CHƯƠNG II BỨC XẠ TRONG KHÍ QUYỂN
2.2 Các dòng bức xạ trong khí quyển
2.2.1 Bức xạ mặt trời
1) Cấu tạo mặt trời
Mặt trời là một thiên thể nóng sáng được tạo nên bởi các chất khí và các nguyên tố hóa học. Bán kính của mặt trời khoảng 6,96.108 m, gấp 109,1 lần bán kính của trái đất.
Khối lượng của mặt trời khoảng 1,991.1030 kg, gấp 330.000 lần khối lượng trái đất. Tỷ khối mặt trời là 1.410 kg/m3. Mặt trời toả ra một năng lượng rất lớn, năng lượng này do phản ứng nhiệt hạt nhân trong mặt trời. Do đó, nhiệt độ ở các lớp ngoài của mặt trời lên tới 6.000oK và ở lớp sâu trong lòng nó nhiệt độ lên tới 20.000oK. ở nhiệt độ này, mọi chất cấu tạo nên mặt trời đều ở thể khí.
Bề mặt nhìn thấy được của mặt trời gọi là quang cầu. Quang cầu có độ sáng không đều, trên mặt quang cầu có những vùng sáng gọi là đuốc trời, vùng thẫm gọi là vết đen mặt trời. Vết đen mặt trời có bán kính chừng 1.000 km đến 2000 km, nhiệt độ trung bình khoảng 4.500oK. Những năm mặt trời có nhiều vết đen hoạt động người ta gọi là năm mặt trời hoạt động, năm có ít vết đen hoạt động gọi là năm mặt trời tĩnh.
Chu kỳ hoạt động của vết đen mặt trời là 11 năm. Sự hoạt động của vết đen mặt trời có liên quan đến các hiện tượng vật lý xảy ra trong khí quyển: những năm cực đại của vết đen mặt trời thường xảy ra bão từ, phát sinh cực quang, quá trình ion hóa bị đẩy mạnh... Do đó gây ra sự biến đổi các yếu tố khí tượng và các hiện tượng thủy văn trong khí quyển và trên bề mặt trái đất.
Phía trên quang cầu có khí quyển bao bọc được gọi là khí quyển mặt trời. Khí quyển mặt trời chia thành từng lớp được gọi là sắc cầu và nhật hoa.
Mặt trời là một nguồn năng lượng to lớn cung cấp cho trái đất và không gian vũ trụ. Năng lượng mặt trời chiếu tới bề mặt trái đất là động lực của mọi quá trình, mọi hiện tượng diễn ra trong khí quyển và trên trái đất. Ngày nay chúng ta đã và đang sử dụng năng lượng mặt trời để phục vụ cho cuộc sống của con người. Do đó, việc nghiên cứu bức xạ mặt trời vừa có ý nghĩa thực tiễn vừa có ý nghĩa khoa học đặc biệt.
2) Bức xạ mặt trời và quang phổ của nó a) Bức xạ mặt trời trước hết là bức xạ nhiệt
Mặt trời cũng được coi như là một vật khổng lồ được đốt nóng trong không gian vũ trụ. Người ta nói rằng: mặt trời phát ra bức xạ nhiệt. Bức xạ nhiệt mặt trời phát ra dưới dạng sóng điện từ. Nó bao gồm các tia sáng nhìn thấy được, các tia γ, Rơn ghen, các tia tím cực ngắn, các tia hồng ngoại và các tia tử ngoại. Bản thân chúng cũng là một dạng của vật chất.
Theo kết quả tính toán, trong 1 giây mặt trời phát ra không gian vũ trụ chừng 1026 calo nhiệt và chỉ có 1/2triệu năng lượng này đi tới trái đất. Như vậy, hàng năm trái đất và khí quyển nhận được của mặt trời chừng 1,3.1024 calo nhiệt. Với năng lượng này có thể làm tan một lớp băng dầy 35 m phủ kín trên bề mặt trái đất.
