Theo một số nhà lí luận dạy học, tuỳ theo mức độc lập tƣ duy của học sinh,ngƣời ta thực hiện các mức dạy học giải quyết vấn đề nhƣ sau.
Bảng1.1.Các mức dạy học GQVĐ
Các mức Đặt vấn đề Lập kế hoạch Giải quyết VĐ Kết luận
1 GV GV GV GV
2 GV GV&HS HS GV&HS
3 GV&HS HS HS GV&HS
4 HS HS HS GV&HS
Mức1.Giáo viên đặt vấn đề , nêu cách giải quyết vấn đề , đòng thời giáo viên
giải quyết vấn đề . Học sinh là ngƣời quan sát và tiếp nhận kết luận do giáo viên thực hiện , đây là mức thấp nhất và thƣờng áp dụng với những nội dung dạy học quá khó so với trình độ nhận thức của học sinh .trong quá trình này ,
họ cũng trải qua những thời điểm , những cảm xúc và thái độ khác nhau nhƣ một học sinh đang thực sự tham gia quá trình nghiên cứu, nhƣng không trực tiếp giải quyết vấn đề.
Mức2.Giáo viên dặt vấn đề, nêu cách giải quyết vấn đề và giải quyết vấn đề
.Sau đó giáo viên hƣớng dẫn học sinh rút ra kết luận và giáo viên chính xác hoá các kiến thức.
Mức3.Giáo viên gợi ý để học sinh phát hiện ván đề, hƣớng dẫn học sinh tìm
cách giải quyết vấn đề , giáo viên và học sinh cùng đánh giá kết quả ,rút ra kết luận.
Mức4.Học sinh tự phát hiện vấn đề cần nghiên cứu , lập kế hoạch và giải
quyết vấn đề, tự rút ra kết luận , giáo viên nhận xét đánh giá
1.2.5.Thực hiện dạy học giải quyết vấn đề.
Hạt nhân của dạy học giải quyết vấn đề là điều khiển quá trình nghiên cứu của học sinh. Quá trình này có thể chia thành các bƣớc sau, trong đó bƣớc nào, khâu nào do học trò tự làm hoặc có sự gợi ý của thầy hoặc chỉ theo dõi sự trình bày của thầy là tuỳ thuộc sự lựa chọn một cấp độ đã nêu ở mục 1,2,3.
Bước 1: Phát hiện vấn đề:
- Đƣa học sinh vào tình huống có vấn đề. - Phân tích tình huống đó.
- Dự đoán vấn đề nảy sinh và đặt mục đích chứng minh tính đúng đắn của nó.
Bước 2: Giải quyết vấn đề:
- Phân tích vấn đề, làm rõ những mối liên hệ giữa cái đã biết và cái phải tìm. - Đề xuất và thực hiện hƣớng giải quyết, có thể điều chỉnh, thậm chí bác bỏ và chuyển hƣớng khi cần thiết. Trong khâu này thƣờng sử dụng những quy tắc tìm đoán nhƣ: quy lạ về quen, đặc biệt hoá, chuyển qua những trƣờng hợp suy biến, xem xét tƣơng tự, khái quá hoá, xét những mối liên hệ và phụ thuộc, suy ngƣợc và suy xuôi...
- Trình bày cách giải quyết vấn đề. Bƣớc 3: Kiểm tra và vận dụng:
- Kiểm tra tính hợp lý hoặc tối ƣu của lời giải. - Tìm hiểu những khả năng ứng dụng kết quả.
- Đề xuất những vấn đề mới có liên quan nhờ xét tƣơng tự, khái quát hoá, lật ngƣợc vấn đề... và giải quyết nếu có thể.
