CÁC CHỈ SỐ KIỂM ĐỊNH

Một phần của tài liệu Định vị thương hiệu agribank tại lâm đồng (Trang 73 - 100)

Phụ lục 3.1: Đối với khách hàng cá nhân

Proximities

Case Processing Summary(a)

Cases

Valid Missing Total

N Percent N Percent N Percent

8 100.0% 0 .0% 8 100.0%

a Euclidean Distance used

Alscal

Iteration history for the 2 dimensional solution (in squared distances) Young's S-stress formula 1 is used.

Iteration S-stress Improvement

1 .05902

2 .05326 .00577 3 .05319 .00007

Iterations stopped because

S-stress improvement is less than .001000

Stress and squared correlation (RSQ) in distances

RSQ values are the proportion of variance of the scaled data (disparities)

in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances.

Stress values are Kruskal's stress formula 1.

For matrix

Stress = .08380 RSQ = .96429

Configuration derived in 2 dimensions

Stimulus Coordinates Dimension

Stimulus Stimulus 1 2 Number Name

1 ATT1 .6465 -.6286 2 ATT2 -1.1893 .2474 3 ATT3 .2660 -.5056 4 ATT4 -.3807 .0708 5 ATT5 -1.8858 .2032 6 ATT6 2.1380 -.4717 7 ATT7 -.9289 -.3557 8 ATT8 1.3342 1.4402

Derived Stimulus Configuration Euclidean distance model

Dimension 1

3 2

1 0

-1 -2

Dimension 2

1.5

1.0

.5

0.0

-.5

-1.0

khuyen mai

co so vat chat

bien phap thu hut kh uy tin

nhan vien ngan hang

chi phi dich vu an toan

chat luong dich vu

Scatterplot of Linear Fit Euclidean distance model

Disparities

5 4

3 2

1 0

Distances

5

4

3

2

1

0

Proximities

Case Processing Summary(a)

Cases

Valid Missing Total

N Percent N Percent N Percent

8 100.0% 0 .0% 8 100.0%

a Euclidean Distance used

Alscal

Iteration history for the 2 dimensional solution (in squared distances) Young's S-stress formula 1 is used.

Iteration S-stress Improvement

1 .08781

2 .08002 .00779 3 .07945 .00056 Iterations stopped because

S-stress improvement is less than .001000

Stress and squared correlation (RSQ) in distances

RSQ values are the proportion of variance of the scaled data (disparities)

in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances.

Stress values are Kruskal's stress formula 1.

For matrix

Stress = .06713 RSQ = .96057

Configuration derived in 2 dimensions

Stimulus Coordinates Dimension

Stimulus Stimulus 1 2 Number Name

1 VAR1 1.4945 .9679 2 VAR2 .0312 .9209 3 VAR3 -.9751 1.2515 4 VAR4 .3192 -.5553 5 VAR5 .5779 -1.3239 6 VAR6 -1.2039 .4087 7 VAR7 1.2338 -.4809 8 VAR8 -1.4775 -1.1889

Derived Stimulus Configuration Euclidean distance model

Dimension 1

2.0 1.5

1.0 .5

0.0 -.5

-1.0 -1.5

-2.0

Dimension 2

1.5

1.0

.5

0.0

-.5

-1.0 -1.5

case 8

case 7 case 6

case 5 case 4 case 3

case 2 case 1

Scatterplot of Linear Fit Euclidean distance model

Disparities

4.0 3.5

3.0 2.5

2.0 1.5

1.0 .5

Distances

4.0 3.5 3.0 2.5 2.0 1.5 1.0 .5

Phụ lục 3.2: Đối với khách hàng tổ chức

Proximities

Case Processing Summary(a)

Cases

Valid Missing Total

N Percent N Percent N Percent

8 100.0% 0 .0% 8 100.0%

a Euclidean Distance used

Alscal

Iteration history for the 2 dimensional solution (in squared distances) Young's S-stress formula 1 is used.

Iteration S-stress Improvement

1 .09301

2 .08884 .00416 3 .08872 .00013

Iterations stopped because

S-stress improvement is less than .001000

Stress and squared correlation (RSQ) in distances

RSQ values are the proportion of variance of the scaled data (disparities)

in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances.

Stress values are Kruskal's stress formula 1.

