphy of bounded solutions of differential equations with piecewise constant argument, J Math Anal and Appl., 326(1), 165-178 96 [44] Ezzinbi, K, Fatajou, G M N’Gu†r†kata (2009), Pseudo almost automor-phic solutions to some neutral partial functional differential equations in Banach spaces , Nonlinear Anal., Theory Methods Appl., 70, 1641-1647 [45] Ti-Jun Xiao, Jin Liang, Jun Zhang (2008), Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces , Semigroup Forum, 76 [46] J Blot, G M Mophou, G M Gur†t†kata and D Pennequin (2009), Weighted pseudo almost automorphic functions and applications to abstract differential equations , Nonlinear analysis, 71, 903-909 [47] V Casarino (2000), Characterization of almost automorphic groups and semigroups , Rend Accad Naz Sci XL Mem Mat Appl., 24(5), 219235 [48] Z Xia and M Fan (2012), Weighted Stepanov-like pseudo almost automor-phy and applications , Nonlinear Anal.: Theory Methods Appl., 75, 2378-2397 [49] T Diagana (2007), Stepanov-like pseudo almost periodic functions and their applications to differential equations , Commun Math Anal., 3, 9-18 [50] T Diagana and G N’Gu†r†kata (2007), Stepanov-like almost automorphic functions and applications to some semilinear equation , Appl Anal., 86(6), 723-733 [51] H Ding, J Liang and T Xiao (2009), Some properties of Stepanov-like almost automorphic functions and applications to abstract evolution equa-tions , Appl Anal., 88, 1079-1091 [52] T Diagana, G Mophou and G N’Gu†r†kata (2010), Existence of weighted pseudo-almost periodic solutions to some classes of differential p equations with S weighted pseudo-almost periodic coefficients , Nonlinear Anal., 72, 430-438 [53] G.M N’Gu†r†kata and A Pankov, A (2008), Stepanov-like almost au-tomorphic functions and monotone evolution equations , Nonlinear Anal., 68(9), 2658-2667 97 [54] B He, J Cao and B Yang (2015), Weighted Stepanov-like pseudo-almost automorphic mild solutions for semilinear fractional differential equations , Advances in Difference Equations, 74, 1-36 [55] Md Maqbul and D Bahuguna (2012), On the Stepanov-like almost auto-morphic solutions of abstract differential equations , Differ Equ Dyn Syst, 20(4), 377-394 [56] H.O Bae and H.J Choe (2001), Decay rate for the incompressible flows in half space , Math Z., 238, 799-816 [57] Y Fujigaki and T Miyakawa (2001), Asymptotic profiles of nonstationary incompressible Navier-Stokes flows in the half-space , Methods Appl Anal., 8(1), 121-157 [58] H.O Bae (2002), Analyticity and asymptotics for the Stokes Solutions in a weighted space , J Math.Anal Appl., 269, 149-171 p [59] T Kobayashi and T Kubo (2013), Weighted L semigroup in some unbounded domains , Tsukuba J Math., 37 p [60] T Kobayashi and T.Kubo (2016), Weighted L semigroup in half-space and its application to the Navier-Stoke Advances in Mathematical Fluid Mechanics, Recent Developm ematical Fluid Mechanics, 337-350 [61] P.C Fife and D.D Joseph (1969), Existence of convective solutions of the generalized Bernard problem which are analytic in their norm , Arch Ra-tional Mech Anal., 33, 116-138 [62] J.R Cannon and E D Benedetto (1980), The initial value problem for p the Boussinesq equations with data in L , in Approximation Methods for Navier Stokes Problems , Lect Notes in Math., Springer-Verlag, Berlin, 771 [63] T Hishida (1995), Global Existence and Exponential Stability of Convec-tion , J Math Anal Appl., 196, 699-721 98 [64] L.C.F Ferreira and E.J Villamizar-Roa (2006), Well-posedness and asymp-totic behaviour for the convection problem in R Nonlinearity, 19, 2169-2191 n , [65] L.C.F Ferreira and E.J Villamizar-Roa (2008), Existence of solutions to the convection problem in a pseudomeasure-type space , Proc R Soc Lond Ser A Math Phys Eng Sci., 464(2096), 19831999 [66] L.C.F Ferreira and E.J Villamizar-Roa (2010), On the stability probp lem for the Boussinesq equations in weak-L spaces , Commun Pure Appl Anal., 9(3), 667 684 [67] E.J Villamizar-Roa, M.A Rodriguez-Bellido and M.A Rojasmedar (2010), Periodic Solutions in Unbounded Domains for the Boussinesq Sys-tem , Acta Mathematica Sinica, 26(5), 837-862 [68] E Nakao (2020), On time-periodic solutions to the Boussinesq equations in exterior domains , Journal of Mathematical Analysis and Applications, 482(2), 123537 [69] K.J.Engel, R.Nagel (2000), One-parameter Semigroups for Linear Evolu-tion Equations , Graduate Text Math., Springer, Berlin, 194 [70] J Bergh, J Lofstrom (1976), Interpolation Spaces , Springer, Berlin [71] H Triebel (1978), Interpolation Theory, Function Spaces, Differential Op-erators , NorthHolland, Amsterdam [72] H.Komatsu (1981), A general interpolation theorem of Marcinkiewicz type , Tæhoku Math J., 33(2), 383-393 [73] W Borchers and T Miyakawa (1995), On stability of exterior stationary Navier-Stokes flows , Acta Math., 174, 311-382 [74] H.Bahouri, J.Y Chemin, R Danchin (2011), Fourier Analysis and Non-linear Partial Differential Equations , Springer, Berlin [75] He, B., Cao, J and Yang, B (2015), Weighted Stepanov-like pseudo-almost automorphic mild solutions for semilinear fractional differential equations , Adv Differ Equ., 74 99 [76] V.T.N Ha, N.T Huy, V.T Mai (2020), Parabolic evolution equations in interpolation spaces: boundedness, stability, and applications , Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 71(39), 1-17 p [77] M Geissert, H Heck, M Hieber (2006), L Theory of the NavierStokes flow in the exterior of a moving or rotating obstacle , J Reine Angew Math., 596, 45-62 p q [78] T Hishida, Y Shibata (2009), L L Estimate of the stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle , Arch Ration Mech Anal., 193, 339-421 [79] Y Shibata (2008), On the Oseen semigroup with rotating effect , Functional Analysis and Evolution Equations, Birkhauser, Basel, 595-611 [80] T Hishida (2004), The nonstationary Stokes and Navier-Stokes flows through an aperture in Contributions to Current Challenges in Mathematical Fluid Mechanics , Advances in Mathematical Fluid Mechanics, Birkhauser, Basel, 79-123 [81] L Brandolese and M.E Schonbek (2012), Large time decay and growth for solutions of a viscous Boussineq system , Trans Amer Math Soc., 364(10), 5057-5090 [82] M Yamazaki (2000), Solutions in Morrey spaces of the Navier Stokes equa-tions with time-dependent external force , Math Ann., 43, 419 460 100 ... DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LÊ THẾ SẮC TÍNH HẦU TUẦN HỒN, HẦU TỰ ĐỒNG HÌNH VÀ DÁNG ĐIỆU TIỆM CẬN CỦA MỘT SỐ LUỒNG THỦY KHÍ TRÊN TỒN TRỤC THỜI GIAN Ngành : Toán học Mã số :... trản to n trửc thíi gian R c¡c khỉng gian nºi suy nh÷ khæng gian Lorentz, khæng gian Lorentz câ trång Muckenhoupt, khæng gian Besov v khỉng gian t‰ch •-C¡c cıa c¡c khỉng gian Lorentz Ph⁄m vi... mt s kin thức côn bÊn ca lỵ thuyt ni suy: Khổng gian ni suy, nh lỵ ni suy, khæng gian Lorentz, khæng gian Lorentz câ trång Muckenhoupt v khỉng gian Besov CuŁi cịng, chóng tỉi tr…nh b y cĂc nh