Kết quả xác định các allele đặc trưng nhận dạng các giống lúa trong tập đoàn

Một phần của tài liệu đánh giá đa dạng di truyền tập đoàn lúa có khả năng chịu hạn của việt nam bằng chỉ thị SSR (Trang 60 - 86)

4. Đối tượng và phạm vi nghiên cứu

3.4.2. Kết quả xác định các allele đặc trưng nhận dạng các giống lúa trong tập đoàn

đoàn nghiên cứu

Kết quả thu được từ bộ tiêu bản điện di sản phẩm PCR của 23 cặp mồi SSR với tập đoàn 40 giống lúa nghiên cứu đã thu được tổng số 82 loại allele, trong đó xuất hiện 4 giống có kiểu gen dị hợp tử duy nhất (giống Lúa muối - H15 ở cặp mồi RM1155; giống Blech cấu - H23 ở cặp mồi RM3476; giống Chạo lựu - H36 ở cặp mồi RM3468 và giống Blào sinh sái - H32 ở cặp mồi RM6051).

3.4.2.1. Kết quả nhận dạng giốngLúa muối

Hình 3.14. Ảnh điện di sản phẩm PCR của các giống lúa nghiên cứu với cặp mồi RM1155 (M: øX17 - Hea III digest DNA Ladder)

Kết quả điện di sản phẩm PCR của 40 mẫu lúa nghiên cứu với cặp mồi RM1155 (hình 3.14) cho thấy: xuất hiện 5 loại allele khác nhau với kích thước trong khoảng 120bp - 190bp. Trong đó, duy nhất mẫu số 15 (giống Lúa muối - H15) xuất hiện 2 allele (ở trạng thái dị hợp). Các giống còn lại ch xuất hiện 1 allele duy nhất (ở trạng thái đồng hợp). Như vậy, khi sử dụng cặp mồi RM1155 có thể nhận dạng được chính xác giống Lúa muối trong tập đoàn 40 giống lúa nghiên cứu.

3.4.2.2. Kết quả nhận dạng giốngBlech cấu

Hình 3.15. Ảnh điện di sản phẩm PCR của các giống lúa nghiên cứu với cặp mồi RM3476 (M: øX17 - Hea III digest DNA Ladder)

Kết quả điện di sản phẩm PCR của 40 mẫu lúa nghiên cứu với cặp mồi RM3476 (hình 3.15) cho thấy: xuất hiện 4 loại allele khác nhau với kích thước trong khoảng 118bp - 190bp. Trong đó, duy nhất mẫu số 23 (giống Blech cấu - H23) xuất hiện 2 allele (ở trạng thái dị hợp). Các giống còn lại ch xuất hiện 1 allele duy nhất (ở trạng thái đồng hợp). Như vậy, khi sử dụng cặp mồi RM3476 có thể nhận dạng được chính xác giống Blech cấu trong tập đoàn 40 giống lúa nghiên cứu.

3.4.2.3. Kết quả nhận dạng giốngChạo lựu

Hình 3.16. Ảnh điện di sản phẩm PCR của các giống lúa nghiên cứu với cặp mồi RM3468 (M: øX17 - Hea III digest DNA Ladder)

Kết quả điện di sản phẩm PCR của 40 mẫu lúa nghiên cứu với cặp mồi RM3468 (hình 3.16) cho thấy: xuất hiện 5 loại allele khác nhau với kích thước trong khoảng 180bp - 234bp. Trong đó, duy nhất mẫu số 36 (giống Chạo lựu - H36) xuất hiện 2 allele (ở trạng thái dị hợp). Các giống còn lại ch xuất hiện 1 allele duy nhất (ở trạng thái đồng hợp). Như vậy, khi sử dụng cặp mồi RM3468 có thể nhận dạng được chính xác giống Chạo lựu trong tập đoàn 40 giống lúa nghiên cứu.

3.4.2.4. Kết quả nhận dạng giốngBlào sinh sái

Hình 3.17. Ảnh điện di sản phẩm PCR của các giống lúa nghiên cứu với cặp mồi RM6051 (M: øX17 - Hea III digest DNA Ladder)

Kết quả điện di sản phẩm PCR của 40 mẫu lúa chịu hạn với cặp mồi RM6501 (hình 3.17) cho thấy: xuất hiện 3 loại allele khác nhau có kích thước các allele trong khoảng 118bp - 156bp. Trong đó, duy nhất giống Blào sinh sái (H32) xuất hiện 2 allele (ở trạng thái dị hợp). Các giống còn lại ch xuất hiện 1 allele duy nhất (ở trạng thái đồng hợp). Như vậy, khi sử dụng cặp mồi RM6051 có thể nhận dạng được chính xác giống Blào sinh sái trong tập đoàn 40 giống lúa nghiên cứu.

