V b phi thd mn he thiic nỏ

Một phần của tài liệu Thiết kế bài giảng giải tích lớp 12 tập 2 (Trang 144)

- So phiic lien hgp, sd phiic nghich dao, mđun ciia sd phiic Phuang trinh bac haị

a v b phi thd mn he thiic nỏ

Cdu hoi 3

Tim a va b.

Hoat dgng cua HS

Ggi y trd Idi cdu hoi 1 ý = 4x + 2ax Goi y trd Idi cdu hoi 2

<

\y\i)'0

[.(!) = §

Gm y trd Idi cdu hoi 3

a = - 2 b = l b = l 2 Cau b. HS tu giaị Cau c. Hudng đn. Tim x k h i y = l : X o - 7 3 - X o + l = l

4 1 9 „ 9 r„2 1 XQ XQ 2 j = 0 » XQ = 0 ^0 = XQ - ' V ^ 1 v^-

Dua vao cdng thiic : y - yo = ý(X(,)(x - x,,)

Ddp sd. y = i; • 3' = • 3' 1 / - X - V2I, V2 X + V 2 1 V2 1 ^ 1 V2 2 ^ , X 1

Bai 6. Hudng dan. GV nen chira kl cau ạ Hudng đn cau b.

cau ạ

Hoat dgng ciia HS

Cdu hoi I

Tim ý va cac nghiem ciia y ' = 0.

Cdu hoi 2

Tim tiem can cua ham so :

Cdu hoi 3

Lap bang bien thien va ve đ thi ham sd.

Hoat dgng cua HS

Ggi y trd loi cdu hoi I

x-2

•^ ~ x + l'

ix +1)2

Ggi y trd Idi cdu hoi 2

Tiem can diing x = -1 ; Tiem can ngang : y = 1.

Ggi y trd Idi cdu hoi 3

Cau b. Hudng đn.

Tinh/••(«) =

ia + lY

Dua vao cdng thiic : y - yo = ý(Xo)(x - XQ)

Dap sọ y = -ix - a) + .

(a + 1)2 « + 1

Bai 7. Hudng đn. GV nen chiia Id cau ạ Hudng đn cau b.

cau ạ HS tu khao sat.

caub.

Hoat dgng ciia HS

Cdu hoi I

Hay tim giao diem ciia hai dudng cong.

Cdu hoi 2

Viet phuang trinh tiép tuyén.

Hoat dgng cua HS

Ggi y trd loi cdu hoi 1

2 9

= x2 + 1 « 2 - x

2 = (x^ + 1)(2 - x) vdi X ^ 2 <=> x(-x^ + 2x - 1) = 0 <=>

Goi y trd loi cdu hoi 2

f'ix) = — ^ . (2-x)2 1 y = - x + l , y = 2x. "x = 0 x = l cau c. Hudng đn.

Six dung true tiep cdng thiic tfnh thi tfch trdn xoaỵ

V = ni-^]\ = 4n]-^

i2-xy

Bai 8. Hudng đn. Six dung true tiep quy tdc tim GTLN va GTNN.

cau ạ Khao sat, tim cue dai va cue tieu cua ham sd.

X = - 1 f'ix)^0 « x ^ - x - 2 = 0 « f'ix)^0 « x ^ - x - 2 = 0 « = 2 Ta cd fi-l) = 8, /•(2) = - 1 9 , fi-2) = - 3 , f ^5} v2y 33 2 Ddp sd GTTMN cua ham sd la /'(2) = - 1 9 ; GTLN la fi-l) = 8.

cau b. Hudng đn. fix) > 0 Vx e [1 ; e] nenf(x) dong bién. Do đ GTNN la /"(I) = 0 ; GTLN la fie) = ê

cau c. Hudng đn.

f\x) = e-='-xe-'' = e - ^ ( l - x ) ,

fix) = 0 <=> X = l.Ta cd fiO) = 0, /"(I) = - ; lim fix) = 0.

6 X->+oo

Minf(x) =/"(0) = 0 ; Max f(x) = /"(I) 1

cau d. Hudng đn.

Minf(x)=/" 3n]

Một phần của tài liệu Thiết kế bài giảng giải tích lớp 12 tập 2 (Trang 144)

Tải bản đầy đủ (PDF)

(163 trang)