For matrix

Stress = .10159 RSQ = .93731

Configuration derived in 2 dimensions Stimulus Coordinates

Dimension

Stimulus Stimulus 1 2 Number Name

1 ATT1 .4667 1.0286 2 ATT2 -1.4428 -.1814 3 ATT3 .4824 .7450 4 ATT4 -.2717 .1676 5 ATT5 -1.7935 .1004 6 ATT6 1.8219 .2822 7 ATT7 -.6897 -.6916 8 ATT8 1.4267 -1.4507

Derived Stimulus Configuration Euclidean distance model

Dimension 1

2 1

0 -1

-2

Dimension 2

1.5

1.0

.5

0.0

-.5

-1.0

-1.5 khuyen mai

co so vat chat

bien phap thu hut kh

uy tin nhan vien ngan hang

chi phi dich vu

an toan

chat luong dich vu

Scatterplot of Linear Fit Euclidean distance model

Disparities

4.0 3.5

3.0 2.5

2.0 1.5

1.0 .5

0.0

Distances

4.0 3.5 3.0 2.5 2.0 1.5 1.0 .5 0.0

Proximities

Case Processing Summary(a)

Cases

Valid Missing Total

N Percent N Percent N Percent

8 100.0% 0 .0% 8 100.0%

a Euclidean Distance used

Alscal

Iteration history for the 2 dimensional solution (in squared distances) Young's S-stress formula 1 is used.

Iteration S-stress Improvement

1 .17575

2 .15705 .01870 3 .15612 .00093

Iterations stopped because

S-stress improvement is less than .001000

Stress and squared correlation (RSQ) in distances

RSQ values are the proportion of variance of the scaled data (disparities)

in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances.

Stress values are Kruskal's stress formula 1.

For matrix

Stress = .13204 RSQ = .88117 _

Configuration derived in 2 dimensions

Stimulus Coordinates Dimension

Stimulus Stimulus 1 2 Number Name

1 VAR1 .3385 -1.0964 2 VAR2 1.0581 -.1629 3 VAR3 -1.8159 -.7880 4 VAR4 -.1961 .1935 5 VAR5 2.0384 .0229 6 VAR6 .7190 .4684 7 VAR7 -1.5917 .0154 8 VAR8 -.5503 1.3470

Derived Stimulus Configuration Euclidean distance model

Dimension 1

3 2

1 0

-1 -2

Dimension 2

1.5

1.0

.5

0.0

-.5

-1.0 -1.5

case 8

case 7

case 6

case 5 case 4

case 3

case 2

case 1

Scatterplot of Linear Fit Euclidean distance model

Disparities

4.0 3.5

3.0 2.5

2.0 1.5

1.0 .5

Distances

4.0 3.5 3.0 2.5 2.0 1.5 1.0 .5

Phụ lục 3.3: Đối với cả 2 nhóm đối tượng khách hàng Proximities

Case Processing Summary(a)

Cases

Valid Missing Total

N Percent N Percent N Percent

8 100.0% 0 .0% 8 100.0%

a Euclidean Distance used

Alscal

Iteration history for the 2 dimensional solution (in squared distances) Young's S-stress formula 1 is used.

Iteration S-stress Improvement

1 .07106

2 .06450 .00655 3 .06438 .00013

Iterations stopped because

S-stress improvement is less than .001000

Stress and squared correlation (RSQ) in distances

RSQ values are the proportion of variance of the scaled data (disparities)

in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances.

Stress values are Kruskal's stress formula 1.

For matrix

Stress = .08479 RSQ = .96204 _

Configuration derived in 2 dimensions

Stimulus Coordinates Dimension

Stimulus Stimulus 1 2 Number Name

1 ATT1 1.5638 1.2850 2 ATT2 -1.9657 .2445

3 ATT3 .7445 -.7756 4 ATT4 1.8977 -.2994 5 ATT5 .2541 -.7214 6 ATT6 -.3983 .1079 7 ATT7 -1.2364 .2997 8 ATT8 -.8597 -.1408

Derived Stimulus Configuration Euclidean distance model

Dimension 1

2 1

0 -1

-2 -3

Dimension 2

1.5

1.0

.5

0.0

-.5

-1.0

att8 att7

att6

att5

att4

att3 att2

att1

Scatterplot of Linear Fit Euclidean distance model

Disparities

4 3

2 1

0

Distances

4.0 3.5 3.0 2.5 2.0 1.5 1.0 .5 0.0

Proximities

Case Processing Summary(a)

Cases

Valid Missing Total

N Percent N Percent N Percent

8 100.0% 0 .0% 8 100.0%

a Euclidean Distance used

Alscal

_

Iteration history for the 2 dimensional solution (in squared distances) Young's S-stress formula 1 is used.