Bức xạ mặt trời chiếu xuống trái đất với tập hợp của nhiều tia bức xạ dưới dạng các tia song song có những bước sóng khác nhau. Khi phân tích quang phổ bức xạ mặt trời ta được một dải liên tục màu: đỏ, da cam, vàng, lục, lam, chàm, tím mà mỗi màu ứng với một khoảng độ dài sóng khác nhau. Nghiên cứu quang phổ bức xạ mặt trời, người ta đã đi đến kết luận rằng: quang phổ bức xạ mặt trời thuộc loại quang phổ hấp thụ. Dựa vào quang phổ bức xạ mặt trời, chúng ta có thể xác định được thành phần của khí quyển mặt trời và nồng độ của các chất trong đó.
Dựa vào quang phổ bức xạ mặt trời, chúng ta có thể xác định được bức xạ mặt trời có bước sóng từ 0,17 μ đến 4 μ. Trong đó:
- Năng lượng của các tia có bước sóng λ nhỏ hơn 0,4 μ (bức xạ tử ngoại) chiểm khoảng 7%. Các tia tử ngoại ảnh hưởng rất lớn đến khí quyển tầng cao của trái đất:
góp phần tạo thành và tiêu huỷ O3 ở độ cao 20 đến 50 km.
- Năng lượng của các tia có bước sóng λ từ 0,4 μ đến 0,75 μ (tia sáng nhìn thấy được) chiểm khoảng 50%.
- Năng lượng của các tia có bước sóng λ lớn hơn 0,75 μ (bức xạ hồng ngoại) chiểm khoảng hơn 40%.
Mặt trời phát ra chùm tia có vô vàn các bước sóng khác nhau nên còn gọi là bức xạ mặt trời phức hợp. Tia bức xạ mặt trời ứng với một bước sóng λ nào đó được gọi là bức xạ mặt trời đơn sắc.
Trong khoa học bức xạ, người ta chia bức xạ ra làm 2 loại: bức xạ sóng ngắn có bước sóng λ từ 0,1 μ đến 4 μ và bức xạ sóng dài có bước sóng λ lớn hơn 4 μ đến 100- 120 μ. Như vậy, bức xạ mặt trời thuộc bức xạ sóng ngắn, nó bao gồm: các tia sáng nhìn thấy được, bức xạ hồng ngoại và bức xạ tử ngoại. Bức xạ mặt trời đi đến bề mặt trái đất là bức xạ sóng ngắn.
b) Mặt trời còn phát ra bức xạ hạt
Bức xạ hạt mà mặt trời phát ra đó là dòng vật chất bao gồm các pờrôtông và electơrông mang điện có tốc độ chuyển động rất lớn từ khoảng 400 km/s đến 2.000 km/s.
Năng lượng của bức xạ hạt nhỏ hơn rất nhiều năng lượng của bức xạ điện từ (khoảng 1017 lần), song tác dụng của nó lại rất lớn. Nó trực tiếp ion hóa không khí của khí quyển trái đất ở các tầng cao và tạo thành tầng ion trong khí quyển. Tầng ion này ảnh hưởng rất lớn đến từ trường trái đất và có khi làm rối loạn và sinh ra bão từ, trực tiếp gây ra cực quang...
Thực chất của bức xạ hạt là một dạng phóng xạ nguyên tử có hại cho sự sống.
Song nó chỉ đi đến độ cao khoảng 90 km của khí quyển trái đất, bị khí quyển trái đất hấp thụ nên sự sống trên trái đất vẫn được duy trì.
3) Các đặc trưng định lượng của bức xạ mặt trời a) Cường độ bức xạ mặt trời
Cường độ bức xạ mặt trời là năng lượng bức xạ mặt trời đi qua 1 đơn vị diện tích (1 cm2) thẳng góc với tia bức xạ trong 1 đơn vị thời gian (1 phút). Ký hiệu là: I (cal/cm2phút). Với tia bức xạ mặt trời đơn sắc có bước sóng λ, ta có cường độ bức xạ mặt trời đơn sắc Iλ.
