CHƯƠNG V TƯƠNG TÁC BIỂN – KHÍ QUYỂN
5.3 Gió và dòng chảy gió trong lớp biển – khí quyển
Trong phần này ta xét đến hiệu ứng của gió và một trong các hệ quả của sự tương tác biển - khí quyển là dòng chảy gió.
Quan hệ tương tác giữa đại dương và khí quyển hình thành các hoàn lưu khí quyển, hoàn lưu nước theo các quy mo khác nhau và có tác động trực tiếp tới quá trình phân phối trao đổi nhiệt, duy trì, phát triển chế độ khí hậu trên hành tinh mà chúng ta đang sống. Hệ quả của quá trình tương tác giữa biển - khí quyển là sóng và dòng chảy trong lớp ma sát hay là lớp hoạt động trong moi trường nước.
Sự hình thành gió trong lớp biên nói riêng hay ở lớp dưới của tầng đối lưu nói chung đã được nghiên cứu ở các phần trước. Ở đây chỉ tập trung nghiên cứu một số đặc điểm của gió ở lớp ma sát, lớp phân cách giữa hai môi trường không khí và nước.
Mặt khác khi xem xét đến dòng chảy gió, ta xem dòng chảy gió là một trong những hệ quả quan trọng của quan hệ tương tác trong hệ biển - khí quyển, ta sẽ tập trung kỹ hơn về phương pháp đánh giá, tính toán dòng chảy trong các điều kiện đơn giản.
5.3.1 Tác động gió trên bề mặt biển
Gió trên mặt biển ở đây được xem xét trên mặt đẳng áp 1000 mb và lớp ma sát mà ta đang nghiên cứu nằm trong sự tác động của hệ thống gió này. Quá trình trao đổi năng lượng thông qua phần động năng từ phía khí quyển chuyển cho đại dương và ngược lại năng lượng gián tiếp qua bốc hơi, các dòng nhiệt từ biển và đại dương chuyển lại cho khí quyển. Các hoàn lưu nước do gió hình thành nên là những ví dụ cho sự tác động của gió đối với lớp ma sát bề mặt biển.
Trường gió có thể tính trực tiếp từ trường áp qua công thức địa chuyển. Tốc độ gió phụ thuộc vào gradient khí áp, lực quay của trái đất, lực ly tâm và lực ma sát. Đối với các vùng vĩ độ thấp, tính toán gió theo công thức địa chuyển thường cho ra các kết quả không ổn định; tính toán gió theo các mô hình số trị cho các kết quả tốt hơn, đặc biệt đối với các loại hình khí áp ổn định trong gió mùa. Đối với các vùng ven bờ, các tính toán gió cần có sự bổ sung của các trạm đo gió ven bờ. Trong điều kiện có bão, ATNĐ để xác định gió người ta thường sử dụng phương pháp thực nghiệm.
Như vậy, khi tính toán gió trên bề mặt biển ta cần chú ý đến 2 loại số liệu: số liệu tính toán theo trường mặt rộng và số liệu quan trắc đo đạc tại các điểm cố định, đồng thời cần quan tâm đến các phương pháp xử lý số liệu, quy số liệu về cùng một hệ thống đơn vị, đọ cao...,
5.3.2 Các đặc trưng chế độ gió
- Tốc độ gió trung bình chỉ cho ta về cường độ gió, được tính theo công thức tính trung bình số học của tốc độ gió trong tập số liệu:
n
v
n
1 i
= ∑
v
- Tần suất gió theo 8 hoặc 16 hướng và tần suất lặng gió được tính theo công thức:
P% = 100
T Tj
(T là thời gian thống kê gió)
- Phân bố gió các cấp : Xác định bằng hàm phân bố tốc đọ gió. Hàm phân bố phù hợp nhất đối với số liệu gió là hàm Weibull :
+ Hàm mật độ : f(v) =
⎥⎥
⎦
⎤
⎢⎢
⎣
⎡
⎟⎟⎠
⎜⎜ ⎞
⎝
⎟⎟ ⎛
⎠
⎜⎜ ⎞
⎝
⎛ γ− γ
β β
β
γ v
- exp v 1
+ Hàm tích lũy xác suất: f(v) = 1 −
⎥⎥
⎦
⎤
⎢⎢
⎣
⎡
⎟⎟⎠
⎜⎜ ⎞
⎝
⎛ γ β - v exp
với : v ≥ 0 ; β > 0 ; γ > 0
Tham số β, γ được ước lượng bằng phương pháp xác suất cực đại
- Phân loại trường gió: Để phân loại trường gió phải căn cứ vào các tham số thống kê của trường áp trên mặt biển. Các loại trường áp điển hình được phân loại theo các tiêu chuẩn định trước. Phân loại trường áp có thể thực hiện bằng các phương pháp khác nhau như: phương pháp lý thuyết nhận dạng theo mẫu và phương pháp phân loại tự nhiên theo các dấu hiệu di chuyển của các khối không khí chi phối ở vùng biển đó.
Khi xem xét đánh giá trường gió ta cần chú ý tới trường gió trung bình đặc trưng và phân bố tốc độ gió cực đại.
- Tác động trường gió trên biển: Gió đóng vai trò quyết định đối với các quá trình lan truyền ô nhiễm trên biển, gió là nguồn năng lượng chính cho các quá trình
động lực khác ở lớp ma sát bờ mặt biển như dòng chảy và sóng. Trong phạm vi nghiên cứu ta chỉ xem xét đến quá trình hình thành và phát triển của dòng chảy gió
5.3.3 Lý thuyết Ecman về dòng chảy gió
- Trong trường hợp đơn giản xác định dòng chảy gió với các điều kiện: gió ổn định cả về hướng, tốc độ và tác động trong khoảng thời gian xác định tại vùng biển đó.