* Những điểm lưu ý trong quá trình sử dụng quy trình dạy học:
- Quy trình dạy học trên phải đƣợc xây dựng trên cơ sở bao quát toàn bộ các đơn vị kiến thức quy định trong một giờ học, tức là giáo viên phải định rõ vấn đề nhận thức nào là cơ bản, cho học sinh phát hiện và giải quyết (giai đoạn 1 và 2), những vấn đề còn lại đƣợc coi là sự vận dụng (giai đoạn 3) của vấn đề cơ bản đó. Nhƣ vậy, toàn bộ tiến trình giờ học là sự vận động và biến đổi theo ba giai đoạn của vấn đề cơ bản ban đầu.
- Bƣớc vận dụng vào tình huống mới (trong giai đoạn thứ ba của quy trình) lại trải qua ba giai đoạn của quy trình dạy học: phát hiện tình huống mới, giải quyết nó và lại vận dụng nó vào tình huống mới khác... cứ thế tiếp tục cho tới hết giờ học. Do đó, hành động vận dụng ở quy trình dạy học phải thực hiện mục đích kép: vừa tìm ra kiến thức mới, vừa rèn luyện phƣơng thức hành động qua việc thực hành lại quy trình dạy học.
- Quy trình dạy học đã nêu nên đƣợc coi là quy trình “khung” cho một giờ dạy theo kiểu giải quyết vấn đề. Còn trong mỗi giai đoạn, hoạt động tƣơng tác giữa giáo viên và học sinh luôn biến đổi hết sức linh hoạt bởi: tuỳ thuộc vào nội dung nhận thức nào cần lĩnh hội, hình thức dạy học nào đƣợc lựa chọn, trình độ nhận thức của học sinh, năng lực chuyên môn và sƣ phạm của giáo viên... Song, cần đảm bảo tính hƣớng đích của quy trình dạy học: Dựa vào kết quả dự đoán mà chủ thể (học sinh) luôn hƣớng vào đó để điều chỉnh và kiểm tra hành động của mình.
- Không nên quá cứng nhắc trong việc xây dựng và sử dụng quy trình dạy học, bởi việc thiết kế nó bị phụ thuộc vào nội dung, đối tƣợng nhận thức, trình độ của giáo viên, phƣơng tiện dạy học...
1.3. Kết luận chƣơng 1
Chƣơng này đề cập đến các cơ sở khoa học của phƣơng pháp dạy học giải quyết vấn đề , phân tích dạy học giải quyết vấn đề trong quá trình dạy học toán, với nhấn mạnh rằng: dạy học giải quyết vấn đề mang tính hiện đại, nó đáp ứng đƣợc một số yêu cầu về vấn đề dạy học và tích cực hoá hoạt động nhận thức của học sinh. Trong quá trình dạy học, giáo viên cần phải dự tính lựa chọn các pha dạy học giải quyết vấn đề thích hợp cho từng nội dung, cho từng tiết học và cho từng đối tƣợng học sinh. Dạy học theo hƣớng tiếp cận giải quyết vấn đề phù hợp với những định hƣớng và các giải pháp đổi mới phƣơng pháp dạy học hiện nay. Cải tạo đƣợc thực trạng dạy học môn Toán ở các trƣờng THPT. Vì thế, việc thực hiện dạy học một số nội dung toán học theo hƣớng tiếp cận giải quyết vấn đề là hết sức cần thiết.
Chƣơng 2: THỰC TRẠNG DẠY HỌC THEO HƢỚNG TIẾP CẬN GIẢI
QUYẾT VẤN ĐỀ THÔNG QUA DẠY HỌC “TÍCH VÔ HƢỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG” Ở MỘT SỐ TRƢỜNG THPT.
2.1. Quá trình điều tra thực tiễn.
2.1.1. Mục đích điều tra.
Tìm hiểu thực trạng dạy học theo hƣớng tiếp cận GQVĐ ; sự cần thiết của của việc dạy học GQVĐ thông qua dạy học chƣơng “ Tích vô hƣớng của hai vectơ và ứng dụng”- Hình học10 (ban nâng cao) ở một số trƣờng THPT trên địa bàn tỉnh Nam Định.
2.1.2.Đối tượng điều tra.