Cường độ bức xạ mặt trời tại biên giới trên của khí quyển được gọi là hằng số mặt trời, ký hiệu là I0. Gọi là “hằng số mặt trời” nhưng thực ra I0 cũng thay đổi. Nó phụ thuộc vào sự biển đổi của bản thân mặt trời (sự biến đổi của các vết đen, khoảng cách giữa trái đất và mặt trời) và phụ thuộc vào dụng cụ quan trắc và phương pháp tính toán nó.
Hằng số mặt trời I0 tương ứng với khoảng cách trung bình giữa trái đất và mặt trời R0 được gọi là hằng số mặt trời trung bình IO. Giữa I0 và IO có mối quan hệ sau:
I0 = IO
2
R Ro ⎟
⎠
⎜ ⎞
⎝
⎛
Hay: IO= I0
2
R Ro ⎟
⎠
⎜ ⎞
⎝
⎛ (2-1)
Hằng số mặt trời được sử dụng nhiều trong khí hậu học, do vậy hằng số mặt trời trong khí hậu phải hiểulà IO. Thông thường người ta lấy IO= 1,98 cal/cm2phút. Sử dụng IO ta có thể tính toán được tổng lượng bức xạ mặt trời đến trái đất:
E = 4πR2 . IO (2-2)
Với: 4πR2 là diện tích mặt cầu tại biên giới trên của khí quyển.
b) Độ cao mặt trời
Độ cao mặt trời tại một địa điểm trên trái đất là khoảng cách góc hợp bởi mặt phẳng chân trời với tia bức xạ mặt trời chiếu đến điểm đó. Ký hiệu là hO.
Cũng có thể sử dụng góc thiên đỉnh z để biểu thị vị trí của mặt trời (hình 2-5).
Giữa z và hO có quan hệ sau:
z + hO = 90o
z
hO
Hình 2-5
Xác định độ cao mặt trời trong công tác nghiệp vụ, người ta dùng công thức sau:
sin hO = sin ϕ sin δ + cos ϕ cos δ cos ω (2-3) Trong đó: ϕ: vĩ độ địa lý của điểm quan trắc;
δ: xích vĩ mặt trời (độ nghiêng mặt trời) vào ngày quan trắc;
ω: góc giờ mặt trời.
Công thức (2-3) cho phép ta tính được độ cao mặt trời khi biết ϕ, δ và ω.
c) Độ chiếu nắng
Năng lượng bức xạ mặt trời chiếu trực tiếp đến một đơn vị bề mặt trong một đơn vị thời gian được gọi là độ chiếu nắng tại bề mặt đó. Ký hiệu là I’. Góc hợp bởi tia sáng mặt trời với mặt nhận ánh sáng gọi là góc tới i.
Công thức tính độ chiếu nắng: Chia làm 2 trường hợp:
- Trường hợp mặt tiếp nhận ánh sáng là mặt phẳng nằm ngang:
Trên hình 2-6: Giả sử có một chùm tia sáng chiếu lên phần A1B của mặt phẳng nằm ngang có diện tích M1, thì mặt A1B sẽ nhận được một lượng bức xạ bằng lượng bức xạ của chùm tia sáng đó đi qua mặt phẳng AB vuông góc với tia sáng có diện tích M trong cùng một đơn vị thời gian.
Gọi I là cường độ bức xạ mặt trời và I’ là độ chiếu nắng thì:
I . M = I’ . M1
A
hO
A1 B Hình 2-6
Hay: I’ = I . M1
M = I . B A
AB
1
= I . sin hO
Vậy:
I’ = I . sin hO (2-4)
Công thức (2-4) để tính độ chiếu nắng trên bề mặt nằm ngang.
b) Trường hợp mặt tiếp nhận ánh sáng bất kỳ
Trên các bề mặt địa hình khác nhau thì độ chiếu nắng cũng khác nhau. Độ chiếu nắng của một mặt có hướng và độ dốc bất kỳ được xác định bằng công thức:
I’ = I [ sinhO cosβ + coshO sinβ cos(A − a) ] (2-4’) Trong đó:
I , hO và A: cường độ bức xạ, độ cao và phương vị mặt trời;
β: góc nghiêng của mặt nhận ánh sáng với mặt phẳng nằm ngang;
a: phương vị của mặt nhận ánh sáng, (a được xác định bởi mặt phẳng kinh tuyến và mặt phẳng thẳng đứng đi qua đường thẳng trực giao với mặt phẳng đã cho).