KẾT LUẬN VÀ ĐỀ NGHỊ 1. Kết luận

1.Tập đoàn giống lúa chịu hạn bản địa của Việt Nam khá đa dạng về các thành phần allele. Kết quả phân tích 23 ch thị phân tử SSR với 39 giống lúa chịu hạn và giống IR64 thu được tổng số 82 loại allele trung bình 3,57 allele/locus. Hệ số PIC dao động từ 0,22 đến 0,77 (trung bình 0,56).

2.Các giống chịu hạn có độ thuần di truyền khác nhau, tỷ lệ dị hợp của các giống lúa nghiên cứu dao động từ 0 đến 14,29% (trung bình là 3,45%). Mức độ đa dạng di truyền giữa các giống lúa chịu hạn rất cao. Hệ số tương đồng di truyền giữa các giống lúa dao động từ 0,02 đến 0,91. Dựa vào khoảng cách di truyền, 40 giống nghiên cứu được phân thành 4 nhóm cách biệt di truyền.

3. Trong số 23 cặp mồi SSR nghiên cứu có 2 cặp mồi xác định được 2 allele hiếm (trung bình 0,087). Cặp mồi RM3467 xác định được 1 allele hiếm nhận dạng được giống Nếp bồ hóng Hải Dương (H1). Cặp mồi RM5811 xác định được 1 allele hiếm nhận dạng được giống Ba chơ K'tê (H16). Dựa vào các allele đặc trưng có thể nhận dạng chính xác một số giống trong tập đoàn: cặp mồi RM1155 nhận dạng được giống giống Lúa muối (H15); cặp mồi RM3476 nhận dạng được giống giống Blech cấu (H23); cặp mồi RM3468 nhận dạng được giống giống Chạo lựu (H23) và cặp mồi RM6501 nhận dạng được giống Blào sinh sái (H32). Các kết quả thu được rất hữu ích trong việc nhận dạng chính xác các nguồn gen phục vụ cho công tác bảo tồn, khai thác và sử dụng có hiệu quả trong các chương trình chọn tạo giống lúa chịu hạn của Việt Nam.

2. Đề nghị

Tiếp tục nghiên cứu và đánh giá đa dạng di truyền của tập đoàn lúa chịu hạn ở mức hình thái nông sinh học kết hợp với đánh giá bằng ch thị SSR nhằm xác định các marker liên kết với tính trạng chống chịu khô hạn để phục vụ cho công tác chọn tạo giống lúa chịu hạn.

Tiếp tục nghiên xác định các allele đặc trưng, allele hiếm để nhận dạng chính xác các nguồn gen ưu tú phục vụ nghiên cứu lai tạo giống và định hướng cho công tác thu thập bảo tồn đa dạng nguồn gen lúa chịu hạn ở mức phân tử.

TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt

1. Lê Trần Bình, Lê Thị Muội, (1998), Phân lập gen và chọn dòng chống chịu ngoại cảnh bất lợi ở lúa, NXB Đại học quốc gia HN.

2. Bùi Chí Bửu, Nguyễn Thị Lang (2003), Cơ sở di truyền tính chống chịu đối với thiệt hại do môi trường của cây lúa, Nxb Nông Nghiệp TP Hồ chí Minh, tr. 65- 223.

3. Nguyễn Hữu Cường, Nguyễn Thị Kim Anh, Đinh Thị Phòng, Lê Thị Muội, Lê Trần Bình (2003), Mối tương quan giữa làm lượng proline và tính chống chịu hạn ở cây lúa,Tạp chí Công nghệ sinh học 1(1), tr. 85-95.

4. Phạm Văn Cường (2009), Các đặc tính quang hợp và rễ liên quan đến khả năng chịu hạn ở cây lúa, Đại học Nông nghiệp Hà Nội.