Iteration S-stress Improvement

1 .09648

2 .08704 .00944 3 .08654 .00050 Iterations stopped because

S-stress improvement is less than .001000

Stress and squared correlation (RSQ) in distances

RSQ values are the proportion of variance of the scaled data (disparities)

in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances.

Stress values are Kruskal's stress formula 1.

For matrix

Stress = .07915 RSQ = .94933 _

Configuration derived in 2 dimensions

Stimulus Coordinates Dimension

Stimulus Stimulus 1 2 Number Name

1 VAR1 -.6160 -1.3116 2 VAR2 .7650 -.6200 3 VAR3 1.5640 -.7242 4 VAR4 -.4814 .3254 5 VAR5 -1.5896 .7598 6 VAR6 .7842 .2508 7 VAR7 -1.3784 -.3800 8 VAR8 .9523 1.6998

Derived Stimulus Configuration Euclidean distance model

Dimension 1

2.0 1.5

1.0 .5

0.0 -.5

-1.0 -1.5

-2.0

Dimension 2

2.0 1.5 1.0 .5 0.0 -.5 -1.0 -1.5

case 8

case 7

case 6 case 5

case 4

case 3 case 2

case 1

Scatterplot of Linear Fit Euclidean distance model

Disparities

4.0 3.5

3.0 2.5

2.0 1.5

1.0 .5

Distances

4.0 3.5 3.0 2.5 2.0 1.5 1.0 .5

Ph lc 4:

PHÂN TÍCH ĐỘ TIN CẬY

Ph lc 4.1 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. CLDAURA1 4.3616 .6919 365.0 2. CLDAURA2 4.2438 .7287 365.0 3. CLDAURA3 4.4548 .6763 365.0

N of Statistics for Mean Variance Std Dev Variables

SCALE 13.0603 3.0513 1.7468 3

Item-total Statistics Scale Scale Corrected Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

CLDAURA1 8.6986 1.5573 .5879 .7305

CLDAURA2 8.8164 1.3536 .6880 .6167

CLDAURA3 8.6055 1.6077 .5750 .7438

Reliability Coefficients

N of Cases = 365.0 N of Items = 3

Alpha = .7787

Ph lc 4.2 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. CLQUTR13 4.1707 .6920 369.0 2. CLQUTR14 4.2602 .7537 369.0

N of Statistics for Mean Variance Std Dev Variables SCALE 8.4309 1.7731 1.3316 2

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

CLQUTR13 4.2602 .5680 .6961 . CLQUTR14 4.1707 .4789 .6961 .

Reliability Coefficients

N of Cases = 369.0 N of Items = 2 Alpha = .8191

Ph lc 4.3 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. CPDV18 4.1989 .7653 372.0 2. CPDV21 4.2231 .7568 372.0 3. CPDV22 4.1263 .8389 372.0

N of Statistics for Mean Variance Std Dev Variables

SCALE 12.5484 3.8548 1.9634 3

Item-total Statistics Scale Scale Corrected Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

CPDV18 8.3495 2.0447 .5595 .7515

CPDV21 8.3253 1.9182 .6506 .6557

CPDV22 8.4220 1.7540 .6288 .6792

Reliability Coefficients

N of Cases = 372.0 N of Items = 3

Alpha = .7754

Ph lc 4.4 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. CLQUTR8 4.0291 .7856 378.0 2. CLQUTR9 4.2804 .7325 378.0

N of Statistics for Mean Variance Std Dev Variables SCALE 8.3095 1.9596 1.3999 2

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

CLQUTR8 4.2804 .5365 .7002 . CLQUTR9 4.0291 .6172 .7002 .