4) Sự suy yếu bức xạ mặt trời trong khí quyển a) Nguyên nhân suy yếu bức xạ mặt trời trong khí quyển
Sự suy yếu bức xạ mặt trời trong khí quyển bao gồm 2 nguyên nhân chính, đó là: sự giảm yếu do sự hấp thụ bức xạ mặt trời của khí quyển và sự giảm yếu do sự khuếch tán bức xạ mặt trời trong khí quyển.
- Sự hấp thụ bức xạ mặt trời của khí quyển:
Mỗi nhân tố trong khí quyển chỉ hấp thụ những tia bức xạ có những bước sóng λ nhất định, những nhân tố khác nhau thì hấp thụ những tia bức xạ có bước sóng λ khác nhau. Ta nói rằng: sự hấp thụ bức xạ mặt trời của các nhân tố có trong khí quyển mang tính chất chọn lọc. Ví dụ:
* Ôxy (O2): hấp thụ một số tia sáng nhìn thấy được có bước sóng λ = 0,75 μ và λ = 0,64 μ, hấp thụ các tia tử ngoại. Song bức xạ tử ngoại trong bức xạ mặt trời đến trái đất không lớn nên sự hấp thụ bức xạ tử ngoại của O2 không gây ra sự suy yếu bức xạ mặt trời.
* Ni tơ (N2): hấp thụ các tia tử ngoại, song bức xạ tử ngoại trong bức xạ mặt trời đến trái đất không lớn nên sự hấp thụ bức xạ tử ngoại của N2 không gây ra sự suy yếu bức xạ mặt trời.
* Ôzôn (O3): hấp thụ mạnh các tia tử ngoại - Đó là nguyên nhân của sự tăng nhiệt độ không khí ở tầng bình lưu. Sự hấp thụ này cũng không làm ảnh hưởng đáng kể đến sự suy yếu bức xạ mặt trời.
* Các bô nic (CO2): hấp thụ các tia hồng ngoại song lượng CO2 trong khí quyển ít nên sự hấp thụ này cũng không làm ảnh hưởng đáng kể đến sự suy yếu bức xạ mặt trời.
* Hơi nước và bụi hấp thụ rất mạnh bức xạ hồng ngoại ở khoảng bước sóng λ từ 0,5μ đến 3 μ. Sự hấp thụ này làm suy yếu một cách đáng kể năng lượng bức xạ mặt trời.
Ngoài ra, do hơi nước và bụi tập trung chủ yếu ở phía dưới của tầng đối lưu và hấp thụ bức xạ sóng dài của mặt đất; vì vậy chúng là nhân tố chủ yếu giữ năng lượng cho bề mặt trái đất.
Tóm lại: Quá trình hấp thụ bức xạ trong khí quyển (chủ yếu do hơi nước và bụi) làm cho bức xạ mặt trời khi đi đến bề mặt trái đất bị suy yếu đi (giảm đi tới 15%).
Phần năng lượng bức xạ giảm đi này, phần lớn biến thành các dạng năng lượng khác
như: nhiệt năng, hóa năng, cơ năng… nhưng chủ yếu là nhiệt năng để làm tăng nhiệt độ của khí quyển (tốc độ tăng nhiệt độ của khí quyển trong những giờ ban ngày chỉ chừng 0,1o) và một phần nữa là truyền vào không gian vũ trụ.
- Sự khuếch tán bức xạ mặt trời trong khí quyển:
Hiện tượng làm cho các tia bức xạ trong khí quyển đang truyền theo một phương nhất định nào đó phải đổi hướng đi, phân tán đi theo mọi hướng trong không gian khí quyển được gọi là sự khuếch tán bức xạ trong khí quyển. Như vậy, sự khuếch tán bức xạ trong khí quyển rõ ràng cũng làm giảm lượng bức xạ mặt trời trên đường đi đến bề mặt trái đất.