5. Nguyễn Ngọc Đệ (2008), Giáo trình cây lúa, Trường Đại học Cần Thơ.

6. Vũ Tuyên Hoàng, Nguyễn Ngọc Ngân (1992), "Một số kết quả nghiên cứu lúa chịu hạn", Kết quả nghiên cứu cây lương thực, thực phẩm (86-90), Viện Cây lương thực và Cây thực phẩm, Nxb Nông nghiệp, Hà Nội, tr. 47-57.

7. Nguyễn Thị Thu Hoài (2005), “Nghiên cứu khả năng chịu hạn và mối quan hệ di truyền của một số giống lúa cạn địa phương”, Luận văn Thạc sỹ sinh học, trường Đại học Sư phạm - Đại học Thái Nguyên.

8. Nguyễn Thế Hùng (2007), Bài giảng dành cho học viên cao học chuyên đề cây ngô, Đại học Nông nghiệp Hà Nội

9. Trần Thị Phương Liên, (1999), “Nghiên cứu đặc tính hóa sinh và sinh học phân tử của một số giống đậu tương có khả năng chịu nóng, chịu hạn ở Việt Nam”, Luận án Tiến sĩ Sinh học, Hà Nội, tr. 18-36.

10. Chu Hoàng Mậu, Nguyễn Thị Ngọc Lan, Nguyễn Vũ Thanh Thanh, Nguyễn Thị Vân Anh (2007), “Sự đa dạng về kiểu gen và kiểu hình chịu hạn của một số giống lúa cạn địa phương miền núi”, Những vấn đề nghiên cứu cơ bản trong khoa học sự sống, Nxb Khoa học và Kĩ thuật, tr. 759-762.

11. Nguyễn Hoàng Nghĩa (1999), Bảo tồn đa dạng sinh học, Nxb Nông Nghiệp, Hà Nội. 12. Đinh Thị Phòng (2001), Nghiên cứu khả năng chịu hạn và chọn dòng chịu hạn ở

lúa bằng kỹ thuật nuôi cấy mô thực vật, Luận án Tiến sĩ Sinh học, Viện Công nghệ Sinh học.

13. Trần Danh Sửu, Lưu Ngọc Trình, Bùi Bá Bổng (2006), “Nghiên cứu đa dạng di truyền lúa Tám bằng ch thị microsatellite”, Tạp chí Nông nghiệp và Phát triển Nông thôn (12), tr. 15-18.

14. Phạm Anh Tuấn, Nguyễn Lan Hoa, Nguyễn Thị Minh Nguyệt, Nguyễn Bá Ngọc, Nguyễn Thị Kim Dung, Nguyễn Thị Thanh Thuỷ (2008), Đánh giá đặc tính chịu hạn của một số giống lúa địa phương Việt Nam thông qua phương pháp kiểu hình và ứng dụng ch thị phân tử, Tạp chí Nông nghiệp và Phát Triển Nông Thôn, tr. 28-35.

15. Phạm Thị Bé Tư, Bùi Thị Dương Khuyều, Nguyễn Thị Lang, Celsa Quinio, Bùi Chí Bửu (2008), “Phân tích đa dạng di truyền của 90 giống lúa mùa địa phương lưu trữ trong ngân hàng gen Viện Lúa Đồng bằng sông Cửu Long”,

Tạp chí Nông nghiệp và Phát triển Nông thôn (4), tr. 12-18.

16. Vũ Văn Vụ (1996), Sinh lý học thực vật, Nxb Giáo Dục, 120 trang.

Tài liệu tiếng Anh

17. Adkind S. W., Kunanuvatchaidach R., Godwin I. D., (1995), “Somacional variation in rice% drought tolerant and other agronomic chacracters”, Australian journal of Botany 4 (2), pp. 201-209.

18. Alvarez A., Fuentes J. L., Puldón V., Gómez P. J., Mora L., Duque M. C., Gallego G. and Tohme J. M. (2007), Genetic diversity analysis of Cuban traditional rice (Oryza sativa L.) varieties based on microsatellite markers. Genetics and Molecular Biology, 30 (4), pp. 1109-1117.

19. Bake J., C. Steele, Dure L. I. (1988), Sequence and characterization of 6 LEA proteins and their genes from cotton, Plant Mol Biol 11, pp. 277-291.

20. Bohnert H. L., Jesen R. G. (1996), “Strategies of engineering water stress tolerance in plants”, Tibtech, 14, pp. 89-97.

