Phân lọai ảnh

Một phần của tài liệu Moniring sự biến động môi trường rừng ngập mặn khu vực Bãi Nhà Mạc Đình Vũ tỉnh Hải Phòng bằng công nghệ viễn thám và GIS (Trang 40)

- Đo độ sâu v địa à

b. Nguyên nhân gây ra méo ảnh

2.2.7.4 Phân lọai ảnh

- Phân loại ảnh viễn thám là (1):

+ Chuyển các giá trị đo sang các giá trị mang tính chuyên đề + Chuyển dữ liệu thành thông tin bản đồ, thông tin thống kê - Phân loại ảnh viễn thám là (2):

+ Tập hợp các pixel có cùng một số thông số thống kê phổ thành một lớp có ý nghĩa chuyên đề,

+ Tập hợp các đói tợng có chung một số thuộc tính vào một lớp có ý nghĩa chuyên đề

Đồ án tốt nghiệp Trờng ĐH Mỏ-Địa Chất

Ta có sơ đồ các bớc phân loại ảnh đã thực hiện trong đồ án

Trong phân loại ảnh có hai cách đó là:

- Phân loại có kiểm định: Sử dụng các mẫu phân loại

- Phân loại không kiểm định: chia ảnh thành các cluster và gộp nhóm các cluster đó.

Sơ đồ sau thể hiện các bớc phân loại chính

 Đối với phân loại có kiểm định

Chọn thuật toán

Khảo sát các đặc tr ng thống kê của toàn cảnh Thu thập các dữ liệu GIS liên quan đến khu

vực và chuyên đề nghiên cứu

chạy ch ơng trình phân loại

Đánh giá chất l ợng phân loại

Xử lý sau phân loại

Chuyển kết quả sang GIS Đánh giá thống kê các mẫu

Chọn mẫu trên máy tính

chính xác

 Đối với phân loại không có kiểm định

ảnh→ Phân tích cluster → Cluster và gộp nhóm cluster →Đánh giá độ chính xác

Để hiểu rõ sự khác biệt giữa phân loại có kiểm định và không có kiểm định, ta cần biết đến hai khái niệm: lớp thông tin và lớp phổ

- Lớp thông tin (Information Class): lớp đợc ngời phân tích ảnh xác định liên quan đến thông tin đợc chiết tách

- Lớp phổ (Spectral Class): lớp bao gồm các vectơ có mức xám độ tơng tự nhau trong không gian đa phổ.

Trong nhiệm vụ chiết tách thông tin một cách lý tởng, ta có thể trực tiếp sắp xếp một lớp phổ vào một lớp thông tin.

Ví dụ, ta nằm trong không gian hai chiều gồm ba lớp: nớc, thực vật, và các bề mặt bêtông.

Hình 2.11: quan hệ lớp phổ/ lớp thông tin trong không gian phổ

Hình 2.12: gán nhãn cho lớp trong quá trình phân loại

Đồ án tốt nghiệp Trờng ĐH Mỏ-Địa Chất

Bằng cách xác định ranh giới giữa ba nhóm vectơ xám độ trong không gian hai chiều NIR và R, chúng ta có thể phân biệt đợc ba lớp thông tin này. Một trong những khác biệt giữa phân loại có kiểm định và không có kiểm định là các cách sắp xếp mỗi lớp phổ vào một lớp thông tin. Trong phân loại có kiểm định, ta bắt đầu bằng việc xác định một lớp thông tin trên ảnh. Khi đó ta sử dụng một thuật toán để tóm lợc thông tin đa phổ từ các vùng xác định trên ảnh tạo thành các lớp dấu hiệu. Quá trình này đợc gọi là tạo mẫu có kiểm định. Trong khi đó, với phân loại không có kiểm

định, ta sử dụng một thuật toán cho cả ảnh trớc, tạo thành các lớp phổ (còn gọi là cluster). Từ đó, ngời phân tích ảnh sẽ sắp xếp lớp phổ vào lớp thông tin cần tạo.

Các đờng cong tơng tứng trong hình 1 sẽ đợc biểu diễn bằng các điểm nằm kề nhau trong hình 2. (hai đờng cong nét đứt trong hình 1 đợc biểu diễn là các điểm hình tròn rỗng trong hình 2. Từ hình 2 ta có thể dễ dàng nhận thấy khoảng cách có thể đợc sử dụng làm phép đo tính tơng tự trong phân loại. Hai điểm càng gần nhau, càng có khả năng nằm cùng một lớp.

Chúng ta có thể sử dụng nhiều loại khoảng cách khác nhau để tính mức t- ơng tự tạo thành các thuật toán phân loại nh phân loại khoảng cách nhỏ nhất, phân loại khoảng cách lớn nhất...

Đồ án đã sử dụng phơng pháp phân loại có kiểm định do: giá trị phổ của ảnh mà sensor thu nhận đợc thông qua sự bức xạ của các đối tợng lớp phủ bề mặt. Đôi khi những đối tợng khác nhau nhng lại cho giá trị phản xạ phổ giống nhau, do đó thông tin nhận đợc bị sai, đây là điểm hạn chế của ảnh vệ tinh mà ta cần khắc phục. Chính vì vậy ta cần phải kiểm tra từ những nguồn t liệu khác nữa, rồi lấy thông tin đó để chọn mẫu cho các đối tợng.

Trong phân lọai có kiểm định có các phơng pháp sau:

 Khoảng cách tối thiểu (Minnimum Distance)

 Khoảng cách Mahalanobis

Phân loại theo xác suất lớn nhất (Maximum likelihood) (MLC)

MLC là phơng pháp phân loại phổ biến nhất trong xử lý ảnh viễn thám. Trong đồ án đã sử dụng phơng pháp phân loại theo xác suất lớn nhất để thực hiện đề tài, vì vậy dới đây sẽ trình bày rõ hơn về lý thuyết của riêng phơng pháp này.

MLC đợc xây dựng dựa theo hàm phân tách Bayesian P(Ci|x) = p(x|Ci) x P(Ci)/P(x)

Giả sử ta có C = (C1, C2, ..., Cnc) là một tập hợp các lớp, trong đó nc là tổng số lớp. Với mỗi pixel cho trớc có vector xám độ x,

xác suất để x thuộc về lớp ci là P (Ci|x), i = 1, 2, ... , nc.

Nếu ta biết đợc xác suất P (Ci|x) cho mỗi lớp, ta sẽ xác định đợc cần phân loại x thuộc về lớp nào. Việc này có thể thực hiện bằng cách so sánh các P (Ci|x), với i = 1, 2, ... , nc.

x => ci, nếu P (Ci|x) > P (cj|x) với mọi j # i

Hình 2.13: Ngưỡng quyết định theo xác suất

Hình trên đã giải thích rất rõ ràng về phân loại theo xác suất lớn nhất. Khi x đợc phân loại theo xác suất p(x|Ci) x P(Ci). x1 đợc phân loại vào lớp C1, x2

SV: Trần Thị Bích Thủy Lớp: Trắc Địa B - K48 Kênh 3 Kênh 2 ++ + + + + + 44

Đồ án tốt nghiệp Trờng ĐH Mỏ-Địa Chất

đợc phân loại vào lớp C2. Ranh giới lớp đợc xác định tại nơi có xác suất bằng nhau.

Hình 2.14: Ranh giới các lớp đợc xác định theo ngỡng quyết định trên không gian phổ

Trong không gian hai chiều, ta không dễ dàng xác định đợc ranh giới các lớp. Do vậy chúng ta không sử dụng phơng pháp phân loại xác suất lớn nhất mà thay vào đó, ta so sánh các xác suất.

Thực chất của MLC (phân loại theo xác suất lớn nhất): Với mục đích

đơn giản tính toán, ta thờng tính loga của p(x|Ci).P(Ci)

{ } ( ) ( ) log( ( )) 2 1 log 2 1 2 log . 2 / ) ( . ( log 1 i i i T i i i i p C nb V x V x P C C x p =− π − − −à − −à +

Do : –nb/2.log2π là hằng số nên công thức trên có thể đợc giản lợc thành:

))( ( log( ) ( ) ( 2 1 log 2 1 ) ( 1 i i i T i i x V x P C V x g =− − −à − −à +

Thông thường, ta giả thiết P(Ci) không đổi với mỗi lớp. Do đó, ta có thể

giản ước phương trình: ) ( ) ( log ) ( 1 i i T i i x V x V x g =− − −à − −à g(x) là hàm phân biệt. Khi so sánh g(x)’s ta có thể xếp x vào đúng lớp.

Trong phân loại xác suất cực đại, sai số do phân loại sai chắc chắn sẽ là nhỏ nhất nếu p(x|Ci) phân bố chuẩn.

Trong thực tế, không phải lúc nào cũng có phân bố chuẩn. Để sử dụng phép phân loại xác suất cực đại hữu ích nhất, ta cần phải đảm bảo các mẫu phân loại sẽ tạo ra phân bố xác suất càng gần với phân bố chuẩn càng tốt. Vậy, một mẫu phân loại có kích cỡ nh thế nào? Thông thờng, ta cần 10 x nb hoặc 100 x nb pixel cho mỗi lớp. (Swain và Davis, 1978).

lý các dữ liệu ở thang định danh hoặc tỉ lệ. Mức độ tính toán cũng sẽ phức tạp hơn khi dung lợng ảnh tăng (ảnh nhiều kênh, nhiều chiều).

Một phần của tài liệu Moniring sự biến động môi trường rừng ngập mặn khu vực Bãi Nhà Mạc Đình Vũ tỉnh Hải Phòng bằng công nghệ viễn thám và GIS (Trang 40)

Tải bản đầy đủ (DOC)

(90 trang)
w