Khuếch tán bức xạ trong khí quyển xảy ra bằng 2 cách: khuếch tán do các phân tử khí gây ra gọi là khuếch tán phân tử và khuếch tán do keo khí quyển gây ra gọi là khuếch tán keo khí quyển.
+Khuếch tán phân tử: Khuếch tán phân tử xảy ra khi các tia bức xạ mặt trời đập vào các phân tử khí trong khí quyển. Mức độ khuếch tán phân tử biểu thị như sau:
iλ = a4
λ . Iλ (2-5)
Trong đó: iλ và Iλ: cường độ tia bức xạ mặt trời có bước sóng λ sau và trước khi bị khuếch tán phân tử;
a: hằng số, phụ thuộc vào số lượng phân tử trong 1 đơn vị thể tích không khí:
a =
N ) 1 n ( 3
8 π3 2 − 2
Với: N: số phân tử trong 1 đơn vị thể tích;
n: chiết suất của không khí.
Một mặt, các phân tử làm cho bức xạ mặt trời bị khuếch tán; mặt khác, bản thân chúng lại là nguồn phát xạ và bức xạ này lại bị khuếch tán khi gặp các phân tử khác... Do đó, hiện tượng khuếch tán bức xạ trong khí quyển là hiện tượng tái lập nhiều lần. Vì vậy, những lúc mặt trời sắp mọc hoặc đã lặn chúng ta vẫn được hưởng ánh sáng.
+Khuếch tán keo khí quyển: Khuếch tán keo khí quyển xảy ra khi các tia bức xạ mặt trời gặp các dạng keo khí quyển. Mức độ khuếch tán biểu thị như sau:
iλ = ε λ
β . Iλ (2-5’)
Trong đó: iλ và Iλ: cường độ tia bức xạ mặt trời có bước sóng λ sau và trước khi
bị khuếch tán keo khí quyển;
β: hằng số tỷ lệ, β tỷ lệ thuận với số lượng hạt keo khí quyển có trong 1
đơn vị thể tích không khí;
ε: hệ số đặc trưng cho kích thước keo khí quyển: 0 < ε < 4
ε = 4: khi kích thước của keo khí quyển bằng kích thước phân tử khí;
ε = 0: khi kích thước của keo khí quyển lớn hơn 10-3 cm và khi đó mức độ khuếch tán không phụ thuộc vào tia bức xạ nữa.
Cần nhắc lại rằng: hiện tượng khuếch tán bức xạ do keo khí quyển cũng là hiện tượng tái lập nhiều lần.
b) Định luật suy yếu bức xạ mặt trời trong khí quyển
- Định luật suy yếu bức xạ mặt trời trong khí quyển khô sạch:
Khí quyển khô sạch tức là khí quyển không có hơi nước, bụi và các tạp chất khác mà chỉ có các phân tử khí. Sau đây ta sẽ khảo sát quy luật suy yếu bức xạ mặt trời trong khí quyển khô sạch.
Để đơn giản, ta tách bức xạ mặt trời lấy một chùm tia đơn sắc có bước sóng λ. Giả sử rằng: tại biên giới trên của khí quyển (A) luồng bức xạ của chùm tia đó là Eoλ và khi đi đến mặt đất (B) luồng bức xạ của chùm tia đó là Eλ. Nếu ta tách ra một lớp khí quyển mỏng thì chùm tia bức xạ phải đi qua một đoạn đường rất nhỏ ds trong lớp khí quyển vừa tách ra (hình 2-7).
A
ds
B Hình 2-7
Giả sử rằng: lớp khí quyển mỏng đó làm cho chùm tia bức xạ suy yếu đi một lượng là dEλ. Nếu gọi αλ và ρ là hệ số giảm yếu bức xạ và mật độ không khí của lớp khí quyển vừa tách ra thì:
dEλ = − αλ . Eλ . ds (*)
Trong đó: Dấu (−) mang ý nghĩa dEλ là lượng giảm bức xạ;
αλ = kλ . ρ với: kλ là hệ số giảm yếu khối lượng.