Đối tƣợng khảo sát là một số giáo viên Toán đang trực tiếp ở trƣờng THPT
trên địa bàn tỉnh Nam Định và HS ở một số trƣờng THPT trên địa bàn tỉnh Nam Định. Đối tƣợng tham gia trả lời phiếu là 45 giáo viên Toán và 50 học sinh.
2.1.3.Nội dung điều tra
-Tìm hiểu về thực trạng dạy học theo hƣớng tiếp cận giải quyết vấn đề của GV Toán thông qua dạy học chƣơng “ Tích vô hƣớng của hai vectơ và ứng dụng”- Hình học10 (ban nâng cao)
- Xin ý kiến của giáo viên về sự cần thiết và tính khả thi của dạy học giải quyết vấn đề.
2.1.4.Phương pháp điều tra
- Quan sát: Dự giờ một số tiết dạy môn Toán về chƣơng “ Tích vô hƣớng của hai vectơ và ứng dụng”- Hình học 10( ban nâng cao ) để quan sát tiến trình dạy học, thái độ học tập của các em từ đó đánh giá mức độ bồi dƣỡng và phát triển năng lực giải quyết vấn đề cho học sinh thông qua các giờ học đó.
- Phỏng vấn, điều tra bằng phiếu hỏi đối với giáo viên Toán về thực trạng dạy học giải quyết vấn đề khi dạy học chƣơng “Tích vô hƣớng của hai vectơ và ứng dụng” .
- Đánh giá khả năng phát hiện và giải quyết vấn đề của học sinh thông qua các bài kiểm tra.
2.1.5 Một số kết quả:
2.1.5.1.Kết quả điều tra thực trạng dạy học GQVĐ của GV qua phiếu hỏi Kết quả thu đƣợc khi tiến hành tổng hợp phiếu hỏi giáo viên , với câu hỏi
“Trong quá trình dạy học chương “Tích vô hướng của hai vectơ và ứng
dụng” , thầy (cô) thường sử dụng phương pháp dạy học nào?”
Bảng2.1. Kết quả lấy ý kiến GV về sự lựa chọn phương pháp dạy học khi dạy chương “Tích vô hƣớng của hai vectơ và ứng dụng”
TẦN SỐ SỬ DỤNG PHƢƠNG PHÁP Thƣờng xuyên Không thƣờng xuyên Không sử dụng 1. Thuyết trình kết hợp với nêu câu hỏi 27 18 0
2. Giải thích , minh hoạ trực quan 36 9 0
3. Đàm thoại , gợi mở 35 10 0 4. Hƣớng dẫn học sinh phát hiện và GQVĐ 7 15 23 5. Hƣớng dẫn học sinh thực hành 5 18 22 6.Tổ chức hƣớng dẫn học sinh tự nghiên cứu 3 7 35
Kết quả khảo sát trên cho thấy : Trong quá trình đạy học chƣơng “Tích vô hƣớng của hai vectơ và ứng dụng”, có rất ít giáo viên lựa chọn cách dạy học giải quyết vấn đề (7/45 giáo viên thực hiện thƣờng xuyên ; 15/45 giáo viên có thực hiện nhƣng không thƣờng xuyên) ; ngƣợc lại , có tới 23/45 ( hơn 50%) giáo viên không thực hiện dạy học giải quyết vấn đề .Trao đổi với một số giáo viên không thực hiện dạy học giải quyết vấn đề , các thầy cô cho biết sở dĩ không thực hiện là vì học sinh chƣa có kĩ năng học tập theo kiểu dạy học giải quyết vấn đề và trƣớc kia đã tùng thực hiện nhƣng hiệu quả dạy học thấp nên vẫn chọn cách dạy học truyền thống.
Với câu hỏi “Xin thầy (cô) cho ý kiến của mình về sự cần thiết phải dạy học giải quyết vấn đề”
Bảng 2.2 Kết quả xin ý kiến giáo viên về sự cần thiết của dạy học giải quyết
vấn đề
Sự cần thiết Số lƣợng giáo viên chọn
Rất cần thiết 42
Cần thiết 3
Không cần thiết 0
Kết quả trên cho thấy, hầu hết giáo viên đều nhận thấy việc dạy học giải quyết vấn đề là rất cần thiết .