21. Chakravarthi B. K., and Naravaneni R. (2006), SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa. L), African Journal of Biotechnology, 5 (9), pp. 684-688.

22. Chang T. T. (1985), "Crop history and genetic conservation. Rice, A case study. In: Iwova state", Journal of research vol. 59, pp. 4.

23. Cheng C. Y., Motohashi R., Tsuchimoto S., Fukuta Y., Ohtsubo H. (2003), "Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs", Mol. Biol. Evol. 20, pp. 67-75.

24. Chen T. H., Muranta N. (2002), “Ehancement of tolerance of a family of plant dehydrin protein”, Physiol plant, pp. 795-803.

25. F.A.O., AGL (2000), Extent and causes of salt-affected soils in participating countries. Global network on intergrated soil management for sustainable use of salt-affected soils, Land and plant nutrition management service.

26. Giarrocco L.E., Marassi M. A. and Salerno G. L. (2007), Assessment of the genetic diversity in Argentine rice cultivars with SSR Markers, Crop Science, 47 (2), pp. 853-860.

27. Goyal K., Walton L. J., Tunnacliffe A. 9 (2005), LEA proteins prevent protein aggrevation due to water stress, Biochem J. 388, pp.151-157.

28. Hoisington D., Jiang C., Khairallah M., Ribault J. M., Bohn M., Melchinger A., Willcox M., Gonzalez-de-Leon D. (1996), QTL for insect resistance and drought tolerance in tropical maize: prospects for markerassisted selection, Sym Soc Exp Biol 50, pp. 39-44.

29. Ingram J., Bartels D. (1996), The molecular basis of dehydration tolerance in plants, Annu Rev Plant Physiol Plant Mol Biol 47, pp. 377-403.

30. Jayamani P., Negraxo S., Martins M., Maçãs B. and Oliveira M. M. (2007), "Genetic Relatedness of Portuguese Rice Accessions from Diverse Origins as Assessed by Microsatellite Markers", Crop Sci 47, pp. 879-884

31. Kimura M. (1983), Rare variant alleles in the light of the neutral theory, Mol. Biol. Evol., 1, pp. 84-93.

32. Lilley J. M., Ludlow M. M., McCouch S. R., O’Toole J. C. (1996), Locating QTL for osmotic adjustment and dehydration tolerance in rice, J. Exp Bot 47, pp. 1427-1436. 33. Mahmoud M. S., Sawsan S. Y., Naglaa A. A., Hany S. A. and Ahmed M. E. S.

(2005), "Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP", African Journal of Biotechnology Vol. 4 (9), pp. 882-890.

34. McCouch S. R., Sunita J., Jain R. K (2005), "Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers", Theoretical and Applied Genetics, (Vol. 109) (No. 5), pp. 965-977.

35. McCouch S. R. et al. (2002), “Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.)”, DNA Res. 9, pp. 199 - 207.

36. Nagaraju J., Kathirvel M., Ramesh Kumar R., Siddiq E. A., and Hasnain S. E., (2002), Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers, PNAS, 99 (9), pp. 5836-5841.

37. Nguyen Thi Lang and Bui Chi Buu, (2008), Fine mapping for drought tolerance in Rice (Oryza sativa L.), Omonrice 16, pp. 9-15.

38. Obara-Okeyo P. and Kako S., (1998), Genetic diversity and identifi cation of Cymbidium cultivars as measured by random amplifi ed polymorphic DNA (RAPD) markers, Euphytica, 99, pp. 95-101.

39. Oka H. I. (1988), "Origin of cultivated rice", J. Sci. Societies press, Tokyo, pp. 129.

40. Olufowote J. O., Xu Y., Chen X., Park W. D., Beachell H. M., Dilday R. H., Goto M., and McCouch S. R. (1997), "Comparative evaluation of within- cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers", Genome 38, pp. 1170-1176.

41. Quarries S., V. Lazic -J., Ivanovic M., Pekic C., Heyl A., Landi P., Lebreton C., Steed A. (1997), “Molecular marker methods to dissect drought tolerance in maize”, In: Tsaftaris A, editor. Genetics, biotechnology and breeding of maize and sorghum, Cambridge (UK): The Royal Society of Chemistry, pp. 52-58. 42. Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., and Yamaguchi

S., K. (2006), “Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression”, Proc. Natl, Acad. Sci. USA, 103, pp. 18822-18827.