Reliability Coefficients

N of Cases = 378.0 N of Items = 2 Alpha = .8225

Ph lc 4.5 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. UYTIN15 3.8595 .9409 370.0 2. UYTIN16 3.9703 .8967 370.0 3. UYTIN17 4.0432 .8855 370.0

N of Statistics for Mean Variance Std Dev Variables

SCALE 11.8730 6.0245 2.4545 3

Item-total Statistics Scale Scale Corrected Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

UYTIN15 8.0135 2.7830 .7505 .8588

UYTIN16 7.9027 2.7331 .8390 .7784

UYTIN17 7.8297 2.9818 .7386 .8669

Reliability Coefficients

N of Cases = 370.0 N of Items = 3

Alpha = .8842

Ph lc 4.6 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. CHDOI24 3.6480 .7936 375.0 2. CHDOI26 3.9147 .8294 375.0 3. CHDOI27 3.6507 .8131 375.0 4. CHDOI28 3.8293 .8029 375.0

N of Statistics for Mean Variance Std Dev Variables

SCALE 15.0427 5.9714 2.4437 4

Item-total Statistics Scale Scale Corrected Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

CHDOI24 11.3947 4.0684 .3977 .7650

CHDOI26 11.1280 3.7536 .4761 .7266

CHDOI27 11.3920 3.3887 .6420 .6314

CHDOI28 11.2133 3.3554 .6702 .6154

Reliability Coefficients

N of Cases = 375.0 N of Items = 4

Alpha = .7476

Ph lc 4.7 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. CLQUTR10 3.8684 .8177 380.0 2. CLQUTR11 3.6658 .7967 380.0

N of Statistics for Mean Variance Std Dev Variables SCALE 7.5342 2.1439 1.4642 2

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

CLQUTR10 3.6658 .6347 .6451 . CLQUTR11 3.8684 .6687 .6451 .

Reliability Coefficients

N of Cases = 380.0 N of Items = 2 Alpha = .7841

Ph lc 4.8 Reliability

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H A) Mean Std Dev Cases

1. KHMAI29 3.5737 .8970 380.0 2. KHMAI30 3.5711 .8612 380.0 3. KHMAI31 3.6947 .9340 380.0 4. KHMAI32 3.8500 .8992 380.0

N of Statistics for Mean Variance Std Dev Variables

SCALE 14.6895 9.7714 3.1259 4

Item-total Statistics Scale Scale Corrected Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted

KHMAI29 11.1158 5.6858 .7670 .8609

KHMAI30 11.1184 5.6350 .8303 .8384

KHMAI31 10.9947 5.4881 .7795 .8564

KHMAI32 10.8395 5.9610 .6837 .8914

Reliability Coefficients

N of Cases = 380.0 N of Items = 4

Alpha = .8930

Phụ lục 5: Các biểu đồ

0 10 20 30 40 50 60 70 80 90 100

VBA BIDV VCB DONGA ACB VIETIN STB KHAC

Tỷ lệ % Tần Suất

Biểu đồ 1: Thông tin ngân hàng mà khách hàng đang giao dịch

3.20 3.40 3.60 3.80 4.00 4.20 4.40

Chất lượng dịch vụ

An toàn Chi phí dịch vụ

Nhân viên ngân hàng

Uy tín Rào cản chuyển

đổi

Cơ sở vật chất

Khuyến mãi

Biểu đồ 2: Mức độ quan trọng của 8 thuộc tính ảnh hưởng đến quyết định lựa chọn sử dụng dịch vụ ngân hàng của khách hàng

Nam Nữ

Biểu đồ 3: Giới tính

18 - 35 36 - 55 Trên 55

Biểu đồ 4: Độ tuổi

Phổ thông trung học Đại Học/ Cao Đẳng Sau Đại Học

Biểu đồ 5: Trình độ học vấn

0 20 40 60 80 100 120 140 160 180 200

< 2 triệu đồng 2 - < 5 triệu đồng 5 - 10 triệu đồng > 10 triệu đồng

Số lượng Tỷ lệ %

Biểu đồ 6: Thu nhập bình quân/ tháng

0 50 100 150 200 250

Thường xuyên Khoảng 1 tháng/ lần Khoảng 3 tháng/ lần

Số lượng Tỷ lệ %

Biểu đồ 7: Mức độ giao dịch

Nhà quản lí CB CNV Công nhân Sinh viên Khác

Biểu đồ 8: Nghề nghiệp

Một phần của tài liệu Định vị thương hiệu agribank tại lâm đồng (Trang 73 - 100)

Tải bản đầy đủ (PDF)

(101 trang)