Hay: dEλ = − kλ . ρ . Eλ . ds Hoặc:
λ λ
E
dE = − kλ . ρ . ds (**)
Công thức (**) bi ểu diễn sự suy yếu của tia bức xạ mặt trời đơn sắc khi đi qua quãng đường ds trong lớp khí quyển đã tách ra.
Tích phân công thức (**) theo cả đoạn đường từ A đến B ta nhận được sự suy yếu của tia bức xạ mặt trời đơn sắc khi đi qua suốt bề dày khí quyển.
Ta có: ∫λ
λ λ
λ
E
E0 E
dE = − ∫B λ ρ
A
ds . .
k
Hay: ln
λ λ
E0
E = −∫B λ ρ
A
ds . . k
Eλ = E0λ . ∫
ρ
−B λ
A
ds . .
e k (2-6)
Trong đó: Eλ và E0λ là luồng bức xạ mặt trời đơn sắc ở trên mặt đất và trên giới hạn trên
cùng của khí quyển;
∫B λ ρ
A
ds . .
k = θ gọi là khối lượng quang học của khí quyển.
Vậy: Khối lượng quang học khí quyển θ là đại lượng biểu thị mức độ giảm yếu bức xạ mặt trời trên đường đi đến mặt đất (chính xác là đi từ giới hạn trên cùng của khí quyển đến mặt đất).
Từ công thức (2-6) ta có nhận xét rằng: khối lượng quang học khí quyển θ phụ thuộc vào độ cao mặt trời hO vì khi hO thay đổi thì đoạn đường AB sẽ thay đổi, tức là:
θ = θ(hO). Sau đây, ta thiết lập mối quan hệ đó:
Chọn vị trí mặt trời ở thiên đỉnh (hO = 90o), lúc đó đoạn đường AB = H (độ cao khí quyển) và:
θ(90o) = H∫ λ ρ
0
ds . . k
Nếu xem khí quyển là đồng nhất, tức là ρ không thay đổi theo độ cao thì kλ (hệ số giảm yếu khối lượng) cũng không thay đổi theo độ cao. Khi đó:
θ(90o) = kλ . ρ . H
Với: θ(90o) = kλ.ρ.H được gọi là 1 đơn vị khối lượng quang học khí quyển.
Biểu diễn khối lượng quang học θ(hO) theo đơn vị khối lượng quang học θ(90o) thì θ(hO) sẽ có m đơn vị khối lượng quang học, tức là:
m(hO) =
) 90 (
) h (
o O
θ
θ (2-7)
Trong đó: m(hO) được gọi là khối lượng khí quyển tương đối hay gọi tắt là khối lượng khí quyển.
Như vậy, khối lượng khí quyển khác hoàn toàn khái niệm về khối lượng trong từ trường trái đất. Rõ ràng rằng khối lượng khí quyển là đại lượng không thứ nguyên, nó nói lên rằng quãng đường của tia bức xạ mặt trời theo phương nghiêng ở độ cao mặt trời đã cho gấp bao nhiêu lần theo phương thẳng đứng khi mặt trời ở thiên đỉnh. Ví dụ:
m = 2, có nghĩa là tia bức xạ mặt trời muốn đến mặt đất phải đi một đoạn đường gấp 2 lần đoạn đường mà tia bức xạ mặt trời phải đi khi mặt trời ở thiên đỉnh.
Thực ra, m còn phụ thuộc vào độ cong của mặt đất, hiện tượng khúc xạ ánh sáng của khí quyển và kết cấu khí quyển. Nên việc tìm biểu thức biểu thị m khá phức tạp.
Nếu giả định rằng mặt địa cầu và các tầng khí quyển nằm ngang, mật độ khí quyển là đồng nhất. Khi đó vấn đề xác định m trở nên khá đơn giản. Có thể xây dựng các công thức tính m như sau: