Bài báo đưa ra một số phương pháp tính thể tích trong trường hợp tổng quát cho đối tượng 3D có hình dạng bất kì. Theo phương pháp được đề xuất, quy trình tính toán trở nên đơn giản, việc tổ chức đo đạc lấy số liệu thực địa linh hoạt, đa dạng và không phức tạp. Mời các bạn tham khảo!
Nghiên cứu MỘT PHƯƠNG PHÁP TÍNH THỂ TÍCH ĐỐI TƯỢNG 3D SỬ DỤNG MƠ HÌNH TAM GIÁC TRẦN THUỲ DƯƠNG(1), NGÔ THỊ LIÊN(1) LÊ QUANG HÙNG(2) Trường Đại học Mỏ Địa chất Công ty Cổ phần Công nghệ Tài nguyên Mơi trường Vật liệu (1) (2) Tóm tắt: Khi nghiên cứu đối tượng 3D, thuộc tính quan trọng có nhiều ý nghĩa thực tiễn tính tốn thể tích Bài tốn tính thể tích ứng dụng đa dạng nhiều ngành, lĩnh vực như: Bài tốn tính lưu lượng thiết kế hệ thống tiêu nước cơng trình giao thơng đường bộ, tính tốn khối lượng nạo vét luồng lạch giao thơng đường thủy; tính tốn khối lượng đào, đắp xây dựng cơng trình; tốn tính khối lượng thiết kế khai thác, kiểm kê quản lý khống sản; tốn tính thể tích cơng trình dân dụng… Gần có số nghiên cứu đưa giải pháp khác để giải tốn mơ hình TIN Tuy nhiên, qua nghiên cứu phương pháp nêu trên, giải pháp đưa cịn tính tốn phức tạp chưa tối ưu, quy trình thu thập liệu phải tn theo quy trình có điều kiện Bài báo đưa số phương pháp tính thể tích trường hợp tổng quát cho đối tượng 3D có hình dạng Theo phương pháp đề xuất, quy trình tính tốn trở nên đơn giản, việc tổ chức đo đạc lấy số liệu thực địa linh hoạt, đa dạng không phức tạp Mở đầu Ngày nay, khoa học công nghệ với phát triển tác động sâu sắc đến mặt đời sống kinh tế xã hội Trong lĩnh vực khoa học kỹ thuật hình thành xu hướng ứng dụng, sử dụng thành tựu khoa học công nghệ vào công tác chuyên môn giúp giải tốn phức tạp có khối lượng tính tốn lớn Vào năm 90 kỷ trước, kỹ thuật tính tốn trở nên dễ dàng nhanh chóng với trợ giúp máy tính, tốn bình sai trắc địa có xu hướng chuyển sang sử dụng bình sai chặt chẽ theo phương pháp bình sai gián tiếp thay cho bình sai chặt chẽ theo phương pháp bình sai điều kiện hay phương pháp bình sai gần Trong cơng nghệ thành lập đồ diễn xu hướng tương tự mà việc ứng dụng công nghệ số để thành lập đồ thay cho công nghệ thành lập đồ truyền thống trở nên phổ biến Đồng thời với phát triển công nghệ thành lập đồ số xu hướng mơ hình hóa liệu khơng gian biểu diễn khơng gian thực trở thành nhu cầu sử dụng đầu tư nghiên cứu ứng dụng nhiều lĩnh vực khác Trong thời gian đầu phát triển công nghệ số, hạn chế công nghệ xử lý nên việc mơ hình hóa khơng gian thực 3D (thậm chí 4D tính thêm yếu tố thời gian) thơng thường hay đơn giản hóa, thực cách gián tiếp thơng qua mơ hình hóa 2D Hiện nay, cơng nghệ máy tính đạt bước phát triển vượt bậc với tính tốc độ xử lý nhanh, dung lượng nhớ lớn… mạnh nhiều so với trước Công nghệ đo đạc đồ có bước phát triển với thiết bị đại cho phép thu Ngày nhận bài: 12/12/2016, ngày chuyển phản biện: 13/12/2016, ngày chấp nhận phản biện: 16/12/2016, ngày chấp nhận ng: 19/12/2016 10 tạp chí khoa học đo đạc đồ số 30-12/2016 Nghiờn cu thp d liu khụng gian nhiều hơn, nhanh tức thời đòi hỏi phải có cơng nghệ xử lý biểu diễn liệu không gian đáp ứng nhu cầu khai thác sử dụng hiệu liệu Xu hướng mơ hình hóa đối tượng 3D năm gần lựa chọn để biểu diễn mơ hình liệu khơng gian dần trở nên phổ biến có bước phát triển vượt bậc Mơ hình 3D cho phép người sử dụng có khả nghiên cứu, khảo sát, quản lý phân tích liệu khơng gian trực tiếp so với biểu diễn liệu 2D Do vậy, nói phương pháp xử lý gián tiếp thơng qua mơ hình hóa 2D thường sử dụng trước khơng cịn phù hợp cịn nhiều hạn chế đáp ứng yêu cầu khai thác liệu người sử dụng dần thay mơ hình 3D tương lai thực tính tốn khơng phải lúc thực dễ dàng Các tính tốn theo phương pháp [2] lại tính cho trường hợp tính tốn khối lượng đào hay đắp so với mặt phẳng lựa chọn có điều kiện với độ cao Ho Trong cơng trình [3] việc chiếu điểm từ mặt xuống mặt thực nội suy cho thấy: số lượng điểm tam giác hóa tăng lên; thời gian nội suy, làm giảm độ xác việc tìm điểm tam giác thao tác thời gian Trong nội dung báo này, việc nghiên cứu mơ hình hóa đối tượng 3D nhằm mục đích giải tốn tính thể tích trường hợp tổng quát cho đối tượng 3D Cách thức tiếp cận vấn đề để giải toán thể tích tương tự tốn tính diện tích cho vùng khơng gian hai chiều Bài tốn có nhiều ứng dụng khác tính tốn khối lượng đào, đắp, san lấp mặt bằng; tính tốn dung tích hồ chứa, vùng ngập lụt; giám sát, kiểm kê khai thác khống sản; tính tốn thể tích cơng trình dân dụng … (2) Chỉ rõ điều kiện cần có để thực quy trình tính tốn đơn giản mà đảm bảo chặt chẽ hiệu Trong tính tốn khối lượng đào đắp mơ hình số địa hình với việc mơ hình hóa bề mặt địa hình mơ hình tam giác có số cơng trình nghiên cứu gần như[1], [2], [3] Các nghiên cứu cho thấy tác giả giải tốn tính toán khối lượng đào đắp tương đối hợp lý lý thuyết thực tiễn Tuy nhiên, nghiên cứu trong[1] cho thấy giải pháp tính tốn khối lượng đào đắp tương đối phức tạp, việc chia trường hợp để Như vậy, thấy nghiên cứu số vấn đề chưa giải triệt để cần phải tìm giải pháp tính tốn thể tích (hay khối lượng) trường hợp chung tối ưu hơn, nhằm mục đích: (1) Giải tốn để tính thể tích dạng tổng qt cho đối tượng 3D bất kì; (3) Chỉ quy trình tính tốn áp dụng linh hoạt với tất cách thức tổ chức thu thập liệu thực địa Bài báo thực việc khảo sát phân tích phương pháp tính diện tích khác cho đối tượng 2D vùng đa giác khép kín Từ nghiên cứu đề xuất cơng thức tính tốn thể tích cho đối tượng 3D có hình dạng bất kì, với điều kiện toàn bề mặt đối tượng khép kín mơ hình hóa mạng lưới tam giác khơng gian Tính diện tích vùng đa giác khép kín Để tính diện tích cho vùng đa giác khép kín người ta sử dụng số phương pháp khác Phương pháp thường sử dụng cho đồ giấy thành lập phương pháp đo đạc mặt đất trước phương pháp đếm ô Phương pháp sử dụng phim tớnh din tớch tạp chí khoa học đo đạc đồ số 30-12/2016 11 Nghiờn cu gm cỏc ụ vng có kích thước biết, áp lên vùng cần tính diện tích, đếm số vng vùng chắn phim nhân với diện tích vng tính theo tỷ lệ đồ thành lập ta diện tích vùng với cạnh gắn dấu âm Lấy tổng Sk ta S vùng cần tính Đối với