Kỹ thuật nguyên tử hoá không ngọn lửa làm cho độ nhạy phát hiện của phương pháp hấp thụ nguyên tử tăng lên rất nhiều nhờ hiệu suất nguyên tử hoá cao nhưng ảnh hưởng của nền mẫu đến độ hấp thụ quang của nguyên tố phân tích là rất lớn, nhất là trong các nền phức tạp. Nếu trong mẫu có chứa các hợp chất bền nhiệt, khó bay hơi, khó nguyên tử hoá thì sẽ gây khó khăn, cản trở cho quá trình hoá hơi và nguyên tử hoá các nguyên tố cần phân tích, dẫn đến làm giảm độ ổn định và giảm độ nhạy. Vì vậy, muốn có được kết quả có độ chính xác cao, ta phải tìm cách giảm hoặc loại trừ sự ảnh hưởng của nền mẫu. Để làm việc đó, người ta có thể tăng nhiệt độ nguyên tử hoá mẫu hoặc thêm vào mẫu phân tích các chất cải biến hoá học. Tuy nhiên, tăng nhiệt độ nguyên tử hoá cũng chỉ có một giới hạn nhất định. Do đó, thêm các chất cải biến hoá học được ứng dụng rộng rãi hơn để loại trừ ảnh hưởng của nền mẫu đối với nguyên tố cần xác định khi định lượng trực tiếp nguyên tố này. Đây chính là điểm ưu việt của kỹ thuật nguyên tử hoá không ngọn lửa trong phương pháp phổ hấp thụ nguyên tử. Có hai nhóm chất cải biến hoá học:
- Nhóm các chất khi thêm vào sẽ tạo với các cấu tử nền những dạng dễ bay hơi, cho phép loại những thành phần ảnh hưởng chính của nền ra khỏi mẫu trước giai đoạn nguyên tử hoá của nguyên tố phân tích. Nhóm này gồm các chất: NH4NO3, NH4CH3COO... [20]
- Nhóm các chất có khả năng kết hợp với nguyên tố cần phân tích thành các hợp chất khó bay hơi hơn, làm cho các quá trình tro hoá và nguyên tử hoá có thể tiến hành ở nhiệt độ cao hơn nhiệt độ tro hoá hơi của nền mẫu. Các chất điển hình thuộc nhóm này là: Pd(NO3)2, Mg(NO3)2 và (NH4)H2PO4... [20].
Ngoài ra ta có thể kết hợp 2 loại trên để tăng khả năng loại nền, tăng nhiệt độ nguyên tử hoá, như vậy sẽ thu được kết quả tốt hơn. Ví dụ có thể dùng hỗn hợp Mg(NO3)2 và NH4NO3 ...
Trong phép đo phổ của Cr, để chọn được chất cải biến hóa học phù hợp, chúng tôi tiến hành khảo sát dung dịch Cr 5,0ppb trong HNO3 2% với 4 loại chất cải biến hóa học Pd(NO3)2, (NH4)H2PO4, Mg(NO3)2 , Ni(NO3)2. Kết quả khảo sát được ghi trong bảng 3.10.
Bảng 3.10 - Khảo sát ảnh hƣởng của các chất cải biến hóa học
Chất cải biến hóa học Không có chất cải biến Pd(NO3)2 0,01% (NH4)H2PO4 0,01% Mg(NO3)2 0,01% Ni(NO3)2 0,01% Abs - lần 1 0,262 0,302 0,271 0,267 0,256 Abs - lần 2 0,251 0,301 0,275 0,268 0,257 Abs - lần 3 0,265 0,332 0,273 0,259 0,269 Abs - TB 0,259 0,312 0,273 0,264 0,260 BG 0,015 0,013 0,008 0,012 0,016 Abs/BG 17,267 24,000 34,125 22,000 16,292 RSD(%) 4,59 3,22 1,73 2,16 3,83
Từ các kết quả thực nghiệm, ta thấy :
Khi có mặt chất cải biến hóa học thì độ hấp thụ quang của Cr tăng lên so với khi không có mặt chất cải biến hóa học, tín hiệu thu được ổn định hơn, tín hiệu đường nền giảm.
Tỷ lệ tín hiệu giữa độ hấp thụ quang của Cr (AbsCr) với tín hiệu đường nền (BG) khi có mặt chất cải biến hóa học (NH4)H2PO4 là lớn nhất.
Do đó, chúng tôi chọn (NH4)H2PO4 làm chất cải biến hóa học. Để chọn được nồng độ (NH4)H2PO4 thích hợp, chúng tôi khảo sát dung dịch Cr 5,0ppb trong HNO3 2% với (NH4)H2PO4 ở các nồng độ khác nhau. Kết quả khảo sát được chỉ ra trong bảng 3.11.
Bảng 3.11 - Khảo sát nồng độ của (NH4)H2PO4 Nồng độ (NH4)H2PO4 (%) 0 0,01 0,02 0,03 0,05 0,1 Abs - lần 1 0,262 0,271 0,261 0,259 0,285 0,266 Abs - lần 2 0,251 0,275 0,262 0,256 0,281 0,269 Abs - lần 3 0,265 0,273 0,254 0,258 0,267 0,254 Abs - TB 0,259 0,273 0,259 0,258 0,277 0,263 BG 0,015 0,008 0,011 0,013 0,012 0,018 RSD(%) 4,59 1,73 2,89 3,45 7,68 4,59
Qua kết quả thực nghiệm cho thấy : nồng độ (NH4)H2PO4 phù hợp đối với Cr trong mẫu phân tích là 0,01%. Vì vậy, chúng tôi chọn (NH4)H2PO4 0,01% làm chất cải biến hóa học cho phép định lượng Cr.