Với các câu hỏi nhằm tìm hiểu nhận thức của giáo viên về tác động của dạy học giải quyết vấn đề tới học sinh(1)(3)(4) và tính khả thi của cách dạy học này(2).
Bảng2.3 Kết quả xin ý kiến giáo viên về tác động của dạy học giải quyết
vấn đề và tình khả thi của cách dạy học này. Ý KIẾN
NỘI DUNG
Đúng Phân vân
Sai 1.Dạy học GQVĐ có thể giúp học sinh đạt đƣợc
chuẩn kiến thức,kĩ năng trong chƣơng trình.
39 3 3
2.Dạy học GQVĐ có thể vận dụng tốt trong tiết học 45 phút và thực hiện đúng PPCT .
35 7 3
3.Dạy học GQVĐ góp phần phát triển trí tuệ cho học sinh
42 3 0
4.Dạy học GQVĐ hình thành một số phẩm chất trí tuệ cho học sinh
45 0 0
Kết quả cho thấy , hầu hết giáo viên đều nhận thấy dạy học giải quyết vấn đề có thể giúp học sinh đạt đƣợc chuẩn kiến thức kĩ năng trong trƣơng
trình.Đồng thời dạy học giải quyết vấn đề có thể góp phần phát triển trí tuệ cho học sinh và hình thành ở họ một số phẩm chất trí tuệ.Song, vẫn có 3/45 giáo viên cho rằng dạy học giải quyết vấn đề không thể giúp học sinh đạt đƣợc chuẩn kiến thức kĩ năng trong chƣơng trình và 3/45 giáo viên cho rằng
dạy học giải quyết vấn đề chƣa phù hợp với tiết học 45 phút và không thể thực hiện đúng tiến độ của PPCT.
Với kết quả phiếu hỏi “các biện pháp mà giáo viên đã sử dụng để tạo tình huống gợi vấn đề , giúp học sinh lập kế hoạch giải quyết vấn đề , tổ chức cho học sinh giải quyết vấn đề và giúp học sinh đánh giá kết quả” thì hầu hết giáo viên chọn biện pháp thuyết trình giải quyết vấn đề , số ít chọn biện pháp sử dụng hệ thống câu hỏi hƣớng dẫn học sinh và biện pháp tổ chức cho học sinh thảo luận nhóm.
2.1.5.2.Kết quả điều tra thực trạng học tập của học sinh qua bài kiểm tra *)Một số nhận xét rút ra từ bài làm của học sinh qua bài kiểm tra số 1 Với một kiểu đề mở và khá “lạ” đối với học sinh.
Em hãy phát hiện sai lầm trong lời giải sau và cho các lời giả đúng (càng nhiều cách giải càng tốt)
(Kiểm tra năng lực phát hiện và giải quyết vấn đề của học sinh) Bài toán . Cho trƣớc hai điểm cố định A ,B phân biệt .
Tìm tập hợp điểm M thoả mãn MA . MB = 0 . Lời giải MA . MB = 0 MA= 0 hoặc MB = 0 MA hoặc M B
Vậy có hai vị trí của điểm M thoả mãn là A và B.”
Tuy nhiên nếu học sinh nắm vững kiến thức về tích vô hƣớng của hai vectơ và có kĩ năng giải quyết vấn đề , có thể đạt điểm số cao . Kết quả sau phản ánh phần nào thực trạng về năng lực giải quyết vấn đề của học sinh
Bảng2.4.Kết quả bài kiểm tra số1.
Điểm 0 1 2 3 4 5 6 7 8 9 10 Tổng
Biểu đồ 1.1. Kết quả bài kiểm tra số 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10
Có 5 học sinh đạt điểm không vì cho rằng lời giải trên không có sai lầm! Đa số các em chỉ ra đƣợc chỗ sai MA . MB = 0 MA= 0 hoặc MB = 0 là do thiếu trƣờng hợp MA MB
Tuy nhiên , trong số đó hầu hết lại không phát hiện ra vấn đề
MA=
0 hoặc
MB =
0 hoặc MA MB
M thuộc đƣờng tròn đƣờng kính AB. (Chỉ có 12 học sinh phát hiện ra, trong đó có 5 học sinh thực hiện trọn vẹn lời giải theo phát hiện này)
Trong những học sinh phát hiện ra sai lầm, đa số các em chỉ thực hiện đƣợc một cách giải (có lẽ là tƣơng tự một dạng mà các em đã biết trƣớc)
Gọi I là trung điểm của AB, ta có
MA . MB = ( MI + IA ) . ( MI + IB ) = ( MI + IA ) . ( MI -
IA (Vì I là trung điểm của ABIB = -
IA) = MI2 - IA2
MA .
IM2 = IA2
IM = IA (không đổi)
Vậy tập hợp điểm M là Đƣờng tròn tâm I , bán kính AI.
*)Những nhận xét rút ra từ bài làm của học sinh qua bài kiểm tra số 2
(đề kiểm tra ở phần phụ lục)
Bài1. Cho hình bình hành ABCD ,có AB = 8, AD =5 , góc A = 600 . a) Tính độ dài đƣờng chéo AC
b) Tính bán kính đƣờng tròn (BCD)
Nhận xét: Bài 1.a) là kiến thức cơ bản.Tuy nhiên vì là bài toán mới lạ hoàn
toàn nên HS dè dặt , không dám làm hoặc để làm sau. Số HS tham gia giải câu này là 35/50 , trong đố chỉ có 24 HS giải đúng.
Bài 1.b) là kiến thức cơ bản. Tất cả HS đều tham gia giải câu này (có 3 HS giả sai), nhƣng các bài làm thƣờng dài ,máy móc theo bài toán giải tam giác mà các em đã đƣợc biết trong SGK.
Bài 2. Là bài lấy trong SGK Hình học 10 cơ bản, nhƣng đã cắt phần gợi ý ở câu a, chỉ hỏi câu b. Tuy nhiên , chỉ có 13HS tham gia giải bài này và có 7 HS giải đúng.
Bảng2.5.Kết quả bài kiểm tra số2.
Điểm 0 1 2 3 4 5 6 7 8 9 10 Tổng
Số bài 0 0 3 5 12 10 9 7 2 2 50
Biểu đồ 1.2. Kết quả bài kiểm tra số 2
0 2 4 6 8 10 12 2 3 4 5 6 7 8 9
2.1.4.3. Một vài nhận xét về tiết dạy thứ nhất
Nhận thấy trong bài tỉ số lƣợng giác của một góc bất kì, giáo viên có thể thiết kế pha dạy học giải quyết vấn đề .Sau khi xem PPCT và đƣợc phép của một cô giáo đã công tác lâu năm trong nghề dạy học , chúng tôi đã vào dự tiết dạy này.(biên bản tiết dạy ở phần phụ lục)
Hoạt động 1 (Kiểm tra bài cũ và giới thiệu định lý) Vào đầu giờ , thầy giáo kiểm tra sĩ số và kiểm tra bài cũ.
GV: Cho tam giác ABC vuông tại A. Hãy xác định các tỉ số sinB, cosB, tanB và cotB.
Gọi một học sinh có tên trong sổ điẻm cá nhân lên bảng HS : Lên bảng vẽ hình và viết các công thức .
Ta có sinB = AC BC , cosB = BA BC , tanB = AC AB và cotB = AB AC . GV :- Đúng rồi , cho 9 điểm vào số.
- Ghi đề mục lên bảng Chƣơng2. TÍCH VÔ HƢỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG
$1GIÁ TRỊ LƢỢNG GIÁC CỦA MỘT GÓC BẤT KỲ (Từ 00 đến 1800) 1.Định nghĩa .
-Đọc cho học sinh ghi định nghĩa nguyờn văn trong SGK (Hỡnh học10