việc tính diện tích theo phương pháp giải tích, sử dụng hai nguyên tắc: nguyên tắc hình thang nguyên tắc tam giác 1.2 Tính diện tích theo ngun tắc hình tam giác 1.1 Tính diện tích theo ngun tắc hình thang Giả sử ta có vùng đa giác khép kín n đỉnh, ta chiếu tất đỉnh xuống trục Oy, ứng với cạnh đa giác ta thu hình thang (xem hình 1) Diện tích S vùng tổng diện tích hình thang Sk: (1) Trong (2) Để gắn dấu cho kết tính diện tích hình thang ta dựa theo dấu hiệu (xi+1 – xi) Như vậy, ứng với Cơng thức tính diện tích với đa giác có hình dạng Tính diện tích theo tam giác tương tự tính diện tích theo ngun tắc hình thang Khi đó, ta chọn điểm P nối P với tất đỉnh đa giác, ứng với cạnh ta thu tam giác có diện tích (xem hình 2) Diện tích vùng tính theo cơng thức sau: (3) Trong đó: (4) - Phương vị cạnh PPi, PPi+1 - Chiều dài cạnh PPi, PPi+1 Tương tự nguyên tắc hình thang, dấu tam giác gắn theo dấu Nếu PPi → PPi+1 theo hướng thuận chiều cạnh có đầu mút từ trái sang phải, diện tích hình thang (Sk) tương ứng gắn dấu dương, cạnh có đầu mút từ phải sang trái diện tích hình thang ứng kim đồng hồ tam giác có dấu (+), cịn ngược chiều kim đồng hồ dấu tam giác (-) Ta sử dụng trị đo trực tiếp ngồi thực địa để tính diện Hình 1: Tạo hình thang để tính diện tích Hình 2: Tạo hình tam giác để tính diện tích 12 tạp chí khoa học đo đạc đồ sè 30-12/2016 Nghiên cứu tích theo cơng thức (4) Tính thể tích đối tượng 3D 2.1 Tính thể tích đối tượng 3D theo nguyên tắc hình lăng trụ đứng Chúng ta tính thể tích đối tượng 3D theo nguyên tắc hình lăng trụ đứng tương tự tính diện tích sử dụng ngun tắc hình thang Giả sử tính thể tích đối tượng 3D mơ hình hóa khối đa diện bao gồm tập hợp mặt f phẳng, mặt giới hạn đa giác khép kín Hình Tam giác hóa mặt f chiếu tất đỉnh khối đa diện xuống mặt phẳng Oxy Khi ứng với tam giác khối đa diện ta thu hình lăng trụ đứng tam giác Thể tích đối tượng 3D tính theo cơng thức: (5) Trong đó: Vi = 1/3 (h1+ h2 +h3) S∆i (với h1, h2, h3 độ cao ba đỉnh mặt đáy hình lăng trụ, h1= h1 - H0, h1= h2 - H0, h3= h3 - H0, H0 độ cao mặt phẳng chiếu ) Để gắn dấu cho thể tích Vi ta dựa vào pháp tuyến mặt f có hướng từ bên đối tượng 3D hướng bên ngồi.Chúng ta dùng tích vơ hướng ( ) với để gán dấu cho Vi theo công thức tích véc tơ vơ hướng sau: (6) - Nếu Cos > gắn dấu (+) - Nếu Cos < gắn dấu (-) (nxi, nyi, nzi) dấu Với thể tích phụ thuộc vào thành phần nz véc tơ việc gắn dấu trở nên đơn giản 2.2 Tính thể tích đối tượng 3D theo ngun tắc hình chóp Tương tự cách tính diện tích sử dụng ngun tắc hình tam giác, khơng gian ba chiều ta tính thể tích đối tượng 3D theo nguyên tắc hình chóp tam giác Chọn điểm P không gian, nối P với tất đỉnh đối tượng 3D Khi ứng với tam giác bề mặt khối 3D ta thu hình chóp tam giác, đỉnh hình chóp điểm P (xem hình 5) Thể tích khối 3D Hình 3: (a) Mơ hình hóa đối tượng 3D mặt f (b)Tam giác hóa f tạo hình lăng trụ đứng tam giác để tính thể tích Hình 4: Tạo hình chóp tam giỏc tớnh th tớch tạp chí khoa học đo đạc đồ số 30-12/2016 13 Nghiờn cu tớnh theo cơng thức: (7) Trong đó: Vi = 1/3d S∆i (d chiều cao hình chóp) Gọi pháp tuyến mặt f có hướng từ bên đối tượng 3D hướng bên Véc tơ véc tơ nối điểm mặt f với P, để đơn giản tính tốn ta lấy điểm trùng với đỉnh mặt f Sử dụng công thức (6) để gắn dấu cho thể tích hình chóp Vi: - Nếu Cos > gắn dấu (+) - Nếu Cos < gắn dấu (-) Xây dựng module tính tốn thể tích đối tượng 3D Sau tiến hành phân tích lý thuyết cách cụ thể để thuận tiện cho việc tính tốn xây dựng chương trình, nhóm tác giả tiến hành lựa chọn cách tổ chức liệu xây dựng thuật tốn tính thể tích đối tượng 3D sau: 3.1 Tổ chức liệu Trên bề mặt khối 3D cần xác định thể tích phủ kín mạng lưới tam giác, mạng lưới ôm sát bề mặt đối tượng Trong đó, tam giác định nghĩa mặt, mặt gồm ba đỉnh tam giác xếp theo thứ tự thuận chiều kim đồng hồ cho véc tơ pháp tuyến mặt phẳng có chiều ln hướng ngồi vật thể Khi đó, liệu tham gia tính tốn bao gồm: - Danh sách đỉnh P (x, y, z) - Danh sách mặt f(P1, P2, P3, ) mặt chứa số ba đỉnh xếp véc tơ pháp tuyến 3.2 Thuật tốn tính thể tích đối tượng 3D Sau mơ hình hóa đối tượng 3D mặt, ta tiến hành duyệt qua tất mặt danh sách mặt sử dụng công thức (5) để xác định thể tích lăng trụ tam giác cơng thức (7) sử dụng ngun tắc hình chóp Đồng thời tiến hành xét dấu cho thể tích lăng trụ (hình chóp) cách sử dụng tích vơ hướng theo cơng thức (6) Tính tổng tất thể tích có dấu ta nhận giá trị thể tích đối tượng 3D Thuật tốn tính thể tích đối tượng 3D mơ tả sau: - Đầu vào: Một danh sách gồm n mặt phủ Hình 5: Tạo véc tơ để gắn dấu Hình 6: Dữ liệu đầu vào khối lập phng n v 14 tạp chí khoa học đo đạc đồ số 30-12/2016 Nghiờn cu kớn b mt khối 3D - Đầu ra: Giá trị thể tích đối tượng - Theo phương pháp hình lăng trụ: Cho i chạy từ đến n Nếu Cos (hoặc Cos >0 > > 0) k = Cịn Cos (hoặc Cos 0) k = -1 Cịn lại k = Tính thể tích: Vi = k htbi S∆i Vt = Vt + Vi Kết thúc vịng lặp V= |Vt| - Theo phương pháp hình chóp: Cho i chạy từ đến n Nếu Cos Cịn Cos > k = >0 k = -1 Cịn lại k = Tính thể tích: Vi = k.1/3.DPi S∆i Vt = Vt + Vi Kết thúc vòng lặp V= |Vt| 3.3 Thực nghiệm Dựa sở lý thuyết trên, nhóm tác giả tiến hành xây dựng module tính thể Hình 7: Kết tính thể tích với H0= P(0,0,0) tích đối tượng 3D khép kín Dữ liệu thực nghiệm khối lập phương đơn vị tích 1m3.Khối lập phương đơn vị với mặt chia thành tam giác mô tả sau: (xem hình 6, 7, 8) Khi thực tính thể tích cơng thức (5) (7) ta hồn tồn kiểm tra kết thể tích cách thay đổi độ cao H0 công thức (5) thay đổi tọa độ điểm P cơng thức (7) Kết tính cho thấy tính đắn cơng thức tính điều kiện tính tốn thỏa mãn Trong thực tế, ta ứng dụng phương pháp tính thể tích cho đối tượng 3D vào việc giải tốn tính tốn khối lượng đào đắp, san lấp mặt bằng; tính tốn dung tích hồ chứa, vùng ngập lụt; tính tốn thể tích cơng trình dân dụng,… cách mơ hình hóa bề mặt sử dụng mơ hình TIN Khi đó, bề mặt địa hình trước sau đào, đắp (hay hồn cơng) tạo thành khối lớn khép kín giống đối tượng 3D Việc tính thể tích lúc thực theo phương pháp trình bày Trong phần thực nghiệm tính tốn số liệu thực nghiệm