Lực ma sát mặt thông qua các ứng suất gió là lực duy nhất gây nên dòng chảy gió.
Ecman đã sử dụng phương trình Navie – Stoc làm hệ phương trình xuất phát. Hệ toạ đọ được chọn sao cho mặt phẳng xoy trùng với mặt biển, trục oz có hướng thẳng đứng xuống dưới.
Hệ phương trình chuyển động tính toán dòng chảy gió cho các vùng biển sâu vô hạn có dạng như sau:
y P 1 v f z - K v v
∂
= ∂
∂
∂
∂
∂
z ρ
x P 1 v f z K u v
∂
= ∂
∂ +
∂
∂
∂
ρ
z
Hệ hai phương trình trên có nghiệm u và v được xác định bằng biểu thức:
u = uo exp ⎟
⎠
⎜ ⎞
⎝⎛−
f D π z
cos ⎟
⎠
⎜ ⎞
⎝
⎛
f D - z 45o π
u = uo exp ⎟
⎠
⎜ ⎞
⎝⎛−
f D π z
sin ⎟
⎠
⎜ ⎞
⎝
⎛
f D - z 45o π
Trong đó: uo =
ϕ ρ
τ sin K 2 vΩ
n
Df =
ϕ π
sin Kv
2
Ω
Với: hệ số nhớt theo phương thẳng đứng;
ρn: mật độ nước biển;
Ω: tốc độ góc quay của trái đất ; φ : vĩ độ địa lý.
Bằng thực nghiệm qua số liệu quan trắc, Ecman đã cho thấy dòng chảy gió bề mặt về phía tay phải hướng gió một góc là 45o (ở Bắc bán cầu) và về phía tay trái hướng gió một góc là 45o (ở Nam bán cầu). Dòng chảy càng xuống sâu càng lệch nhiều về phía phải và tốc độ giảm dần. Nếu vẽ lên các hình chiếu của các véc tơ dòng chảy theo độ sâu, ta nhận thấy chúng giảm dần theo quy luật loga của hình xoáy trôn ốc - người ta gọi đó là đường xoáy Ecman.
D
Huíng giã
Hình 5.1: Biến thiên dòng chảy trôi theo độ sâu
Tại độ sâu z = Df, dòng chảy có tốc độ là uo.e-π với hướng ngược với hướng dòng chảy tầng mặt. Giá trị uo.e-π là rất nhỏ. Df còn gọi là độ sâu ma sát biển. Giá trị Df và uo sẽ tăng dần khi vĩ độ giảm dần.
Với: Kv ≈ 10-3 kg.m-1.s-1 (xấp xỉ hệ số nhớt phân tử); ρn ≈ 103 kg.m3 ;
Ω = 7,29.10-5độ.s-1; τ = ρa.ξ.u2 (ρa ≈1,2 kg.m-3; ξ ≈ 2.10-3) và Df ≈ 0,5 m:
4
u2
uo= (tại vùng vĩ độ trung bình).
Đương nhiên lá có sự sai số giữa tính toán và số liệu đo đạc vì quá trình rối trong lớp tiếp giáp giữa hai môi trường rất lớn.
- Trong hệ thống dòng chảy gió cần chú ý hai hiện tượng khác là: vùng nước trồi và nước dâng do gió, bão. Hai hiện tượng này xem như là hệ quả tác động của gió.
Đây là hai hiện tượng khá đặc sắc của quá trình phát triển động lực vùng ven bờ và thềm lục địa.
Nước trồi vùng ven bờ là hiện tượng khá phổ biến do hệ quả của quá trình phát triển dòng chảy gió. Tại các vùng nước xa bờ, quá trình phát triển dòng chảy gió theo cách giải thích của Ecman các dòng chảy có xu thế lệch khỏi hướng gió về bên phải ở Bắc bán cầu, ở Nam bán cầu có xu thế lệch về bên trái hướng gió. Quá trình này hình thành ra các dòng dọc ven bờ tạo ra sự rút nước từ vùng bờ, trong khi đó nước ở tầng sâu được kéo lên thông thường với tốc độ thẳng đứng có bậc vào khoảng 10-4cm/s. Đây là hiện tượng nước trồi với các khối nước lạnh nhiều dinh dưỡng và có tác động mạnh trở lại với các điều kiện khí quyển ở trên đó.
Trong điều kiện có gió mạnh, gió bão thường gây ra nước dâng lớn tại các vùng ven bờ. Khi trên biển xuất hiện xoáy thuận thì áp suất khí quyển giảm dần đến hiện tượng mực nước nâng cao. Khi khí áp tăng lên trường hợp xoáy thuận đi qua vùng biển sẽ làm cho mực nước giảm xuống. Như vậy khi xuất hiện xoáy thuận thì mực nước biển bên phải, bên trái đường đi của xoáy thuận sẽ có hiện tượng dâng và rút mực nước. Trong trường hợp khí áp biến đổi không lớn thì qúa trình dâng và rút mực nước chủ yếu do gió. Quá trình dâng và rút này phụ thuộc vào hai thành phần ứng suất tiếp tuyến gió và khí áp.
Có các chuyên mục riêng biệt nghiên cứu kỹ về hai hiện tượng này.