ỨNG SUẤT TRÊN MẶT CẮT XIÊN.

Một phần của tài liệu Ebook sức bền vật liệu tập 1 (phần 1) hoàng thắng lợi (Trang 39)

Trong phần này, ta sẽ chỉ khảo sát những mặt cắt xiên có tính chất đặc biệt. Đó là các mặt cắt song song với một phương chính thứ ba.

Ứng suất trên mặt cắt xiên này chỉ gồm có hai thành phần  và  trong đó

thành phần nằm trong mặt phẳng vuông góc với phương chính thứba.

Ứng suất chính 3 chiếu lên phương của vàsẽ triệt tiêu vì vậy dù vị trí của

mặt cắt thế nào đi chăng nữa ta vẫn không cần chú ý đến3.Điều này cho phép ta có thểsử dụng công thức (3-2) để tính các trị số và.

sẽ đạtcực đại khi  = 45o tức là khi mặt cắt xiên trùng với mặt chéo chính của

phân tố. Ta ký hiệu trịsố ứngsuất tiếp cực đại là12.

Vòng Mo ứng suất trường hợp này sẽ đi qua các điểm có hoành độ là 1 và 2

(hình 3.9b).

Với những mặt cắt song song với phương I ứng suất trên mặt cắt xiên vẫn áp dụng theo công thức (3.2) nhưng thay vào trị số 1 là trị số 3. Ứng suất tiếp cực đại

trongtrườnghợp này.

Vòng Moứng suất sẽ đi qua các điểm có toạ độ là2 và3

Việckhảo sát các mặt cắt xiên song song với phương chính thứII cũng tiến hành

tương tự, tươngứng với các mặt cắt xiên ta vẽ được ba vòng Mo ứng suất (hình 40a). Lý thuyết đànhồi đã chứng minh được rằng toạ độ của một điểmnằm trong vùng giới

hạn của ba vòng tròn đó sẽcho ta giá trị ứng suấttrên một mặt cắtxiên bất kỳnghĩa là mặt cắt xiên không song song với một phương chính nào.

Vì không thể lấy các điểmnằm ngoài phạm vi giới hạn của ba vòng trên tròn cho nên dễdàng thấy rằng trị số ứng suấttiếp cực đại đối với một trạng thái sẽlà:

Một phần của tài liệu Ebook sức bền vật liệu tập 1 (phần 1) hoàng thắng lợi (Trang 39)

Tải bản đầy đủ (PDF)

(61 trang)