- So phiic lien hgp, sd phiic nghich dao, mđun ciia sd phiic Phuang trinh bac haị
2. Chuan bi ciia HS
Cdn on lai mdt so kien thiic da hgc Lam bai kilm tra 1 tiet.
HỊ PHAN P H 6 I T H 6 I LUONG
Bai nay chia lam 2 tilt :
Tiít I : On tap Tiít 2 : Kiem tra
IV. TIEN TRINH DAY HOC
HOAT DONG 1
ON TAP
GV dua ra cac cau hdi sau daỵ
Cdu hdi I
Neu cac budc khao sat ham sd. - Khao sat ham bacbạ
- Khao sat ham bac nhat/ bac nhdt.
Cdu hdi 2
Cdu hdi 3
Neu dinh nghia cue dai va cue tilụ
Cdu hdi 4
Neu dinh nghia mu va Idgarit ; neu cac tinh chdt va cdng thiic đi co sd ciia Idgarit
Cdu hdi 5
Khi nao ham sd mu va ham sd Idgarit dong bien, nghich bien.
Cdu hdi 6
Neu mdt sd phuang phap thudng gap dl giai phuong trinh mii va Idgarit.
Cdu hdi 7
Neu cac phuang phap tinh nguyen ham.
Cdu hdi 8
Neu cac phuang phap tinh tich phan.
Cdu hdi 9
Neu dinh nghia va cdc phep toan vl so phiic.
Cdu hdi 9
Mđun ciia sd phiic la gi ? So phiic lien hgp ciia mdt so phiic, so phiic nghich dao la gi ?
HOATDÔG2
HCrOTNG DflN Bfll TflP SGK
Ị PHAN CAU HOỊ HS tu tra Idi
IỊ PHAN BAI TAP
Bai 1. Hudng đn. Dua vao su bien thien ciia ham sọ
Cau ạ Tinh Á va chiing minh Á> 0. Ta cd Á = (a + 1)' - ăa + 2) =1 > 0.
2 2 cau b. Ta CO S = Xi + X2 = 2 + —; P = XiX2 = 1 + — a cau b. Ta CO S = Xi + X2 = 2 + —; P = XiX2 = 1 + — a
• Khao sat ham so S :
T X D : M \ { 0 } .
Tacd S' = - ^ < 0 . a Bang bién thien :
a S' S —00 - ^ ^ - - ^ 0 1 + 0 0 - . . . ^ ^ ""~">k.—00 1 + 0 0 ^ ^ ^ 2 HS tu kit luan va tu ve đ thị • Khao sat ham P:
T X D : R \ { 0 } .
Tacd P' = — ^ < 0 . a
Bang bién thien :
a S' s —00 0 - 1^^^^ k.—00 + 0 0 + 0 0 ^ ^ " " ^ ^ 1 HS tu kit luan va tu ve đ thị Bai 2.
Hoat dgng cua HS
Cdu hoi 1
Xac dinh ham so khi a = 0.
Cdu hoi 2
Tim ý va cac nghiem ciia ý = 0.
Cdu hoi 3
Tim cue tri ya lap bang bien thien ciia ham sọ
Cdu hoi 4
Hay tim cac diem dac biet va ve đ thi ham sd.
Hoat dgng cua HS
Ggi y trd loi cdu hoi 1