khai thác từ dự án Cảng biển Trung tâm Điện lực Duyên Hải xã Tân Thành, huyện Duyên Hải, tỉnh Trà Vinh đo đạc thực địa máy đo sâu Tổng số điểm đo trước nạo vét 40088 điểm sau nạo vét 33497 điểm Chiếu theo điều kiện mạng lưới mô đối Hình 8: Kết tính tốn thay đổi H0= v P(10000,10000,10) tạp chí khoa học đo đạc đồ số 30-12/2016 15 Nghiờn cu Hỡnh 9: Mt phần mơ hình tam giác trước nạo vét tượng 3D phải khép kín phải có đường biên giới hạn trùng nên số liệu đưa vào tính tốn lấy điểm đo nằm vùng lựa chọn thực nghiệm tính tốn đường biên vùng lựa chọn hai chu kì đo đạc phải trùng nhau, liệu không thỏa mãn điều kiện bị loại bỏ Dữ liệu thu trước nạo vét gồm 33227 điểm, sau nạo vét bao gồm 32217 điểm, sau tam giác hóa chương trình MapStudio thu tổng số tam giác trước nạo vét 66399 tam giác sau nạo vét 64391 tam giác (Xem hình 9, 10) Kết tính tốn module tính thể tích 4686303.939 m3 với tổng diện tích khu tính tốn 9850591.852 m2 Kết luận Dựa sở sở phân tích phương pháp tính tốn xử lý mơ hình 2D, báo đề xuất phương pháp cơng thức tính cho đối tượng 3D đưa kết luận sau : - Phương pháp cơng thức thiết lập cho phép tính tốn thể tích đối vớiđối tượng 3D có hình dạng - Điều kiện để thực quy trình mạng lưới mô đối tượng phải khép kín Trường hợp tính tốn khối lượng đào, đắp, san lấp mặt … dựa số liệu đo đạc thực địa thu có tính chất chu kì (trước, sau) chu kì đo phải có 16 Hình 10: Một phần mơ hình tam giác sau nạo vét điểm đo chung hay điểm đo có vị trí khơng gian nằm trùng với đường biên giới hạn khu vực tính tốn - Khi tính tốn thể tích khối 3D theo cơng thức (5) (7) cho thấy việc tổ chức đo đạc lấy số liệu thực địa cho phép thực linh hoạt nhiều phương pháp, phương pháp đo chi tiết địa hình phương pháp đo mặt cắt…; cơng tác tính tốn xử lý số liệu thực tay hay trợ giúp hệ soạn thảo Excel mà khơng cần phải lập trình.m Tài liệu tham khảo [1] Vũ Văn Thặng, (2010), Nghiên cứu xây dựng mơ hình số địa hình cơng nghệ thiết bị đại ứng dụng khảo sát thiết kế, xây dựng cơng trình giao thơng, thủy lợi Đề tài cấp Bộ, mã số B200803-47-TĐ [2] Nguyễn Quang Thắng, Hồ quang Trung, (2012), Giải pháp xác định khối lượng đào dắp mơ hình số địa hình Tạp chí KHKT Mỏ - Địa chất, số 40, 10/2012, trang 76-79 [3] Nguyễn Quang Khánh, (2013), Phương pháp tính khối địa hình theo lưới tam giác Tạp chí KHKT Mỏ - Địa chất, số 44, 10/2013, trang 72-76.m (Xem tiếp trang 41 ) tạp chí khoa học đo đạc đồ số 30-12/2016 ... Tính thể tích đối tượng 3D theo ngun tắc hình chóp Tương tự cách tính diện tích sử dụng ngun tắc hình tam giác, khơng gian ba chiều ta tính thể tích đối tượng 3D theo ngun tắc hình chóp tam giác. .. tất đỉnh đối tượng 3D Khi ứng với tam giác bề mặt khối 3D ta thu hình chóp tam giác, đỉnh hình chóp điểm P (xem hình 5) Thể tích khối 3D Hình 3: (a) Mơ hình hóa đối tượng 3D mặt f (b )Tam giác hóa... lăng trụ đứng Chúng ta tính thể tích đối tượng 3D theo ngun tắc hình lăng trụ đứng tương tự tính diện tích sử dụng ngun tắc hình thang Giả sử tính thể tích đối tượng 3D mơ hình hóa khối đa diện