43. Shen L., Courtois B., McNally K., McCouch S. R., Li Z. (1999), “Developing nera-isogenic lines of IR64 introgressed with QTLs for deeper and thicker roots through marker-aided selection”, In: Genetic Improvement of Rice for Water- Limited Environments. (Eds.) O Ito, JC O’Toole, and B Hardy, IRRI, Philippines, pp. 275-289.

44. Smith J. S. C., Chin C. L., Shu H., Smith O. S., Wall S. J., Senior M. L., Michell S. C., Kresovick S., Ziegle J. (1997), "An evaluation of the utility of SSR loci as Molecular markers in maize (Zea Mays L.): Comparison with data from RFLP and pedigrees", Theor Appl Genet 100, pp. 697-712.

45. Soltis D. E., Soltis P. S. (2003), “The role of phylogenetics in comparative genomics”, Plant Physiol 132, pp. 1790-1800.

46. Sujatha K., Upadhyay R., Kaladhar K., Rani N. S. and Sarla N. (2004), "Genetic relationship among aromatic short grain and Basmati rice based on ISSR and SSR markers", Rice Genetic Newsletter, vol. 21.

47. Tateoka T. (1963), “Taxononic Studies of Oryza III. Key to the species and their enumeration”, Bot. Mag. Tokyo 76, pp. 165-173.

48. Thomashow M. F. (1999), “Plant Cold Acclimation: freezing tolerance genes and regulatory mechanisms”, Annu Rev Plant Physiol Plant Mol Biol 50, pp. 571-599. 49. Victoria C. L., Darshan S. B., Toshinori A., Edilberto D. R. (2007),

“Assessment of Genetic Diversity of Philippine Rice Cultivars Carring Good Quality trait using SSR marker”, Breeding Science (57), pp. 263-270.

50. Virk P. S., Fork B. V, Jakson M. T., New B. H. J. (1995), “Use of RADP for the study of diversity within plant Germplasm collection”, Heridity (74), pp. 170-179.

51. Wang H., Zhang H., Gao F., Li J., Li Z. (2007), “Comparision of gene expression between upland rice cultivars under water stress using cDNA microarray”, TAG 115, pp.1109-1126.

52. Wong S. C., Yiu P. H., Bong S. T. W., Lee H. H., Neoh P. N. P. and Rajan A., (2009), Analysis of Sarawak Bario Rice Diversity Using Microsatellite Markers, American Journal of Agricultural and Biological Sciences, 4 (4), pp. 298-304.

53. Xiao B., Huang Y., Tang N., Xiong L. (2007), Over-expression of a LEA gene in rice improves drought resistance under the field conditions”, TAG 115, pp. 35-46. 54. Xiong L., Schumaker K. S., Zhu J. K. (2002), Cell signaling during cold,

drought, and salt stress”, Plant Cell 14 (Suppl), pp. 165-183.

55. Xu Y., Henry B., Mc Couch S. R. (2004), “A marker approach to broading the genetic base of rice in the USA”, Crop Sci (44), pp. 1847-1959.

56. Xu D., Duan X., Wang B., Hong B., Ho T., Wu R. (1996), Expression of a late embyogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice”, Plant Physiol 110, pp. 249-257. 57. Yu S. B., Xu W. J., Vijayakumar C. H., Ali J., Fu B. Y., Xu J. L., Jiang Y. Z.,

Marghirang R., Domingo J., Aquino C., Virmani S.S., and Li Z. K., (2003), Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program, Theor. Appl. Genet, 108, pp. 131-140.

58. Zahida H. P., Malik A. R., Stephen R. P. and Salman A. M. (2009), “Determination of genetic variability of Asian rice (Oryza sativa L.) varieties using microsatellite markers”, African Journal of Biotechnology Vol. 8 (21), pp. 5641-5651.

59. Zhang J., Zheng H. G., Ali M. L., Triparthu J. N., Aarti A., Pathan M. S., Sarial A. K., Robin S., Thuy T. N., Babu R. C., Bay D. N., Sarkarung S., Blum A., Henry T. N. (1999), “Progress on the molecular mapping of osmotic adjustment and root traits in rice”, In: Genetic Improvement of Rice for Water-

Một phần của tài liệu đánh giá đa dạng di truyền tập đoàn lúa có khả năng chịu hạn của việt nam bằng chỉ thị SSR (Trang 60 - 86)

Tải bản đầy đủ (PDF)

(86 trang)